summaryrefslogtreecommitdiffstats
path: root/source/Noise.cpp
blob: 2a1734497834f8a4e5634ae8ff8b0504b3a89bd3 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603

#include "Globals.h"  // NOTE: MSVC stupidness requires this to be the same across all modules

#include "Noise.h"





#if NOISE_USE_SSE
	#include <smmintrin.h> //_mm_mul_epi32
#endif

#define FAST_FLOOR(x) (((x) < 0) ? (((int)x) - 1) : ((int)x))





///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
// Globals:

void IntArrayLinearInterpolate2D(
	int * a_Array, 
	int a_SizeX, int a_SizeY,  // Dimensions of the array
	int a_AnchorStepX, int a_AnchorStepY  // Distances between the anchor points in each direction
)
{
	// First interpolate columns where the anchor points are:
	int LastYCell = a_SizeY - a_AnchorStepY;
	for (int y = 0; y < LastYCell; y += a_AnchorStepY)
	{
		int Idx = a_SizeX * y;
		for (int x = 0; x < a_SizeX; x += a_AnchorStepX)
		{
			int StartValue = a_Array[Idx];
			int EndValue   = a_Array[Idx + a_SizeX * a_AnchorStepY];
			int Diff = EndValue - StartValue;
			for (int CellY = 1; CellY < a_AnchorStepY; CellY++)
			{
				a_Array[Idx + a_SizeX * CellY] = StartValue + CellY * Diff / a_AnchorStepY;
			}  // for CellY
			Idx += a_AnchorStepX;
		}  // for x
	}  // for y
	
	// Now interpolate in rows, each row has values in the anchor columns
	int LastXCell = a_SizeX - a_AnchorStepX;
	for (int y = 0; y < a_SizeY; y++)
	{
		int Idx = a_SizeX * y;
		for (int x = 0; x < LastXCell; x += a_AnchorStepX)
		{
			int StartValue = a_Array[Idx];
			int EndValue   = a_Array[Idx + a_AnchorStepX];
			int Diff = EndValue - StartValue;
			for (int CellX = 1; CellX < a_AnchorStepX; CellX++)
			{
				a_Array[Idx + CellX] = StartValue + CellX * Diff / a_AnchorStepX;
			}  // for CellY
			Idx += a_AnchorStepX;
		}
	}
}





///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
// cCubicCell2D:

class cCubicCell2D
{
public:
	cCubicCell2D(
		const cNoise & a_Noise,    ///< Noise to use for generating the random values
		NOISE_DATATYPE * a_Array,  ///< Array to generate into [x + a_SizeX * y]
		int a_SizeX, int a_SizeY,  ///< Count of the array, in each direction
		const NOISE_DATATYPE * a_FracX,  ///< Pointer to the array that stores the X fractional values
		const NOISE_DATATYPE * a_FracY   ///< Pointer to the attay that stores the Y fractional values
	);
	
	/// Uses current m_WorkRnds[] to generate part of the array
	void Generate(
		int a_FromX, int a_ToX,
		int a_FromY, int a_ToY
	);
	
	/// Initializes m_WorkRnds[] with the specified Floor values
	void InitWorkRnds(int a_FloorX, int a_FloorY);
	
	/// Updates m_WorkRnds[] for the new Floor values.
	void Move(int a_NewFloorX, int a_NewFloorY);

protected:
	typedef NOISE_DATATYPE Workspace[4][4];
	
	const cNoise & m_Noise;
	
	Workspace * m_WorkRnds;  ///< The current random values; points to either m_Workspace1 or m_Workspace2 (doublebuffering)
	Workspace m_Workspace1;  ///< Buffer 1 for workspace doublebuffering, used in Move()
	Workspace m_Workspace2;  ///< Buffer 2 for workspace doublebuffering, used in Move()
	int m_CurFloorX;
	int m_CurFloorY;
	
