// SPDX-FileCopyrightText: Copyright 2018 yuzu Emulator Project // SPDX-License-Identifier: GPL-2.0-or-later #include #include #include #include #include #include #include "common/assert.h" #include "common/microprofile.h" #include "common/settings.h" #include "core/core.h" #include "core/core_timing.h" #include "core/frontend/emu_window.h" #include "core/hardware_interrupt_manager.h" #include "core/hle/service/nvdrv/nvdata.h" #include "core/perf_stats.h" #include "video_core/cdma_pusher.h" #include "video_core/control/channel_state.h" #include "video_core/control/scheduler.h" #include "video_core/dma_pusher.h" #include "video_core/engines/fermi_2d.h" #include "video_core/engines/kepler_compute.h" #include "video_core/engines/kepler_memory.h" #include "video_core/engines/maxwell_3d.h" #include "video_core/engines/maxwell_dma.h" #include "video_core/gpu.h" #include "video_core/gpu_thread.h" #include "video_core/host1x/host1x.h" #include "video_core/host1x/syncpoint_manager.h" #include "video_core/memory_manager.h" #include "video_core/renderer_base.h" #include "video_core/shader_notify.h" namespace Tegra { MICROPROFILE_DEFINE(GPU_wait, "GPU", "Wait for the GPU", MP_RGB(128, 128, 192)); struct GPU::Impl { explicit Impl(GPU& gpu_, Core::System& system_, bool is_async_, bool use_nvdec_) : gpu{gpu_}, system{system_}, host1x{system.Host1x()}, use_nvdec{use_nvdec_}, shader_notify{std::make_unique()}, is_async{is_async_}, gpu_thread{system_, is_async_}, scheduler{std::make_unique(gpu)} {} ~Impl() = default; std::shared_ptr CreateChannel(s32 channel_id) { auto channel_state = std::make_shared(channel_id); channels.emplace(channel_id, channel_state); scheduler->DeclareChannel(channel_state); return channel_state; } void BindChannel(s32 channel_id) { if (bound_channel == channel_id) { return; } auto it = channels.find(channel_id); ASSERT(it != channels.end()); bound_channel = channel_id; current_channel = it->second.get(); rasterizer->BindChannel(*current_channel); } std::shared_ptr AllocateChannel() { return CreateChannel(new_channel_id++); } void InitChannel(Control::ChannelState& to_init) { to_init.Init(system, gpu); to_init.BindRasterizer(rasterizer); rasterizer->InitializeChannel(to_init); } void InitAddressSpace(Tegra::MemoryManager& memory_manager) { memory_manager.BindRasterizer(rasterizer); } void ReleaseChannel(Control::ChannelState& to_release) { UNIMPLEMENTED(); } /// Binds a renderer to the GPU. void BindRenderer(std::unique_ptr renderer_) { renderer = std::move(renderer_); rasterizer = renderer->ReadRasterizer(); host1x.MemoryManager().BindRasterizer(rasterizer); } /// Flush all current written commands into the host GPU for execution. void FlushCommands() { rasterizer->FlushCommands(); } /// Synchronizes CPU writes with Host GPU memory. void SyncGuestHost() { rasterizer->SyncGuestHost(); } /// Signal the ending of command list. void OnCommandListEnd() { if (is_async) { // This command only applies to asynchronous GPU mode gpu_thread.OnCommandListEnd(); } } /// Request a host GPU memory flush from the CPU. template [[nodiscard]] u64 RequestSyncOperation(Func&& action) { std::unique_lock lck{sync_request_mutex}; const u64 fence = ++last_sync_fence; sync_requests.emplace_back(action); return fence; } /// Obtains current flush request fence id. [[nodiscard]] u64 CurrentSyncRequestFence() const { return current_sync_fence.load(std::memory_order_relaxed); } void WaitForSyncOperation(const u64 fence) { std::unique_lock lck{sync_request_mutex}; sync_request_cv.wait(lck, [this, fence] { return CurrentSyncRequestFence() >= fence; }); } /// Tick pending requests within the GPU. void TickWork() { std::unique_lock lck{sync_request_mutex}; while (!sync_requests.empty()) { auto request = std::move(sync_requests.front()); sync_requests.pop_front(); sync_request_mutex.unlock(); request(); current_sync_fence.fetch_add(1, std::memory_order_release); sync_request_mutex.lock(); sync_request_cv.notify_all(); } } /// Returns a reference to the Maxwell3D GPU engine. [[nodiscard]] Engines::Maxwell3D& Maxwell3D() { ASSERT(current_channel); return *current_channel->maxwell_3d; } /// Returns a const reference to the Maxwell3D GPU engine. [[nodiscard]] const Engines::Maxwell3D& Maxwell3D() const { ASSERT(current_channel); return *current_channel->maxwell_3d; } /// Returns a reference to the KeplerCompute GPU engine. [[nodiscard]] Engines::KeplerCompute& KeplerCompute() { ASSERT(current_channel); return *current_channel->kepler_compute; } /// Returns a reference to the KeplerCompute GPU engine. [[nodiscard]] const Engines::KeplerCompute& KeplerCompute() const { ASSERT(current_channel); return *current_channel->kepler_compute; } /// Returns a reference to the GPU DMA pusher. [[nodiscard]] Tegra::DmaPusher& DmaPusher() { ASSERT(current_channel); return *current_channel->dma_pusher; } /// Returns a const reference to the GPU DMA pusher. [[nodiscard]] const Tegra::DmaPusher& DmaPusher() const { ASSERT(current_channel); return *current_channel->dma_pusher; } /// Returns a reference to the underlying