summaryrefslogblamecommitdiffstats
path: root/g4f/models.py
blob: 1cefae8bc315898170df764fe47ffb9be5c83ccc (plain) (tree)
1
2
3
4
5
6
7
8
9
                                   
 
                                 
 
                                                    
                       
            
               
             
                 
           

             
            

                   

               
        
                  
             
            
               

              
          


                
             
              





                   
                  
             
                  
            
 
 
 
                            
            







                                                                                                       

                      
                                      
 

                               
                                                
                          
 

               
                

                       
                                      
            
                 

                      
                 
                 
                  
                      
                  
                  
                   
                     
               

      
 

 




              
         
                     
                                    
                             
                                                                

 
       

                             
                             
                                                                                                            
 
 

                                  
                             
                                                                                                                                          
 


                                  
                             
                                                                         

 

                            
                             
                                                                                                                                                             

 



                             
                        




                              
                        

 
 
                





                                      

            
             
                              
                           
                          

 
         


                                 
                                                            
 
         

                                 
                                 
                                                  

 
           

                                   
                                 
                                                                                                     

 

                                    
                                 
                                                                                                                                                         

 

                                     
                                 
                                                        

 
           


                                   
                                                  

 


                                    
                                                                

 
               


                                 
                                                

 
                     
                                   
                              
                       

 





                                                                
 
                    

                                   
                                   
                            

 

                                   
                                   
                            

 


                                   
                                                                
 
 

                 


                                
                                                

 




                                                                

                       
        

                                 
                                      
                                                                                          



                                   
                                      
                                                                 

 

                             
                                      
                          

 
       

                               
                             
                                 

 
 
                 

                                 
                                
                            

 
          

                                    
                                
                                                



                                      
                                
                                                

 


                                     
                                                     

 
            
                          
                                        
                                
                                                          

 
 




                              
 
 
 
                   

                        
                                  
                            




                                  
                            
 
 

                       
                            
                                  
                               

 
 
            
          


                           


                              


                        
                           
                                                                               

 






                                                                
               





                              





                              
 
                  

                
                                 
                      
 
 
                

                            
                               
                            

 



                               
                                                     
 
 






                                 
                

                          
                               
                            















                            





                            

                      

                          
                                    
                                                      



                        
                                    


                                  






                                                                
 






                              






















                                    






                                
 
 


             
 

                    
                  
                                   
                                                     


    

                  
                                   
                                 


    


                             
                                    
                                 
    

 
 



                              
                                                                        


    






                                                


                              
                                                





                              
                            





                              
                            





                              
                            





                              
                            
    

 


                              
                            


    
 
 
             


                       
                            


    
                 





                                                                                                   
                                 
    


            
        


                              
 
       



                           



                   
       
        


                
         
                         
 

                         
        



                                 

           
                             
                               
   
        
               
                         
                             
                             


                    
                             
                             
                     

                
                 
               
                             
 
 




                             
        

                     
 

                 
                         

          

                                   
                                 

            
                                       
        




                       
                   

                                 

        


                             
 

                     
        
    
        
            
          
                           
 
        
                         


                                         
                  
        
               
                         
                       

 
                  
         
 
 
                
                                 
     


                       


                
                                     
                

                

                             



                           
                       
        
        
                     

                             
     
        

                       

        

                             




                                 










                        



                       

        
        














                                   
                     



                             
                         
                   
 
 
             
                     
     
 
                                             
from __future__  import annotations

from dataclasses import dataclass

from .Provider import IterListProvider, ProviderType
from .Provider import (
    Ai4Chat,
    AIChatFree,
    Airforce,
    AIUncensored,
    Allyfy,
    Bing,
    Blackbox,
    ChatGpt,
    Chatgpt4Online,
    ChatGptEs,
    Cloudflare,
    DarkAI,
    DDG,
    DeepInfraChat,
    Free2GPT,
    FreeGpt,
    FreeNetfly,
    Gemini,
    GeminiPro,
    GizAI,
    GigaChat,
    HuggingChat,
    HuggingFace,
    Liaobots,
    MagickPen,
    MetaAI,
    OpenaiChat,
    PerplexityLabs,
    Pi,
    Pizzagpt,
    Reka,
    ReplicateHome,
    RubiksAI,
    TeachAnything,
    Upstage,
)


@dataclass(unsafe_hash=True)
class Model:
    """
    Represents a machine learning model configuration.