	NOISE_DATATYPE * m_Array;
	int m_SizeX, m_SizeY;
	const NOISE_DATATYPE * m_FracX;
	const NOISE_DATATYPE * m_FracY;
} ;





cCubicCell2D::cCubicCell2D(
	const cNoise & a_Noise,    ///< Noise to use for generating the random values
	NOISE_DATATYPE * a_Array,  ///< Array to generate into [x + a_SizeX * y]
	int a_SizeX, int a_SizeY,  ///< Count of the array, in each direction
	const NOISE_DATATYPE * a_FracX,  ///< Pointer to the array that stores the X fractional values
	const NOISE_DATATYPE * a_FracY   ///< Pointer to the attay that stores the Y fractional values
) :
	m_Noise(a_Noise),
	m_WorkRnds(&m_Workspace1),
	m_Array(a_Array),
	m_SizeX(a_SizeX),
	m_SizeY(a_SizeY),
	m_FracX(a_FracX),
	m_FracY(a_FracY)
{
}





void cCubicCell2D::Generate(
	int a_FromX, int a_ToX,
	int a_FromY, int a_ToY
)
{
	for (int y = a_FromY; y < a_ToY; y++)
	{
		NOISE_DATATYPE Interp[4];
		NOISE_DATATYPE FracY = m_FracY[y];
		Interp[0] = cNoise::CubicInterpolate((*m_WorkRnds)[0][0], (*m_WorkRnds)[0][1], (*m_WorkRnds)[0][2], (*m_WorkRnds)[0][3], FracY);
		Interp[1] = cNoise::CubicInterpolate((*m_WorkRnds)[1][0], (*m_WorkRnds)[1][1], (*m_WorkRnds)[1][2], (*m_WorkRnds)[1][3], FracY);
		Interp[2] = cNoise::CubicInterpolate((*m_WorkRnds)[2][0], (*m_WorkRnds)[2][1], (*m_WorkRnds)[2][2], (*m_WorkRnds)[2][3], FracY);
		Interp[3] = cNoise::CubicInterpolate((*m_WorkRnds)[3][0], (*m_WorkRnds)[3][1], (*m_WorkRnds)[3][2], (*m_WorkRnds)[3][3], FracY);
		int idx = y * m_SizeX + a_FromX;
		for (int x = a_FromX; x < a_ToX; x++)
		{
			m_Array[idx++] = cNoise::CubicInterpolate(Interp[0], Interp[1], Interp[2], Interp[3], m_FracX[x]);
		}  // for x
	}  // for y
}





void cCubicCell2D::InitWorkRnds(int a_FloorX, int a_FloorY)
{
	m_CurFloorX = a_FloorX;
	m_CurFloorY = a_FloorY;
	for (int x = 0; x < 4; x++)
	{
		int cx = a_FloorX + x - 1;
		for (int y = 0; y < 4; y++)
		{
			int cy = a_FloorY + y - 1;
			(*m_WorkRnds)[x][y] = (NOISE_DATATYPE)m_Noise.IntNoise2D(cx, cy);
		}
	}
}





void cCubicCell2D::Move(int a_NewFloorX, int a_NewFloorY)
{
	// Swap the doublebuffer:
	int OldFloorX = m_CurFloorX;
	int OldFloorY = m_CurFloorY;
	Workspace * OldWorkRnds = m_WorkRnds;
	m_WorkRnds = (m_WorkRnds == &m_Workspace1) ? &m_Workspace2 : &m_Workspace1;
	
	// Reuse as much of the old workspace as possible:
	int DiffX = OldFloorX - a_NewFloorX;
	int DiffY = OldFloorY - a_NewFloorY;
	for (int x = 0; x < 4; x++)
	{
		int cx = a_NewFloorX + x - 1;
		int OldX = x - DiffX;  // Where would this X be in the old grid?
		for (int y = 0; y < 4; y++)
		{
			int cy = a_NewFloorY + y - 1;
			int OldY = y - DiffY;  // Where would this Y be in the old grid?
			if ((OldX >= 0) && (OldX < 4) && (OldY >= 0) && (OldY < 4))
			{
				(*m_WorkRnds)[x][y] = (*OldWorkRnds)[OldX][OldY];
			}
			else
			{
				(*m_WorkRnds)[x][y] = (NOISE_DATATYPE)m_Noise.IntNoise2D(cx, cy);
			}
		}
	}
	m_CurFloorX = a_NewFloorX;
	m_CurFloorY = a_NewFloorY;
}





