summaryrefslogtreecommitdiffstats
path: root/src/Protocol/ChunkDataSerializer.cpp
blob: c7fd504a1149e36798772b5c4c5b995138fd944e (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427

// ChunkDataSerializer.cpp

// Implements the cChunkDataSerializer class representing the object that can:
//  - serialize chunk data to different protocol versions
//  - cache such serialized data for multiple clients

#include "Globals.h"
#include "ChunkDataSerializer.h"
#include "zlib/zlib.h"
#include "ByteBuffer.h"
#include "Protocol18x.h"
#include "Protocol19x.h"




cChunkDataSerializer::cChunkDataSerializer(
	const cChunkDef::BlockTypes   & a_BlockTypes,
	const cChunkDef::BlockNibbles & a_BlockMetas,
	const cChunkDef::BlockNibbles & a_BlockLight,
	const cChunkDef::BlockNibbles & a_BlockSkyLight,
	const unsigned char *           a_BiomeData,
	const eDimension a_Dimension
) :
	m_BlockTypes(a_BlockTypes),
	m_BlockMetas(a_BlockMetas),
	m_BlockLight(a_BlockLight),
	m_BlockSkyLight(a_BlockSkyLight),
	m_BiomeData(a_BiomeData),
	m_Dimension(a_Dimension)
{
}




const AString & cChunkDataSerializer::Serialize(int a_Version, int a_ChunkX, int a_ChunkZ)
{
	Serializations::const_iterator itr = m_Serializations.find(a_Version);
	if (itr != m_Serializations.end())
	{
		return itr->second;
	}

	AString data;
	switch (a_Version)
	{
		case RELEASE_1_8_0: Serialize47(data, a_ChunkX, a_ChunkZ); break;
		case RELEASE_1_9_0: Serialize107(data, a_ChunkX, a_ChunkZ); break;
		case RELEASE_1_9_4: Serialize110(data, a_ChunkX, a_ChunkZ); break;
		// TODO: Other protocol versions may serialize the data differently; implement here

		default:
		{
			LOGERROR("cChunkDataSerializer::Serialize(): Unknown version: %d", a_Version);
			ASSERT(!"Unknown chunk data serialization version");
			break;
		}
	}
	if (!data.empty())
	{
		m_Serializations[a_Version] = data;
	}
	return m_Serializations[a_Version];
}




void cChunkDataSerializer::Serialize47(AString & a_Data, int a_ChunkX, int a_ChunkZ)
{
	// This function returns the fully compressed packet (including packet size), not the raw packet!

	// Create the packet:
	cByteBuffer Packet(512 KiB);
	Packet.WriteVarInt32(0x21);  // Packet id (Chunk Data packet)
	Packet.WriteBEInt32(a_ChunkX);
	Packet.WriteBEInt32(a_ChunkZ);
	Packet.WriteBool(true);        // "Ground-up continuous", or rather, "biome data present" flag
	Packet.WriteBEUInt16(0xffff);  // We're aways sending the full chunk with no additional data, so the bitmap is 0xffff

	// Write the chunk size:
	const int BiomeDataSize = cChunkDef::Width * cChunkDef::Width;
	UInt32 ChunkSize = (
		(cChunkDef::NumBlocks * 2) +  // Block meta + type
		sizeof(m_BlockLight) +        // Block light
		sizeof(m_BlockSkyLight) +     // Block sky light
		BiomeDataSize                 // Biome data
	);
	Packet.WriteVarInt32(ChunkSize);

	// Write the block types to the packet:
	for (size_t Index = 0; Index < cChunkDef::NumBlocks; Index++)
	{
		BLOCKTYPE BlockType = m_BlockTypes[Index] & 0xFF;
		NIBBLETYPE BlockMeta = m_BlockMetas[Index / 2] >> ((Index & 1) * 4) & 0x0f;
		Packet.WriteBEUInt8(static_cast<unsigned char>(BlockType << 4) | BlockMeta);
		Packet.WriteBEUInt8(static_cast<unsigned char>(BlockType >> 4));
	}

	// Write the rest:
	Packet.WriteBuf(m_BlockLight,    sizeof(m_BlockLight));
	Packet.WriteBuf(m_BlockSkyLight, sizeof(m_BlockSkyLight));
	Packet.WriteBuf(m_BiomeData,     BiomeDataSize);