    Attributes:
        name (str): Name of the model.
        base_provider (str): Default provider for the model.
        best_provider (ProviderType): The preferred provider for the model, typically with retry logic.
    """
    name: str
    base_provider: str
    best_provider: ProviderType = None

    @staticmethod
    def __all__() -> list[str]:
        """Returns a list of all model names."""
        return _all_models


### Default ###
default = Model(
    name          = "",
    base_provider = "",
    best_provider = IterListProvider([
        DDG,
        Pizzagpt,
        ReplicateHome,
        Upstage,
        Blackbox,
        Free2GPT,
        MagickPen,
        DeepInfraChat,
        Airforce, 
        ChatGptEs,
        Cloudflare,
        AIUncensored,
        DarkAI,
    ])
)



############
### Text ###
############

### OpenAI ###
# gpt-3.5
gpt_35_turbo = Model(
    name          = 'gpt-3.5-turbo',
    base_provider = 'OpenAI',
    best_provider = IterListProvider([DarkAI, Liaobots, Allyfy])
)

# gpt-4
gpt_4o = Model(
    name          = 'gpt-4o',
    base_provider = 'OpenAI',
    best_provider = IterListProvider([Blackbox, ChatGptEs, DarkAI, ChatGpt, Airforce, Liaobots, OpenaiChat])
)

gpt_4o_mini = Model(
    name          = 'gpt-4o-mini',
    base_provider = 'OpenAI',
    best_provider = IterListProvider([DDG, ChatGptEs, FreeNetfly, Pizzagpt, ChatGpt, Airforce, RubiksAI, MagickPen, Liaobots, OpenaiChat])
)

gpt_4_turbo = Model(
    name          = 'gpt-4-turbo',
    base_provider = 'OpenAI',
    best_provider = IterListProvider([ChatGpt, Airforce, Liaobots, Bing])
)

gpt_4 = Model(
    name          = 'gpt-4',
    base_provider = 'OpenAI',
    best_provider = IterListProvider([Chatgpt4Online, ChatGpt, Bing, OpenaiChat, gpt_4_turbo.best_provider, gpt_4o.best_provider, gpt_4o_mini.best_provider])
)

# o1
o1 = Model(
    name          = 'o1',
    base_provider = 'OpenAI',
    best_provider = None
)

o1_mini = Model(
    name          = 'o1-mini',
    base_provider = 'OpenAI',
    best_provider = None
)


### GigaChat ###
gigachat = Model(
    name          = 'GigaChat:latest',
    base_provider = 'gigachat',
    best_provider = GigaChat
)


### Meta ###
meta = Model(
    name          = "meta-ai",
    base_provider = "Meta",
    best_provider = MetaAI
)

# llama 2
llama_2_7b = Model(
    name          = "llama-2-7b",
    base_provider = "Meta Llama",
    best_provider = IterListProvider([Cloudflare, Airforce])
)
# llama 3
llama_3_8b = Model(
    name          = "llama-3-8b",
    base_provider = "Meta Llama",
    best_provider = IterListProvider([Cloudflare])
)

# llama 3.1
llama_3_1_8b = Model(
    name          = "llama-3.1-8b",
    base_provider = "Meta Llama",
    best_provider = IterListProvider([Blackbox, DeepInfraChat, Cloudflare, Airforce, PerplexityLabs])
)

llama_3_1_70b = Model(
    name          = "llama-3.1-70b",
    base_provider = "Meta Llama",
    best_provider = IterListProvider([DDG, DeepInfraChat, Blackbox, TeachAnything, DarkAI, Airforce, RubiksAI, HuggingChat, HuggingFace, PerplexityLabs])
)

llama_3_1_405b = Model(
    name          = "llama-3.1-405b",
    base_provider = "Meta Llama",
    best_provider = IterListProvider([Blackbox, DarkAI])
)

# llama 3.2
llama_3_2_1b = Model(
    name          = "llama-3.2-1b",
    base_provider = "Meta Llama",
    best_provider = IterListProvider([Cloudflare])
)

llama_3_2_11b = Model(
    name          = "llama-3.2-11b",
    base_provider = "Meta Llama",
    best_provider = IterListProvider([HuggingChat, HuggingFace])
)