///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
// cNoise:

cNoise::cNoise(unsigned int a_Seed) :
	m_Seed(a_Seed)
{
}





cNoise::cNoise(const cNoise & a_Noise) :
	m_Seed(a_Noise.m_Seed)
{
}





NOISE_DATATYPE cNoise::LinearNoise1D(NOISE_DATATYPE a_X) const
{
	int BaseX = FAST_FLOOR(a_X);
	NOISE_DATATYPE FracX = a_X - BaseX;
	return LinearInterpolate(IntNoise1D(BaseX), IntNoise1D(BaseX + 1), FracX);
}





NOISE_DATATYPE cNoise::CosineNoise1D(NOISE_DATATYPE a_X) const
{
	int BaseX = FAST_FLOOR(a_X);
	NOISE_DATATYPE FracX = a_X - BaseX;
	return CosineInterpolate(IntNoise1D(BaseX), IntNoise1D(BaseX + 1), FracX);
}





NOISE_DATATYPE cNoise::CubicNoise1D(NOISE_DATATYPE a_X) const
{
	int BaseX = FAST_FLOOR(a_X);
	NOISE_DATATYPE FracX = a_X - BaseX;
	return CubicInterpolate(IntNoise1D(BaseX - 1), IntNoise1D(BaseX), IntNoise1D(BaseX + 1), IntNoise1D(BaseX + 2), FracX);
}





NOISE_DATATYPE cNoise::SmoothNoise1D(int a_X) const
{
	return IntNoise1D(a_X) / 2 + IntNoise1D(a_X - 1) / 4 + IntNoise1D(a_X + 1) / 4;
}





NOISE_DATATYPE cNoise::CubicNoise2D(NOISE_DATATYPE a_X, NOISE_DATATYPE a_Y) const
{
	const int	BaseX = FAST_FLOOR(a_X);
	const int	BaseY = FAST_FLOOR(a_Y);
	
	const NOISE_DATATYPE points[4][4] =
	{
		IntNoise2D(BaseX - 1, BaseY - 1), IntNoise2D(BaseX, BaseY - 1), IntNoise2D(BaseX + 1, BaseY - 1), IntNoise2D(BaseX + 2, BaseY - 1),
		IntNoise2D(BaseX - 1, BaseY),     IntNoise2D(BaseX, BaseY),     IntNoise2D(BaseX + 1, BaseY),     IntNoise2D(BaseX + 2, BaseY),
		IntNoise2D(BaseX - 1, BaseY + 1), IntNoise2D(BaseX, BaseY + 1), IntNoise2D(BaseX + 1, BaseY + 1), IntNoise2D(BaseX + 2, BaseY + 1),
		IntNoise2D(BaseX - 1, BaseY + 2), IntNoise2D(BaseX, BaseY + 2), IntNoise2D(BaseX + 1, BaseY + 2), IntNoise2D(BaseX + 2, BaseY + 2),
	};

	const NOISE_DATATYPE FracX = a_X - BaseX;
	const NOISE_DATATYPE interp1 = CubicInterpolate(points[0][0], points[0][1], points[0][2], points[0][3], FracX);
	const NOISE_DATATYPE interp2 = CubicInterpolate(points[1][0], points[1][1], points[1][2], points[1][3], FracX);
	const NOISE_DATATYPE interp3 = CubicInterpolate(points[2][0], points[2][1], points[2][2], points[2][3], FracX);
	const NOISE_DATATYPE interp4 = CubicInterpolate(points[3][0], points[3][1], points[3][2], points[3][3], FracX);


	const NOISE_DATATYPE FracY = a_Y - BaseY;
	return CubicInterpolate(interp1, interp2, interp3, interp4, FracY);
}





