from __future__ import annotations
import json
import base64
import random
import requests
from ...typing import AsyncResult, Messages
from ..base_provider import AsyncGeneratorProvider, ProviderModelMixin, format_prompt
from ...errors import ModelNotFoundError, ModelNotSupportedError, ResponseError
from ...requests import StreamSession, raise_for_status
from ...providers.response import FinishReason
from ...image import ImageResponse
from ... import debug
from .HuggingChat import HuggingChat
class HuggingFace(AsyncGeneratorProvider, ProviderModelMixin):
url = "https://huggingface.co"
login_url = "https://huggingface.co/settings/tokens"
working = True
supports_message_history = True
default_model = HuggingChat.default_model
default_image_model = HuggingChat.default_image_model
model_aliases = HuggingChat.model_aliases
extra_models = [
"meta-llama/Llama-3.2-11B-Vision-Instruct",
"nvidia/Llama-3.1-Nemotron-70B-Instruct-HF",
"NousResearch/Hermes-3-Llama-3.1-8B",
]
@classmethod
def get_models(cls) -> list[str]:
if not cls.models:
url = "https://huggingface.co/api/models?inference=warm&pipeline_tag=text-generation"
models = [model["id"] for model in requests.get(url).json()]
models.extend(cls.extra_models)
models.sort()
if not cls.image_models:
url = "https://huggingface.co/api/models?pipeline_tag=text-to-image"
cls.image_models = [model["id"] for model in requests.get(url).json() if model["trendingScore"] >= 20]
cls.image_models.sort()
models.extend(cls.image_models)
cls.models = list(set(models))
return cls.models
@classmethod
async def create_async_generator(
cls,
model: str,
messages: Messages,
stream: bool = True,
proxy: str = None,
api_base: str = "https://api-inference.huggingface.co",
api_key: str = None,
max_tokens: int = 1024,
temperature: float = None,
prompt: str = None,
action: str = None,
extra_data: dict = {},
**kwargs
) -> AsyncResult:
try:
model = cls.get_model(model)
except ModelNotSupportedError:
pass
headers = {
'accept': '*/*',
'accept-language': 'en',
'cache-control': 'no-cache',
'origin': 'https://huggingface.co',
'pragma': 'no-cache',
'priority': 'u=1, i',
'referer': 'https://huggingface.co/chat/',
'sec-ch-ua': '"Not)A;Brand";v="99", "Google Chrome";v="127", "Chromium";v="127"',
'sec-ch-ua-mobile': '?0',
'sec-ch-ua-platform': '"macOS"',
'sec-fetch-dest': 'empty',
'sec-fetch-mode': 'cors',
'sec-fetch-site': 'same-origin',
'user-agent': 'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/127.0.0.0 Safari/537.36',
}
if api_key is not None:
headers["Authorization"] = f"Bearer {api_key}"
payload = None
if cls.get_models() and model in cls.image_models:
stream = False
prompt = messages[-1]["content"] if prompt is None else prompt
payload = {"inputs": prompt, "parameters": {"seed": random.randint(0, 2**32), **extra_data}}
else:
params = {
"return_full_text": False,
"max_new_tokens": max_tokens,
"temperature": temperature,
**extra_data
}
do_continue = action == "continue"
async with StreamSession(
headers=headers,
proxy=proxy,
timeout=600
) as session:
if payload is None:
async with session.get(f"https://huggingface.co/api/models/{model}") as response:
await raise_for_status(response)
model_data = await response.json()
model_type = None
if "config" in model_data and "model_type" in model_data["config"]:
model_type = model_data["config"]["model_type"]
debug.log(f"Model type: {model_type}")
inputs = get_inputs(messages, model_data, model_type, do_continue)
debug.log(f"Inputs len: {len(inputs)}")
if len(inputs) > 4096:
if len(messages) > 6:
messages = messages[:3] + messages[-3:]
else:
messages = [m for m in messages if m["role"] == "system"] + [messages[-1]]
inputs = get_inputs(messages, model_data, model_type, do_continue)