### Mistral ###
mistral_7b = Model(
    name          = "mistral-7b",
    base_provider = "Mistral",
    best_provider = IterListProvider([Free2GPT])
)

mixtral_8x7b = Model(
    name          = "mixtral-8x7b",
    base_provider = "Mistral",
    best_provider = DDG
)

mistral_nemo = Model(
    name          = "mistral-nemo",
    base_provider = "Mistral",
    best_provider = IterListProvider([HuggingChat, HuggingFace])
)


### NousResearch ###
hermes_2_pro = Model(
    name          = "hermes-2-pro",
    base_provider = "NousResearch",
    best_provider = Airforce
)

hermes_2_dpo = Model(
    name          = "hermes-2-dpo",
    base_provider = "NousResearch",
    best_provider = Airforce
)

hermes_3 = Model(
    name          = "hermes-3",
    base_provider = "NousResearch",
    best_provider = IterListProvider([HuggingChat, HuggingFace])
)


### Microsoft ###
phi_2 = Model(
    name          = "phi-2",
    base_provider = "Microsoft",
    best_provider = IterListProvider([Airforce])
)

phi_3_5_mini = Model(
    name          = "phi-3.5-mini",
    base_provider = "Microsoft",
    best_provider = IterListProvider([HuggingChat, HuggingFace])
)

### Google DeepMind ###
# gemini
gemini_pro = Model(
    name          = 'gemini-pro',
    base_provider = 'Google DeepMind',
    best_provider = IterListProvider([GeminiPro, Blackbox, AIChatFree, FreeGpt, Liaobots])
)

gemini_flash = Model(
    name          = 'gemini-flash',
    base_provider = 'Google DeepMind',
    best_provider = IterListProvider([Blackbox, GizAI, Liaobots])
)

gemini = Model(
    name          = 'gemini',
    base_provider = 'Google DeepMind',
    best_provider = Gemini
)

# gemma
gemma_2b = Model(
    name          = 'gemma-2b',
    base_provider = 'Google',
    best_provider = ReplicateHome
)


### Anthropic ###
claude_2_1 = Model(
    name          = 'claude-2.1',
    base_provider = 'Anthropic',
    best_provider = Liaobots
)

# claude 3
claude_3_opus = Model(
    name          = 'claude-3-opus',
    base_provider = 'Anthropic',
    best_provider = IterListProvider([Liaobots])
)

claude_3_sonnet = Model(
    name          = 'claude-3-sonnet',
    base_provider = 'Anthropic',
    best_provider = IterListProvider([Liaobots])
)

claude_3_haiku = Model(
    name          = 'claude-3-haiku',
    base_provider = 'Anthropic',
    best_provider = IterListProvider([DDG, Liaobots])
)

# claude 3.5
claude_3_5_sonnet = Model(
    name          = 'claude-3.5-sonnet',
    base_provider = 'Anthropic',
    best_provider = IterListProvider([Blackbox, Liaobots])
)


### Reka AI ###
reka_core = Model(
    name = 'reka-core',
    base_provider = 'Reka AI',
    best_provider = Reka
)


### Blackbox AI ###
blackboxai = Model(
    name = 'blackboxai',
    base_provider = 'Blackbox AI',
    best_provider = Blackbox
)

blackboxai_pro = Model(
    name = 'blackboxai-pro',
    base_provider = 'Blackbox AI',
    best_provider = Blackbox
)

### CohereForAI ###
command_r_plus = Model(
    name = 'command-r-plus',
    base_provider = 'CohereForAI',
    best_provider = HuggingChat
)


### Qwen ###
# qwen 1_5
qwen_1_5_7b = Model(
    name = 'qwen-1.5-7b',
    base_provider = 'Qwen',
    best_provider = Cloudflare
)

# qwen 2
qwen_2_72b = Model(
    name = 'qwen-2-72b',
    base_provider = 'Qwen',
    best_provider = IterListProvider([DeepInfraChat, HuggingChat, HuggingFace])
)

# qwen 2.5
qwen_2_5_coder_32b = Model(
    name = 'qwen-2.5-coder-32b',
    base_provider = 'Qwen',
    best_provider = IterListProvider([HuggingChat, HuggingFace])
)

### Upstage ###
solar_mini = Model(
    name = 'solar-mini',
    base_provider = 'Upstage',
    best_provider = Upstage
)

solar_pro = Model(
    name = 'solar-pro',
    base_provider = 'Upstage',
    best_provider = Upstage
)


