// SPDX-FileCopyrightText: Copyright 2023 yuzu Emulator Project
// SPDX-License-Identifier: GPL-2.0-or-later
#include "common/scope_exit.h"
#include "core/core.h"
#include "core/hle/kernel/k_client_port.h"
#include "core/hle/kernel/k_client_session.h"
#include "core/hle/kernel/k_event.h"
#include "core/hle/kernel/k_object_name.h"
#include "core/hle/kernel/k_port.h"
#include "core/hle/kernel/k_server_port.h"
#include "core/hle/kernel/k_server_session.h"
#include "core/hle/kernel/k_synchronization_object.h"
#include "core/hle/kernel/svc_results.h"
#include "core/hle/service/hle_ipc.h"
#include "core/hle/service/ipc_helpers.h"
#include "core/hle/service/server_manager.h"
#include "core/hle/service/sm/sm.h"
namespace Service {
enum class UserDataTag {
Port,
Session,
DeferEvent,
};
class Port : public MultiWaitHolder, public Common::IntrusiveListBaseNode<Port> {
public:
explicit Port(Kernel::KServerPort* server_port, SessionRequestHandlerFactory&& handler_factory)
: MultiWaitHolder(server_port), m_handler_factory(std::move(handler_factory)) {
this->SetUserData(static_cast<uintptr_t>(UserDataTag::Port));
}
~Port() {
this->GetNativeHandle()->Close();
}
SessionRequestHandlerPtr CreateHandler() {
return m_handler_factory();
}
private:
const SessionRequestHandlerFactory m_handler_factory;
};
class Session : public MultiWaitHolder, public Common::IntrusiveListBaseNode<Session> {
public:
explicit Session(Kernel::KServerSession* server_session,
std::shared_ptr<SessionRequestManager>&& manager)
: MultiWaitHolder(server_session), m_manager(std::move(manager)) {
this->SetUserData(static_cast<uintptr_t>(UserDataTag::Session));
}
~Session() {
this->GetNativeHandle()->Close();
}
std::shared_ptr<SessionRequestManager>& GetManager() {
return m_manager;
}
std::shared_ptr<HLERequestContext>& GetContext() {
return m_context;
}
private:
std::shared_ptr<SessionRequestManager> m_manager;
std::shared_ptr<HLERequestContext> m_context;
};
ServerManager::ServerManager(Core::System& system) : m_system{system}, m_selection_mutex{system} {
// Initialize event.
m_wakeup_event = Kernel::KEvent::Create(system.Kernel());
m_wakeup_event->Initialize(nullptr);
// Register event.
Kernel::KEvent::Register(system.Kernel(), m_wakeup_event);
// Link to holder.
m_wakeup_holder.emplace(std::addressof(m_wakeup_event->GetReadableEvent()));
m_wakeup_holder->LinkToMultiWait(std::addressof(m_deferred_list));
}
ServerManager::~ServerManager() {
// Signal stop.
m_stop_source.request_stop();
m_wakeup_event->Signal();
// Wait for processing to stop.
m_stopped.Wait();
m_threads.clear();
// Clean up ports.
auto port_it = m_servers.begin();
while (port_it != m_servers.end()) {
auto* const port = std::addressof(*port_it);
port_it = m_servers.erase(port_it);
delete port;
}
// Clean up sessions.
auto session_it = m_sessions.begin();
while (session_it != m_sessions.end()) {
auto* const session = std::addressof(*session_it);
session_it = m_sessions.erase(session_it);
delete session;
}
// Close wakeup event.
m_wakeup_event->GetReadableEvent().Close();
m_wakeup_event->Close();
if (m_deferral_event) {
m_deferral_event->GetReadableEvent().Close();
// Write event is owned by ServiceManager
}
}
void ServerManager::RunServer(std::unique_ptr<ServerManager>&& server_manager) {
server_manager->m_system.RunServer(std::move(server_manager));
}
Result ServerManager::RegisterSession(Kernel::KServerSession* server_session,
std::shared_ptr<SessionRequestManager> manager) {
// We are taking ownership of the server session, so don't open it.
auto* session = new Session(server_session, std::move(manager));
// Begin tracking the server session.
{
std::scoped_lock ll{m_deferred_list_mutex};
m_sessions.push_back(*session);
}
// Register to wait on the session.
this->LinkToDeferredList(session);
R_SUCCEED();
}
Result ServerManager::RegisterNamedService(const std::string& service_name,
SessionRequestHandlerFactory&& handler_factory,
u32 max_sessions) {
// Add the new server to sm: and get the moved server port.