NOISE_DATATYPE cNoise::CubicNoise3D(NOISE_DATATYPE a_X, NOISE_DATATYPE a_Y, NOISE_DATATYPE a_Z) const
{
	const int	BaseX = FAST_FLOOR(a_X);
	const int	BaseY = FAST_FLOOR(a_Y);
	const int	BaseZ = FAST_FLOOR(a_Z);
	
	const NOISE_DATATYPE points1[4][4] = { 
		IntNoise3D(BaseX - 1, BaseY - 1, BaseZ - 1), IntNoise3D(BaseX, BaseY - 1, BaseZ - 1), IntNoise3D(BaseX + 1, BaseY - 1, BaseZ - 1), IntNoise3D(BaseX + 2, BaseY - 1, BaseZ - 1),
		IntNoise3D(BaseX - 1, BaseY,     BaseZ - 1), IntNoise3D(BaseX, BaseY,     BaseZ - 1), IntNoise3D(BaseX + 1, BaseY,     BaseZ - 1), IntNoise3D(BaseX + 2, BaseY,     BaseZ - 1),
		IntNoise3D(BaseX - 1, BaseY + 1, BaseZ - 1), IntNoise3D(BaseX, BaseY + 1, BaseZ - 1), IntNoise3D(BaseX + 1, BaseY + 1, BaseZ - 1), IntNoise3D(BaseX + 2, BaseY + 1, BaseZ - 1),
		IntNoise3D(BaseX - 1, BaseY + 2, BaseZ - 1), IntNoise3D(BaseX, BaseY + 2, BaseZ - 1), IntNoise3D(BaseX + 1, BaseY + 2, BaseZ - 1), IntNoise3D(BaseX + 2, BaseY + 2, BaseZ - 1),
	};

	const NOISE_DATATYPE	FracX = (a_X) - BaseX;
	const NOISE_DATATYPE x1interp1 = CubicInterpolate( points1[0][0], points1[0][1], points1[0][2], points1[0][3], FracX );
	const NOISE_DATATYPE x1interp2 = CubicInterpolate( points1[1][0], points1[1][1], points1[1][2], points1[1][3], FracX );
	const NOISE_DATATYPE x1interp3 = CubicInterpolate( points1[2][0], points1[2][1], points1[2][2], points1[2][3], FracX );
	const NOISE_DATATYPE x1interp4 = CubicInterpolate( points1[3][0], points1[3][1], points1[3][2], points1[3][3], FracX );

	const NOISE_DATATYPE points2[4][4] = { 
		IntNoise3D( BaseX-1, BaseY-1, BaseZ ), IntNoise3D( BaseX, BaseY-1, BaseZ ),	IntNoise3D( BaseX+1, BaseY-1, BaseZ ), IntNoise3D( BaseX+2, BaseY-1, BaseZ ),
		IntNoise3D( BaseX-1, BaseY,	  BaseZ ), IntNoise3D( BaseX, BaseY,   BaseZ ),	IntNoise3D( BaseX+1, BaseY,   BaseZ ), IntNoise3D( BaseX+2, BaseY,   BaseZ ),
		IntNoise3D( BaseX-1, BaseY+1, BaseZ ), IntNoise3D( BaseX, BaseY+1, BaseZ ),	IntNoise3D( BaseX+1, BaseY+1, BaseZ ), IntNoise3D( BaseX+2, BaseY+1, BaseZ ),
		IntNoise3D( BaseX-1, BaseY+2, BaseZ ), IntNoise3D( BaseX, BaseY+2, BaseZ ),	IntNoise3D( BaseX+1, BaseY+2, BaseZ ), IntNoise3D( BaseX+2, BaseY+2, BaseZ ),
	};

	const NOISE_DATATYPE x2interp1 = CubicInterpolate( points2[0][0], points2[0][1], points2[0][2], points2[0][3], FracX );
	const NOISE_DATATYPE x2interp2 = CubicInterpolate( points2[1][0], points2[1][1], points2[1][2], points2[1][3], FracX );
	const NOISE_DATATYPE x2interp3 = CubicInterpolate( points2[2][0], points2[2][1], points2[2][2], points2[2][3], FracX );
	const NOISE_DATATYPE x2interp4 = CubicInterpolate( points2[3][0], points2[3][1], points2[3][2], points2[3][3], FracX );