### Inflection ###
pi = Model(
    name = 'pi',
    base_provider = 'Inflection',
    best_provider = Pi
)

### DeepSeek ###
deepseek_coder = Model(
    name = 'deepseek-coder',
    base_provider = 'DeepSeek',
    best_provider = Airforce
)

### WizardLM ###
wizardlm_2_8x22b = Model(
    name = 'wizardlm-2-8x22b',
    base_provider = 'WizardLM',
    best_provider = IterListProvider([DeepInfraChat])
)

### Yorickvp ###
llava_13b = Model(
    name = 'llava-13b',
    base_provider = 'Yorickvp',
    best_provider = ReplicateHome
)

### OpenChat ###
openchat_3_5 = Model(
    name = 'openchat-3.5',
    base_provider = 'OpenChat',
    best_provider = Airforce
)


### x.ai ###
grok_2 = Model(
    name = 'grok-2',
    base_provider = 'x.ai',
    best_provider = Liaobots
)

grok_2_mini = Model(
    name = 'grok-2-mini',
    base_provider = 'x.ai',
    best_provider = Liaobots
)

grok_beta = Model(
    name = 'grok-beta',
    base_provider = 'x.ai',
    best_provider = Liaobots
)


### Perplexity AI ### 
sonar_online = Model(
    name = 'sonar-online',
    base_provider = 'Perplexity AI',
    best_provider = IterListProvider([PerplexityLabs])
)

sonar_chat = Model(
    name = 'sonar-chat',
    base_provider = 'Perplexity AI',
    best_provider = PerplexityLabs
)

### Nvidia ### 
nemotron_70b = Model(
    name = 'nemotron-70b',
    base_provider = 'Nvidia',
    best_provider = IterListProvider([HuggingChat, HuggingFace])
)


### Teknium ### 
openhermes_2_5 = Model(
    name = 'openhermes-2.5',
    base_provider = 'Teknium',
    best_provider = Airforce
)

### Liquid ### 
lfm_40b = Model(
    name = 'lfm-40b',
    base_provider = 'Liquid',
    best_provider = Airforce
)


### DiscoResearch ### 
german_7b = Model(
    name = 'german-7b',
    base_provider = 'DiscoResearch',
    best_provider = Airforce
)


### HuggingFaceH4 ### 
zephyr_7b = Model(
    name = 'zephyr-7b',
    base_provider = 'HuggingFaceH4',
    best_provider = Airforce
)

### Inferless ### 
neural_7b = Model(
    name = 'neural-7b',
    base_provider = 'inferless',
    best_provider = Airforce
)



#############
### Image ###
#############

### Stability AI ###
sdxl = Model(
    name = 'sdxl',
    base_provider = 'Stability AI',
    best_provider = IterListProvider([ReplicateHome])
    
)

sd_3 = Model(
    name = 'sd-3',
    base_provider = 'Stability AI',
    best_provider = ReplicateHome
    
)

### Playground ###
playground_v2_5 = Model(
    name = 'playground-v2.5',
    base_provider = 'Playground AI',
    best_provider = ReplicateHome
    
)


### Flux AI ###
flux = Model(
    name = 'flux',
    base_provider = 'Flux AI',
    best_provider = IterListProvider([Blackbox, AIUncensored, Airforce])
    
)

flux_pro = Model(
    name = 'flux-pro',
    base_provider = 'Flux AI',
    best_provider = IterListProvider([Airforce])
    
)

flux_realism = Model(
    name = 'flux-realism',
    base_provider = 'Flux AI',
    best_provider = IterListProvider([Airforce])
    
)

flux_anime = Model(
    name = 'flux-anime',
    base_provider = 'Flux AI',
    best_provider = Airforce
    
)

flux_3d = Model(
    name = 'flux-3d',
    base_provider = 'Flux AI',
    best_provider = Airforce
    
)

flux_disney = Model(
    name = 'flux-disney',
    base_provider = 'Flux AI',
    best_provider = Airforce
    
)

flux_pixel = Model(
    name = 'flux-pixel',
    base_provider = 'Flux AI',
    best_provider = Airforce
    
)

flux_4o = Model(
    name = 'flux-4o',
    base_provider = 'Flux AI',
    best_provider = Airforce
    
)



### Other ###
any_dark = Model(
    name = 'any-dark',
    base_provider = '',
    best_provider = Airforce
    
)

class ModelUtils:
    """
    Utility class for mapping string identifiers to Model instances.