	AString PacketData;
	Packet.ReadAll(PacketData);
	Packet.CommitRead();

	cByteBuffer Buffer(20);
	if (PacketData.size() >= 256)
	{
		if (!cProtocol180::CompressPacket(PacketData, a_Data))
		{
			ASSERT(!"Packet compression failed.");
			a_Data.clear();
			return;
		}
	}
	else
	{
		AString PostData;
		Buffer.WriteVarInt32(static_cast<UInt32>(Packet.GetUsedSpace() + 1));
		Buffer.WriteVarInt32(0);
		Buffer.ReadAll(PostData);
		Buffer.CommitRead();

		a_Data.clear();
		a_Data.reserve(PostData.size() + PacketData.size());
		a_Data.append(PostData.data(), PostData.size());
		a_Data.append(PacketData.data(), PacketData.size());
	}
}





void cChunkDataSerializer::Serialize107(AString & a_Data, int a_ChunkX, int a_ChunkZ)
{
	// This function returns the fully compressed packet (including packet size), not the raw packet!

	// Create the packet:
	cByteBuffer Packet(512 KiB);
	Packet.WriteVarInt32(0x20);  // Packet id (Chunk Data packet)
	Packet.WriteBEInt32(a_ChunkX);
	Packet.WriteBEInt32(a_ChunkZ);
	Packet.WriteBool(true);        // "Ground-up continuous", or rather, "biome data present" flag
	Packet.WriteVarInt32(0x0000ffff);  // We're aways sending the full chunk with no additional data, so the bitmap is 0xffff
	// Write the chunk size:
	const size_t NumChunkSections = 16;
	const size_t ChunkSectionBlocks = 16 * 16 * 16;
	const size_t BitsPerEntry = 13;
	const size_t Mask = (1 << BitsPerEntry) - 1;  // Creates a mask that is 13 bits long, ie 0b1111111111111
	const size_t ChunkSectionDataArraySize = (ChunkSectionBlocks * BitsPerEntry) / 8 / 8;  // Convert from bit count to long count
	size_t ChunkSectionSize = (
		1 +                                      // Bits per block - set to 13, so the global palette is used and the palette has a length of 0
		1 +                                      // Palette length
		2 +                                      // Data array length VarInt - 2 bytes for the current value
		ChunkSectionDataArraySize * 8 +          // Actual block data - multiplied by 8 because first number is longs
		sizeof(m_BlockLight) / NumChunkSections  // Block light
	);

	if (m_Dimension == dimOverworld)
	{
		// Sky light is only sent in the overworld.
		ChunkSectionSize += sizeof(m_BlockSkyLight) / NumChunkSections;
	}

	const size_t BiomeDataSize = cChunkDef::Width * cChunkDef::Width;
	size_t ChunkSize = (
		ChunkSectionSize * 16 +
		BiomeDataSize
	);
	Packet.WriteVarInt32(static_cast<UInt32>(ChunkSize));

	// Write each chunk section...
	for (size_t SectionIndex = 0; SectionIndex < 16; SectionIndex++)
	{
		Packet.WriteBEUInt8(BitsPerEntry);
		Packet.WriteVarInt32(0);  // Palette length is 0
		Packet.WriteVarInt32(static_cast<UInt32>(ChunkSectionDataArraySize));

		size_t StartIndex = SectionIndex * ChunkSectionBlocks;

		UInt64 TempLong = 0;  // Temporary value that will be stored into
		UInt64 CurrentlyWrittenIndex = 0;  // "Index" of the long that would be written to

		for (size_t Index = 0; Index < ChunkSectionBlocks; Index++)
		{
			UInt64 Value = static_cast<UInt64>(m_BlockTypes[StartIndex + Index] << 4);
			if (Index % 2 == 0)
			{
				Value |= m_BlockMetas[(StartIndex + Index) / 2] & 0x0f;
			}
			else
			{
				Value |= m_BlockMetas[(StartIndex + Index) / 2] >> 4;
			}
			Value &= Mask;  // It shouldn't go out of bounds, but it's still worth being careful