	const NOISE_DATATYPE points3[4][4] = { 
		IntNoise3D( BaseX-1, BaseY-1, BaseZ+1 ), IntNoise3D( BaseX, BaseY-1, BaseZ+1 ),	IntNoise3D( BaseX+1, BaseY-1, BaseZ+1 ), IntNoise3D( BaseX+2, BaseY-1, BaseZ+1 ),
		IntNoise3D( BaseX-1, BaseY,	  BaseZ+1 ), IntNoise3D( BaseX, BaseY,   BaseZ+1 ),	IntNoise3D( BaseX+1, BaseY,   BaseZ+1 ), IntNoise3D( BaseX+2, BaseY,   BaseZ+1 ),
		IntNoise3D( BaseX-1, BaseY+1, BaseZ+1 ), IntNoise3D( BaseX, BaseY+1, BaseZ+1 ),	IntNoise3D( BaseX+1, BaseY+1, BaseZ+1 ), IntNoise3D( BaseX+2, BaseY+1, BaseZ+1 ),
		IntNoise3D( BaseX-1, BaseY+2, BaseZ+1 ), IntNoise3D( BaseX, BaseY+2, BaseZ+1 ),	IntNoise3D( BaseX+1, BaseY+2, BaseZ+1 ), IntNoise3D( BaseX+2, BaseY+2, BaseZ+1 ),
	};

	const NOISE_DATATYPE x3interp1 = CubicInterpolate( points3[0][0], points3[0][1], points3[0][2], points3[0][3], FracX );
	const NOISE_DATATYPE x3interp2 = CubicInterpolate( points3[1][0], points3[1][1], points3[1][2], points3[1][3], FracX );
	const NOISE_DATATYPE x3interp3 = CubicInterpolate( points3[2][0], points3[2][1], points3[2][2], points3[2][3], FracX );
	const NOISE_DATATYPE x3interp4 = CubicInterpolate( points3[3][0], points3[3][1], points3[3][2], points3[3][3], FracX );

	const NOISE_DATATYPE points4[4][4] = { 
		IntNoise3D( BaseX-1, BaseY-1, BaseZ+2 ), IntNoise3D( BaseX, BaseY-1, BaseZ+2 ),	IntNoise3D( BaseX+1, BaseY-1, BaseZ+2 ), IntNoise3D( BaseX+2, BaseY-1, BaseZ+2 ),
		IntNoise3D( BaseX-1, BaseY,	  BaseZ+2 ), IntNoise3D( BaseX, BaseY,   BaseZ+2 ),	IntNoise3D( BaseX+1, BaseY,   BaseZ+2 ), IntNoise3D( BaseX+2, BaseY,   BaseZ+2 ),
		IntNoise3D( BaseX-1, BaseY+1, BaseZ+2 ), IntNoise3D( BaseX, BaseY+1, BaseZ+2 ),	IntNoise3D( BaseX+1, BaseY+1, BaseZ+2 ), IntNoise3D( BaseX+2, BaseY+1, BaseZ+2 ),
		IntNoise3D( BaseX-1, BaseY+2, BaseZ+2 ), IntNoise3D( BaseX, BaseY+2, BaseZ+2 ),	IntNoise3D( BaseX+1, BaseY+2, BaseZ+2 ), IntNoise3D( BaseX+2, BaseY+2, BaseZ+2 ),
	};

	const NOISE_DATATYPE x4interp1 = CubicInterpolate( points4[0][0], points4[0][1], points4[0][2], points4[0][3], FracX );
	const NOISE_DATATYPE x4interp2 = CubicInterpolate( points4[1][0], points4[1][1], points4[1][2], points4[1][3], FracX );
	const NOISE_DATATYPE x4interp3 = CubicInterpolate( points4[2][0], points4[2][1], points4[2][2], points4[2][3], FracX );
	const NOISE_DATATYPE x4interp4 = CubicInterpolate( points4[3][0], points4[3][1], points4[3][2], points4[3][3], FracX );