    Attributes:
        convert (dict[str, Model]): Dictionary mapping model string identifiers to Model instances.
    """
    convert: dict[str, Model] = {
    
############
### Text ###
############
        
### OpenAI ###
# gpt-3.5
'gpt-3.5-turbo': gpt_35_turbo,

# gpt-4
'gpt-4o': gpt_4o,
'gpt-4o-mini': gpt_4o_mini,
'gpt-4': gpt_4,
'gpt-4-turbo': gpt_4_turbo,

# o1
'o1': o1,
'o1-mini': o1_mini,
       
        
### Meta ###
"meta-ai": meta,

# llama-2
'llama-2-7b': llama_2_7b,

# llama-3
'llama-3-8b': llama_3_8b,
        
# llama-3.1
'llama-3.1-8b': llama_3_1_8b,
'llama-3.1-70b': llama_3_1_70b,
'llama-3.1-405b': llama_3_1_405b,

# llama-3.2
'llama-3.2-1b': llama_3_2_1b,
'llama-3.2-11b': llama_3_2_11b,
   
        
### Mistral ###
'mistral-7b': mistral_7b,
'mixtral-8x7b': mixtral_8x7b,
'mistral-nemo': mistral_nemo,
     
     
### NousResearch ###
'hermes-2-pro': hermes_2_pro,
'hermes-2-dpo': hermes_2_dpo,
'hermes-3': hermes_3,

                
### Microsoft ###
'phi-2': phi_2,
'phi-3.5-mini': phi_3_5_mini,


### Google ###
# gemini
'gemini': gemini,
'gemini-pro': gemini_pro,
'gemini-flash': gemini_flash,
        
# gemma
'gemma-2b': gemma_2b,


### Anthropic ###
'claude-2.1': claude_2_1,

# claude 3
'claude-3-opus': claude_3_opus,
'claude-3-sonnet': claude_3_sonnet,
'claude-3-haiku': claude_3_haiku,

# claude 3.5
'claude-3.5-sonnet': claude_3_5_sonnet,
        
        
### Reka AI ###
'reka-core': reka_core,
      
        
### Blackbox AI ###
'blackboxai': blackboxai,
'blackboxai-pro': blackboxai_pro,
        
        
### CohereForAI ###
'command-r+': command_r_plus,
        

### GigaChat ###
'gigachat': gigachat,
        
    
        
### Qwen ###
# qwen 1.5
'qwen-1.5-7b': qwen_1_5_7b,

# qwen 2
'qwen-2-72b': qwen_2_72b,

# qwen 2.5
'qwen-2.5-coder-32b': qwen_2_5_coder_32b,
                  
        
### Upstage ###
'solar-mini': solar_mini,
'solar-pro': solar_pro,


### Inflection ###
'pi': pi,


### DeepSeek ###
'deepseek-coder': deepseek_coder,
     
        
### Yorickvp ###
'llava-13b': llava_13b,


### WizardLM ###
'wizardlm-2-8x22b': wizardlm_2_8x22b,
                
        
### OpenChat ###
'openchat-3.5': openchat_3_5,
       
        
### x.ai ###
'grok-2': grok_2,
'grok-2-mini': grok_2_mini,
'grok-beta': grok_beta,
        
        
### Perplexity AI ###
'sonar-online': sonar_online,
'sonar-chat': sonar_chat,
     
        
### TheBloke ###   
'german-7b': german_7b,
        
        
### Nvidia ###   
'nemotron-70b': nemotron_70b,


### Teknium ###   
'openhermes-2.5': openhermes_2_5,
        

### Liquid ###   
'lfm-40b': lfm_40b,
      
        
### DiscoResearch ###   
'german-7b': german_7b,


### HuggingFaceH4 ###   
'zephyr-7b': zephyr_7b,


### Inferless ###   
'neural-7b': neural_7b,
        
        
        
#############
### Image ###
#############
        
### Stability AI ###
'sdxl': sdxl,
'sd-3': sd_3,
        
        
### Playground ###
'playground-v2.5': playground_v2_5,


### Flux AI ###
'flux': flux,
'flux-pro': flux_pro,
'flux-realism': flux_realism,
'flux-anime': flux_anime,
'flux-3d': flux_3d,
'flux-disney': flux_disney,
'flux-pixel': flux_pixel,
'flux-4o': flux_4o,


### Other ###
'any-dark': any_dark,
    }

_all_models = list(ModelUtils.convert.keys())