Kernel::KServerPort* server_port{};
R_ASSERT(m_system.ServiceManager().RegisterService(std::addressof(server_port), service_name,
max_sessions, handler_factory));
// We are taking ownership of the server port, so don't open it.
auto* server = new Port(server_port, std::move(handler_factory));
// Begin tracking the server port.
{
std::scoped_lock ll{m_deferred_list_mutex};
m_servers.push_back(*server);
}
// Register to wait on the server port.
this->LinkToDeferredList(server);
R_SUCCEED();
}
Result ServerManager::RegisterNamedService(const std::string& service_name,
std::shared_ptr<SessionRequestHandler>&& handler,
u32 max_sessions) {
// Make the factory.
const auto HandlerFactory = [handler]() { return handler; };
// Register the service with the new factory.
R_RETURN(this->RegisterNamedService(service_name, std::move(HandlerFactory), max_sessions));
}
Result ServerManager::ManageNamedPort(const std::string& service_name,
SessionRequestHandlerFactory&& handler_factory,
u32 max_sessions) {
// Create a new port.
auto* port = Kernel::KPort::Create(m_system.Kernel());
port->Initialize(max_sessions, false, 0);
// Register the port.
Kernel::KPort::Register(m_system.Kernel(), port);
// Ensure that our reference to the port is closed if we fail to register it.
SCOPE_EXIT {
port->GetClientPort().Close();
port->GetServerPort().Close();
};
// Register the object name with the kernel.
R_TRY(Kernel::KObjectName::NewFromName(m_system.Kernel(), std::addressof(port->GetClientPort()),
service_name.c_str()));
// Open a new reference to the server port.
port->GetServerPort().Open();
// Transfer ownership into a new port object.
auto* server = new Port(std::addressof(port->GetServerPort()), std::move(handler_factory));
// Begin tracking the port.
{
std::scoped_lock ll{m_deferred_list_mutex};
m_servers.push_back(*server);
}
// Register to wait on the port.
this->LinkToDeferredList(server);
// We succeeded.
R_SUCCEED();
}
Result ServerManager::ManageDeferral(Kernel::KEvent** out_event) {
// Create a new event.
m_deferral_event = Kernel::KEvent::Create(m_system.Kernel());
ASSERT(m_deferral_event != nullptr);
// Initialize the event.
m_deferral_event->Initialize(nullptr);
// Register the event.
Kernel::KEvent::Register(m_system.Kernel(), m_deferral_event);
// Set the output.
*out_event = m_deferral_event;
// Register to wait on the event.
m_deferral_holder.emplace(std::addressof(m_deferral_event->GetReadableEvent()));
m_deferral_holder->SetUserData(static_cast<uintptr_t>(UserDataTag::DeferEvent));
this->LinkToDeferredList(std::addressof(*m_deferral_holder));
// We succeeded.
R_SUCCEED();
}
void ServerManager::StartAdditionalHostThreads(const char* name, size_t num_threads) {
for (size_t i = 0; i < num_threads; i++) {
auto thread_name = fmt::format("{}:{}", name, i + 1);
m_threads.emplace_back(m_system.Kernel().RunOnHostCoreThread(
std::move(thread_name), [&] { this->LoopProcessImpl(); }));
}
}
Result ServerManager::LoopProcess() {
SCOPE_EXIT {
m_stopped.Set();
};
R_RETURN(this->LoopProcessImpl());
}
void ServerManager::LinkToDeferredList(MultiWaitHolder* holder) {
// Link.
{
std::scoped_lock lk{m_deferred_list_mutex};
holder->LinkToMultiWait(std::addressof(m_deferred_list));
}
// Signal the wakeup event.
m_wakeup_event->Signal();
}
void ServerManager::LinkDeferred() {
std::scoped_lock lk{m_deferred_list_mutex};
m_multi_wait.MoveAll(std::addressof(m_deferred_list));
}
MultiWaitHolder* ServerManager::WaitSignaled() {
// Ensure we are the only thread waiting for this server.
std::scoped_lock lk{m_selection_mutex};
while (true) {
this->LinkDeferred();
// If we're done, return before we start waiting.