	const NOISE_DATATYPE	FracY = (a_Y) - BaseY;
	const NOISE_DATATYPE yinterp1 = CubicInterpolate( x1interp1, x1interp2, x1interp3, x1interp4, FracY );
	const NOISE_DATATYPE yinterp2 = CubicInterpolate( x2interp1, x2interp2, x2interp3, x2interp4, FracY );
	const NOISE_DATATYPE yinterp3 = CubicInterpolate( x3interp1, x3interp2, x3interp3, x3interp4, FracY );
	const NOISE_DATATYPE yinterp4 = CubicInterpolate( x4interp1, x4interp2, x4interp3, x4interp4, FracY );

	const NOISE_DATATYPE	FracZ = (a_Z) - BaseZ;
	return CubicInterpolate( yinterp1, yinterp2, yinterp3, yinterp4, FracZ );
}





///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
// cCubicNoise:

#ifdef _DEBUG
	int cCubicNoise::m_NumSingleX = 0;
	int cCubicNoise::m_NumSingleXY = 0;
	int cCubicNoise::m_NumSingleY = 0;
	int cCubicNoise::m_NumCalls = 0;
#endif  // _DEBUG

cCubicNoise::cCubicNoise(int a_Seed) :
	m_Noise(a_Seed)
{
}





void cCubicNoise::Generate2D(
	NOISE_DATATYPE * a_Array,                        ///< Array to generate into [x + a_SizeX * y]
	int a_SizeX, int a_SizeY,                        ///< Size of the array (num doubles), in each direction
	NOISE_DATATYPE a_StartX, NOISE_DATATYPE a_EndX,  ///< Noise-space coords of the array in the X direction
	NOISE_DATATYPE a_StartY, NOISE_DATATYPE a_EndY   ///< Noise-space coords of the array in the Y direction
) const
{
	ASSERT(a_SizeX < MAX_SIZE);
	ASSERT(a_SizeY < MAX_SIZE);
	ASSERT(a_StartX < a_EndX);
	ASSERT(a_StartY < a_EndY);
	
	// Calculate the integral and fractional parts of each coord:
	int FloorX[MAX_SIZE];
	int FloorY[MAX_SIZE];
	NOISE_DATATYPE FracX[MAX_SIZE];
	NOISE_DATATYPE FracY[MAX_SIZE];
	int SameX[MAX_SIZE];
	int SameY[MAX_SIZE];
	int NumSameX, NumSameY;
	CalcFloorFrac(a_SizeX, a_StartX, a_EndX, FloorX, FracX, SameX, NumSameX);
	CalcFloorFrac(a_SizeY, a_StartY, a_EndY, FloorY, FracY, SameY, NumSameY);
	
	cCubicCell2D Cell(m_Noise, a_Array, a_SizeX, a_SizeY, FracX, FracY);
	
	Cell.InitWorkRnds(FloorX[0], FloorY[0]);
	
	#ifdef _DEBUG
		// Statistics on the noise-space coords:	
		if (NumSameX == 1)
		{
			m_NumSingleX++;
			if (NumSameY == 1)
			{
				m_NumSingleXY++;
			}
		}
		if (NumSameY == 1)
		{
			m_NumSingleY++;
		}
		m_NumCalls++;
	#endif _DEBUG
	
	// Calculate query values using Cell:
	int FromY = 0;
	for (int y = 0; y < NumSameY; y++)
	{
		int ToY = FromY + SameY[y];
		int FromX = 0;
		int CurFloorY = FloorY[FromY];
		for (int x = 0; x < NumSameX; x++)
		{
			int ToX = FromX + SameX[x];
			Cell.Generate(FromX, ToX, FromY, ToY);
			Cell.Move(FloorX[ToX], CurFloorY);
			FromX = ToX;
		}
		Cell.Move(FloorX[0], FloorY[ToY]);
		FromY = ToY;
	}
}





void cCubicNoise::CalcFloorFrac(
	int a_Size,
	NOISE_DATATYPE a_Start, NOISE_DATATYPE a_End,
	int * a_Floor, NOISE_DATATYPE * a_Frac,
	int * a_Same, int & a_NumSame
) const
{
	NOISE_DATATYPE val = a_Start;
	NOISE_DATATYPE dif = (a_End - a_Start) / a_Size;
	for (int i = 0; i < a_Size; i++)
	{
		a_Floor[i] = FAST_FLOOR(val);
		a_Frac[i] = val - a_Floor[i];
		val += dif;
	}
	