			// Painful part where we write data into the long array.  Based off of the normal code.
			size_t BitPosition = Index * BitsPerEntry;
			size_t FirstIndex = BitPosition / 64;
			size_t SecondIndex = ((Index + 1) * BitsPerEntry - 1) / 64;
			size_t BitOffset = BitPosition % 64;

			if (FirstIndex != CurrentlyWrittenIndex)
			{
				// Write the current data before modifiying it.
				Packet.WriteBEUInt64(TempLong);
				TempLong = 0;
				CurrentlyWrittenIndex = FirstIndex;
			}

			TempLong |= (Value << BitOffset);

			if (FirstIndex != SecondIndex)
			{
				// Part of the data is now in the second long; write the first one first
				Packet.WriteBEUInt64(TempLong);
				CurrentlyWrittenIndex = SecondIndex;

				TempLong = (Value >> (64 - BitOffset));
			}
		}
		// The last long will generally not be written
		Packet.WriteBEUInt64(TempLong);

		// Light - stored as a nibble, so we need half sizes
		// As far as I know, there isn't a method to only write a range of the array
		for (size_t Index = 0; Index < ChunkSectionBlocks / 2; Index++)
		{
			Packet.WriteBEUInt8(m_BlockLight[(StartIndex / 2) + Index]);
		}
		if (m_Dimension == dimOverworld)
		{
			// Skylight is only sent in the overworld; the nether and end do not use it
			for (size_t Index = 0; Index < ChunkSectionBlocks / 2; Index++)
			{
				Packet.WriteBEUInt8(m_BlockSkyLight[(StartIndex / 2) + Index]);
			}
		}
	}

	// Write the biome data
	Packet.WriteBuf(m_BiomeData, BiomeDataSize);

	AString PacketData;
	Packet.ReadAll(PacketData);
	Packet.CommitRead();

	cByteBuffer Buffer(20);
	if (PacketData.size() >= 256)
	{
		if (!cProtocol190::CompressPacket(PacketData, a_Data))
		{
			ASSERT(!"Packet compression failed.");
			a_Data.clear();
			return;
		}
	}
	else
	{
		AString PostData;
		Buffer.WriteVarInt32(static_cast<UInt32>(Packet.GetUsedSpace() + 1));
		Buffer.WriteVarInt32(0);
		Buffer.ReadAll(PostData);
		Buffer.CommitRead();

		a_Data.clear();
		a_Data.reserve(PostData.size() + PacketData.size());
		a_Data.append(PostData.data(), PostData.size());
		a_Data.append(PacketData.data(), PacketData.size());
	}
}





void cChunkDataSerializer::Serialize110(AString & a_Data, int a_ChunkX, int a_ChunkZ)
{
	// This function returns the fully compressed packet (including packet size), not the raw packet!

	// Create the packet:
	cByteBuffer Packet(512 KiB);
	Packet.WriteVarInt32(0x20);  // Packet id (Chunk Data packet)
	Packet.WriteBEInt32(a_ChunkX);
	Packet.WriteBEInt32(a_ChunkZ);
	Packet.WriteBool(true);        // "Ground-up continuous", or rather, "biome data present" flag
	Packet.WriteVarInt32(0x0000ffff);  // We're aways sending the full chunk with no additional data, so the bitmap is 0xffff
	// Write the chunk size:
	const size_t NumChunkSections = 16;
	const size_t ChunkSectionBlocks = 16 * 16 * 16;
	const size_t BitsPerEntry = 13;
	const size_t Mask = (1 << BitsPerEntry) - 1;  // Creates a mask that is 13 bits long, ie 0b1111111111111
	const size_t ChunkSectionDataArraySize = (ChunkSectionBlocks * BitsPerEntry) / 8 / 8;  // Convert from bit count to long count
	size_t ChunkSectionSize = (
		1 +                                      // Bits per block - set to 13, so the global palette is used and the palette has a length of 0
		1 +                                      // Palette length
		2 +                                      // Data array length VarInt - 2 bytes for the current value
		ChunkSectionDataArraySize * 8 +          // Actual block data - multiplied by 8 because first number is longs
		sizeof(m_BlockLight) / NumChunkSections  // Block light
	);

	if (m_Dimension == dimOverworld)
	{
		// Sky light is only sent in the overworld.
		ChunkSectionSize += sizeof(m_BlockSkyLight) / NumChunkSections;
	}

	const size_t BiomeDataSize = cChunkDef::Width * cChunkDef::Width;
	size_t ChunkSize = (
		ChunkSectionSize * 16 +
		BiomeDataSize
	);
	Packet.WriteVarInt32(static_cast<UInt32>(ChunkSize));