if (m_stop_source.stop_requested()) {
return nullptr;
}
auto* selected = m_multi_wait.WaitAny(m_system.Kernel());
if (selected == std::addressof(*m_wakeup_holder)) {
// Clear and restart if we were woken up.
m_wakeup_event->Clear();
} else {
// Unlink and handle the event.
selected->UnlinkFromMultiWait();
return selected;
}
}
}
Result ServerManager::Process(MultiWaitHolder* holder) {
switch (static_cast<UserDataTag>(holder->GetUserData())) {
case UserDataTag::Session:
R_RETURN(this->OnSessionEvent(static_cast<Session*>(holder)));
case UserDataTag::Port:
R_RETURN(this->OnPortEvent(static_cast<Port*>(holder)));
case UserDataTag::DeferEvent:
R_RETURN(this->OnDeferralEvent());
default:
UNREACHABLE();
}
}
bool ServerManager::WaitAndProcessImpl() {
if (auto* signaled_holder = this->WaitSignaled(); signaled_holder != nullptr) {
R_ASSERT(this->Process(signaled_holder));
return true;
} else {
return false;
}
}
Result ServerManager::LoopProcessImpl() {
while (!m_stop_source.stop_requested()) {
this->WaitAndProcessImpl();
}
R_SUCCEED();
}
Result ServerManager::OnPortEvent(Port* server) {
// Accept a new server session.
auto* server_port = static_cast<Kernel::KServerPort*>(server->GetNativeHandle());
Kernel::KServerSession* server_session = server_port->AcceptSession();
ASSERT(server_session != nullptr);
// Create the session manager and install the handler.
auto manager = std::make_shared<SessionRequestManager>(m_system.Kernel(), *this);
manager->SetSessionHandler(server->CreateHandler());
// Create and register the new session.
this->RegisterSession(server_session, std::move(manager));
// Resume tracking the port.
this->LinkToDeferredList(server);
// We succeeded.
R_SUCCEED();
}
Result ServerManager::OnSessionEvent(Session* session) {
Result res = ResultSuccess;
// Try to receive a message.
auto* server_session = static_cast<Kernel::KServerSession*>(session->GetNativeHandle());
res = server_session->ReceiveRequestHLE(&session->GetContext(), session->GetManager());
// If the session has been closed, we're done.
if (res == Kernel::ResultSessionClosed) {
this->DestroySession(session);
R_SUCCEED();
}
R_ASSERT(res);
// Complete the sync request with deferral handling.
R_RETURN(this->CompleteSyncRequest(session));
}
Result ServerManager::CompleteSyncRequest(Session* session) {
Result res = ResultSuccess;
Result service_res = ResultSuccess;
// Mark the request as not deferred.
session->GetContext()->SetIsDeferred(false);
// Complete the request. We have exclusive access to this session.
auto* server_session = static_cast<Kernel::KServerSession*>(session->GetNativeHandle());
service_res =
session->GetManager()->CompleteSyncRequest(server_session, *session->GetContext());
// If we've been deferred, we're done.
if (session->GetContext()->GetIsDeferred()) {
// Insert into deferred session list.
std::scoped_lock ll{m_deferred_list_mutex};
m_deferred_sessions.push_back(session);
// Finish.
R_SUCCEED();
}
// Send the reply.
res = server_session->SendReplyHLE();
// If the session has been closed, we're done.
if (res == Kernel::ResultSessionClosed || service_res == IPC::ResultSessionClosed) {
this->DestroySession(session);
R_SUCCEED();
}
R_ASSERT(res);
R_ASSERT(service_res);
// We succeeded, so we can process future messages on this session.
this->LinkToDeferredList(session);
R_SUCCEED();
}
Result ServerManager::OnDeferralEvent() {
// Clear event before grabbing the list.
m_deferral_event->Clear();
// Get and clear list.
const auto deferrals = [&] {
std::scoped_lock lk{m_deferred_list_mutex};
return std::move(m_deferred_sessions);
}();
// Relink deferral event.
this->LinkToDeferredList(std::addressof(*m_deferral_holder));
// For each session, try again to complete the request.
for (auto* session : deferrals) {
R_ASSERT(this->CompleteSyncRequest(session));
}
R_SUCCEED();
}
void ServerManager::DestroySession(Session* session) {
// Unlink.
{
std::scoped_lock lk{m_deferred_list_mutex};
m_sessions.erase(m_sessions.iterator_to(*session));
}
// Free the session.
delete session;
}
} // namespace Service