	// Mark up the same floor values into a_Same / a_NumSame:
	int CurFloor = a_Floor[0];
	int LastSame = 0;
	a_NumSame = 0;
	for (int i = 1; i < a_Size; i++)
	{
		if (a_Floor[i] != CurFloor)
		{
			a_Same[a_NumSame] = i - LastSame;
			LastSame = i;
			a_NumSame += 1;
			CurFloor = a_Floor[i];
		}
	}  // for i - a_Floor[]
	if (LastSame < a_Size)
	{
		a_Same[a_NumSame] = a_Size - LastSame;
		a_NumSame += 1;
	}
}





///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
// cPerlinNoise:

cPerlinNoise::cPerlinNoise(void) :
	m_Seed(0)
{
}





cPerlinNoise::cPerlinNoise(int a_Seed) :
	m_Seed(a_Seed)
{
}





void cPerlinNoise::SetSeed(int a_Seed)
{
	m_Seed = a_Seed;
}





void cPerlinNoise::AddOctave(float a_Frequency, float a_Amplitude)
{
	m_Octaves.push_back(cOctave(m_Seed * (m_Octaves.size() + 4) * 4 + 1024, a_Frequency, a_Amplitude));
}





void cPerlinNoise::Generate2D(
	NOISE_DATATYPE * a_Array,                        ///< Array to generate into [x + a_SizeX * y]
	int a_SizeX, int a_SizeY,                        ///< Count of the array, in each direction
	NOISE_DATATYPE a_StartX, NOISE_DATATYPE a_EndX,  ///< Noise-space coords of the array in the X direction
	NOISE_DATATYPE a_StartY, NOISE_DATATYPE a_EndY,  ///< Noise-space coords of the array in the Y direction
	NOISE_DATATYPE * a_Workspace                     ///< Workspace that this function can use and trash
) const
{
	if (m_Octaves.empty())
	{
		// No work to be done
		return;
	}
	
	bool ShouldFreeWorkspace = (a_Workspace == NULL);
	int ArrayCount = a_SizeX * a_SizeY;
	if (ShouldFreeWorkspace)
	{
		a_Workspace = new NOISE_DATATYPE[ArrayCount];
	}
	
	// Generate the first octave directly into array:
	m_Octaves.front().m_Noise.Generate2D(
		a_Workspace, a_SizeX, a_SizeY,
		a_StartX * m_Octaves.front().m_Frequency, a_EndX * m_Octaves.front().m_Frequency,
		a_StartY * m_Octaves.front().m_Frequency, a_EndY * m_Octaves.front().m_Frequency
	);
	NOISE_DATATYPE Amplitude = m_Octaves.front().m_Amplitude;
	for (int i = 0; i < ArrayCount; i++)
	{
		a_Array[i] *= Amplitude;
	}
	
	// Add each octave:
	for (cOctaves::const_iterator itr = m_Octaves.begin() + 1, end = m_Octaves.end(); itr != end; ++itr)
	{
		// Generate cubic noise for the octave:
		itr->m_Noise.Generate2D(
			a_Workspace, a_SizeX, a_SizeY,
			a_StartX * itr->m_Frequency, a_EndX * itr->m_Frequency,
			a_StartY * itr->m_Frequency, a_EndY * itr->m_Frequency
		);
		// Add the cubic noise into the output:
		NOISE_DATATYPE Amplitude = itr->m_Amplitude;
		for (int i = 0; i < ArrayCount; i++)
		{
			a_Array[i] += a_Workspace[i] * Amplitude;
		}
	}
	
	if (ShouldFreeWorkspace)
	{
		delete[] a_Workspace;
	}
}