from __future__ import annotations import requests from ...typing import AsyncResult, Messages from ...requests import StreamSession, raise_for_status from ...image import ImageResponse from .OpenaiTemplate import OpenaiTemplate class DeepInfra(OpenaiTemplate): url = "https://deepinfra.com" login_url = "https://deepinfra.com/dash/api_keys" api_base = "https://api.deepinfra.com/v1/openai" working = True needs_auth = True default_model = "meta-llama/Meta-Llama-3.1-70B-Instruct" default_image_model = "stabilityai/sd3.5" @classmethod def get_models(cls, **kwargs): if not cls.models: url = 'https://api.deepinfra.com/models/featured' response = requests.get(url) models = response.json() cls.models = [] cls.image_models = [] for model in models: if model["type"] == "text-generation": cls.models.append(model['model_name']) elif model["reported_type"] == "text-to-image": cls.image_models.append(model['model_name']) cls.models.extend(cls.image_models) return cls.models @classmethod def get_image_models(cls, **kwargs): if not cls.image_models: cls.get_models() return cls.image_models @classmethod async def create_async_generator( cls, model: str, messages: Messages, stream: bool, prompt: str = None, temperature: float = 0.7, max_tokens: int = 1028, **kwargs ) -> AsyncResult: if model in cls.get_image_models(): yield cls.create_async_image( messages[-1]["content"] if prompt is None else prompt, model, **kwargs ) return headers = { 'Accept-Encoding': 'gzip, deflate, br', 'Accept-Language': 'en-US', 'Origin': 'https://deepinfra.com', 'Referer': 'https://deepinfra.com/', 'User-Agent': 'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/119.0.0.0 Safari/537.36', 'X-Deepinfra-Source': 'web-embed', } async for chunk in super().create_async_generator( model, messages, stream=stream, temperature=temperature, max_tokens=max_tokens, headers=headers, **kwargs ): yield chunk @classmethod async def create_async_image( cls, prompt: str, model: str, api_key: str = None, api_base: str = "https://api.deepinfra.com/v1/inference", proxy: str = None, timeout: int = 180, extra_data: dict = {}, **kwargs ) -> ImageResponse: headers = { 'Accept-Encoding': 'gzip, deflate, br', 'Accept-Language': 'en-US', 'Connection': 'keep-alive', 'Origin': 'https://deepinfra.com', 'Referer': 'https://deepinfra.com/', 'Sec-Fetch-Dest': 'empty', 'Sec-Fetch-Mode': 'cors', 'Sec-Fetch-Site': 'same-site', 'User-Agent': 'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/119.0.0.0 Safari/537.36', 'X-Deepinfra-Source': 'web-embed', 'sec-ch-ua': '"Google Chrome";v="119", "Chromium";v="119", "Not?A_Brand";v="24"', 'sec-ch-ua-mobile': '?0', 'sec-ch-ua-platform': '"macOS"', } if api_key is not None: headers["Authorization"] = f"Bearer {api_key}" async with StreamSession( proxies={"all": proxy}, headers=headers, timeout=timeout ) as session: model = cls.get_model(model) data = {"prompt": prompt, **extra_data} data = {"input": data} if model == cls.default_model else data async with session.post(f"{api_base.rstrip('/')}/{model}", json=data) as response: await raise_for_status(response) data = await response.json() images = data.get("output", data.get("images", data.get("image_url"))) if not images: raise RuntimeError(f"Response: {data}") images = images[0] if len(images) == 1 else images return ImageResponse(images, prompt)