debug.log(f"New len: {len(inputs)}")
if model_type == "gpt2" and max_tokens >= 1024:
params["max_new_tokens"] = 512
payload = {"inputs": inputs, "parameters": params, "stream": stream}
async with session.post(f"{api_base.rstrip('/')}/models/{model}", json=payload) as response:
if response.status == 404:
raise ModelNotFoundError(f"Model is not supported: {model}")
await raise_for_status(response)
if stream:
first = True
is_special = False
async for line in response.iter_lines():
if line.startswith(b"data:"):
data = json.loads(line[5:])
if "error" in data:
raise ResponseError(data["error"])
if not data["token"]["special"]:
chunk = data["token"]["text"]
if first and not do_continue:
first = False
chunk = chunk.lstrip()
if chunk:
yield chunk
else:
is_special = True
debug.log(f"Special token: {is_special}")
yield FinishReason("stop" if is_special else "length")
else:
if response.headers["content-type"].startswith("image/"):
base64_data = base64.b64encode(b"".join([chunk async for chunk in response.iter_content()]))
url = f"data:{response.headers['content-type']};base64,{base64_data.decode()}"
yield ImageResponse(url, prompt)
else:
yield (await response.json())[0]["generated_text"].strip()
def format_prompt_mistral(messages: Messages, do_continue: bool = False) -> str:
system_messages = [message["content"] for message in messages if message["role"] == "system"]
question = " ".join([messages[-1]["content"], *system_messages])
history = "\n".join([
f"[INST]{messages[idx-1]['content']} [/INST] {message['content']}"
for idx, message in enumerate(messages)
if message["role"] == "assistant"
])
if do_continue:
return history[:-len('')]
return f"{history}\n[INST] {question} [/INST]"
def format_prompt_qwen(messages: Messages, do_continue: bool = False) -> str:
prompt = "".join([
f"<|im_start|>{message['role']}\n{message['content']}\n<|im_end|>\n" for message in messages
]) + ("" if do_continue else "<|im_start|>assistant\n")
if do_continue:
return prompt[:-len("\n<|im_end|>\n")]
return prompt
def format_prompt_llama(messages: Messages, do_continue: bool = False) -> str:
prompt = "<|begin_of_text|>" + "".join([
f"<|start_header_id|>{message['role']}<|end_header_id|>\n\n{message['content']}\n<|eot_id|>\n" for message in messages
]) + ("" if do_continue else "<|start_header_id|>assistant<|end_header_id|>\n\n")
if do_continue:
return prompt[:-len("\n<|eot_id|>\n")]
return prompt
def format_prompt_custom(messages: Messages, end_token: str = "", do_continue: bool = False) -> str:
prompt = "".join([
f"<|{message['role']}|>\n{message['content']}{end_token}\n" for message in messages
]) + ("" if do_continue else "<|assistant|>\n")
if do_continue:
return prompt[:-len(end_token + "\n")]
return prompt
def get_inputs(messages: Messages, model_data: dict, model_type: str, do_continue: bool = False) -> str:
if model_type in ("gpt2", "gpt_neo", "gemma", "gemma2"):
inputs = format_prompt(messages, do_continue=do_continue)
elif model_type == "mistral" and model_data.get("author") == "mistralai":
inputs = format_prompt_mistral(messages, do_continue)
elif "config" in model_data and "tokenizer_config" in model_data["config"] and "eos_token" in model_data["config"]["tokenizer_config"]:
eos_token = model_data["config"]["tokenizer_config"]["eos_token"]
if eos_token in ("<|endoftext|>", "", ""):
inputs = format_prompt_custom(messages, eos_token, do_continue)
elif eos_token == "<|im_end|>":
inputs = format_prompt_qwen(messages, do_continue)
elif eos_token == "<|eot_id|>":
inputs = format_prompt_llama(messages, do_continue)
else:
inputs = format_prompt(messages, do_continue=do_continue)
else:
inputs = format_prompt(messages, do_continue=do_continue)
return inputs