	// Write each chunk section...
	for (size_t SectionIndex = 0; SectionIndex < 16; SectionIndex++)
	{
		Packet.WriteBEUInt8(BitsPerEntry);
		Packet.WriteVarInt32(0);  // Palette length is 0
		Packet.WriteVarInt32(static_cast<UInt32>(ChunkSectionDataArraySize));

		size_t StartIndex = SectionIndex * ChunkSectionBlocks;

		UInt64 TempLong = 0;  // Temporary value that will be stored into
		UInt64 CurrentlyWrittenIndex = 0;  // "Index" of the long that would be written to

		for (size_t Index = 0; Index < ChunkSectionBlocks; Index++)
		{
			UInt64 Value = static_cast<UInt64>(m_BlockTypes[StartIndex + Index] << 4);
			if (Index % 2 == 0)
			{
				Value |= m_BlockMetas[(StartIndex + Index) / 2] & 0x0f;
			}
			else
			{
				Value |= m_BlockMetas[(StartIndex + Index) / 2] >> 4;
			}
			Value &= Mask;  // It shouldn't go out of bounds, but it's still worth being careful

			// Painful part where we write data into the long array.  Based off of the normal code.
			size_t BitPosition = Index * BitsPerEntry;
			size_t FirstIndex = BitPosition / 64;
			size_t SecondIndex = ((Index + 1) * BitsPerEntry - 1) / 64;
			size_t BitOffset = BitPosition % 64;

			if (FirstIndex != CurrentlyWrittenIndex)
			{
				// Write the current data before modifiying it.
				Packet.WriteBEUInt64(TempLong);
				TempLong = 0;
				CurrentlyWrittenIndex = FirstIndex;
			}

			TempLong |= (Value << BitOffset);

			if (FirstIndex != SecondIndex)
			{
				// Part of the data is now in the second long; write the first one first
				Packet.WriteBEUInt64(TempLong);
				CurrentlyWrittenIndex = SecondIndex;

				TempLong = (Value >> (64 - BitOffset));
			}
		}
		// The last long will generally not be written
		Packet.WriteBEUInt64(TempLong);

		// Light - stored as a nibble, so we need half sizes
		// As far as I know, there isn't a method to only write a range of the array
		for (size_t Index = 0; Index < ChunkSectionBlocks / 2; Index++)
		{
			Packet.WriteBEUInt8(m_BlockLight[(StartIndex / 2) + Index]);
		}
		if (m_Dimension == dimOverworld)
		{
			// Skylight is only sent in the overworld; the nether and end do not use it
			for (size_t Index = 0; Index < ChunkSectionBlocks / 2; Index++)
			{
				Packet.WriteBEUInt8(m_BlockSkyLight[(StartIndex / 2) + Index]);
			}
		}
	}

	// Write the biome data
	Packet.WriteBuf(m_BiomeData, BiomeDataSize);

	// Identify 1.9.4's tile entity list as empty
	Packet.WriteBEUInt8(0);

	AString PacketData;
	Packet.ReadAll(PacketData);
	Packet.CommitRead();

	cByteBuffer Buffer(20);
	if (PacketData.size() >= 256)
	{
		if (!cProtocol190::CompressPacket(PacketData, a_Data))
		{
			ASSERT(!"Packet compression failed.");
			a_Data.clear();
			return;
		}
	}
	else
	{
		AString PostData;
		Buffer.WriteVarInt32(static_cast<UInt32>(Packet.GetUsedSpace() + 1));
		Buffer.WriteVarInt32(0);
		Buffer.ReadAll(PostData);
		Buffer.CommitRead();

		a_Data.clear();
		a_Data.reserve(PostData.size() + PacketData.size());
		a_Data.append(PostData.data(), PostData.size());
		a_Data.append(PacketData.data(), PacketData.size());
	}
}