renderer. [[nodiscard]] VideoCore::RendererBase& Renderer() { return *renderer; } /// Returns a const reference to the underlying renderer. [[nodiscard]] const VideoCore::RendererBase& Renderer() const { return *renderer; } /// Returns a reference to the shader notifier. [[nodiscard]] VideoCore::ShaderNotify& ShaderNotify() { return *shader_notify; } /// Returns a const reference to the shader notifier. [[nodiscard]] const VideoCore::ShaderNotify& ShaderNotify() const { return *shader_notify; } /// Allows the CPU/NvFlinger to wait on the GPU before presenting a frame. void WaitFence(u32 syncpoint_id, u32 value) { if (syncpoint_id == UINT32_MAX) { return; } MICROPROFILE_SCOPE(GPU_wait); host1x.GetSyncpointManager().WaitHost(syncpoint_id, value); } void IncrementSyncPoint(u32 syncpoint_id) { host1x.GetSyncpointManager().IncrementHost(syncpoint_id); } [[nodiscard]] u32 GetSyncpointValue(u32 syncpoint_id) const { return host1x.GetSyncpointManager().GetHostSyncpointValue(syncpoint_id); } void RegisterSyncptInterrupt(u32 syncpoint_id, u32 value) { auto& syncpoint_manager = host1x.GetSyncpointManager(); syncpoint_manager.RegisterHostAction(syncpoint_id, value, [this, syncpoint_id, value]() { TriggerCpuInterrupt(syncpoint_id, value); }); } [[nodiscard]] u64 GetTicks() const { // This values were reversed engineered by fincs from NVN // The gpu clock is reported in units of 385/625 nanoseconds constexpr u64 gpu_ticks_num = 384; constexpr u64 gpu_ticks_den = 625; u64 nanoseconds = system.CoreTiming().GetGlobalTimeNs().count(); if (Settings::values.use_fast_gpu_time.GetValue()) { nanoseconds /= 256; } const u64 nanoseconds_num = nanoseconds / gpu_ticks_den; const u64 nanoseconds_rem = nanoseconds % gpu_ticks_den; return nanoseconds_num * gpu_ticks_num + (nanoseconds_rem * gpu_ticks_num) / gpu_ticks_den; } [[nodiscard]] bool IsAsync() const { return is_async; } [[nodiscard]] bool UseNvdec() const { return use_nvdec; } void RendererFrameEndNotify() { system.GetPerfStats().EndGameFrame(); } /// Performs any additional setup necessary in order to begin GPU emulation. /// This can be used to launch any necessary threads and register any necessary /// core timing events. void Start() { gpu_thread.StartThread(*renderer, renderer->Context(), *scheduler); cpu_context = renderer->GetRenderWindow().CreateSharedContext(); cpu_context->MakeCurrent(); } void NotifyShutdown() { std::unique_lock lk{sync_mutex}; shutting_down.store(true, std::memory_order::relaxed); sync_cv.notify_all(); } /// Obtain the CPU Context void ObtainContext() { cpu_context->MakeCurrent(); } /// Release the CPU Context void ReleaseContext() { cpu_context->DoneCurrent(); } /// Push GPU command entries to be processed void PushGPUEntries(s32 channel, Tegra::CommandList&& entries) { gpu_thread.SubmitList(channel, std::move(entries)); } /// Push GPU command buffer entries to be processed void PushCommandBuffer(u32 id, Tegra::ChCommandHeaderList& entries) { if (!use_nvdec) { return; } if (!cdma_pushers.contains(id)) { cdma_pushers.insert_or_assign(id, std::make_unique(host1x)); } // SubmitCommandBuffer would make the nvdec operations async, this is not currently working // TODO(ameerj): RE proper async nvdec operation // gpu_thread.SubmitCommandBuffer(std::move(entries)); cdma_pushers[id]->ProcessEntries(std::move(entries)); } /// Frees the CDMAPusher instance to free up resources void ClearCdmaInstance(u32 id) { const auto iter = cdma_pushers.find(id); if (iter != cdma_pushers.end()) { cdma_pushers.erase(iter); } } /// Swap buffers (render frame) void SwapBuffers(const Tegra::FramebufferConfig* framebuffer) { gpu_thread.SwapBuffers(framebuffer); } /// Notify rasterizer that any caches of the specified region should be flushed to Switch memory void FlushRegion(VAddr addr, u64 size) { gpu_thread.FlushRegion(addr, size); } /// Notify rasterizer that any caches of the specified region should be invalidated void InvalidateRegion(VAddr addr, u64 size) { gpu_thread.InvalidateRegion(addr, size); } /// Notify rasterizer that any caches of the specified region should be flushed and invalidated void FlushAndInvalidateRegion(VAddr addr, u64 size) { gpu_thread.FlushAndInvalidateRegion(addr, size); } void TriggerCpuInterrupt(u32 syncpoint_id, u32 value) const { auto& interrupt_manager = system.InterruptManager(); interrupt_manager.GPUInterruptSyncpt(syncpoint_id, value); } void RequestSwapBuffers(const Tegra::FramebufferConfig* framebuffer, Service::Nvidia::NvFence* fences, size_t num_fences) { size_t current_request_counter{}; { std::unique_lock lk(request_swap_mutex); if (free_swap_counters.empty()) { current_request_counter = request_swap_counters.size(); request_swap_counters.emplace_back(num_fences); } else { current_request_counter = free_swap_counters.front(); request_swap_counters[current_request_counter] = num_fences; free_swap_counters.pop_front(); } } const auto wait_fence = RequestSyncOperation([this, current_request_counter, framebuffer, fences, num_fences] { auto& syncpoint_manager = host1x.GetSyncpointManager(); if (num_fences == 0) { renderer->SwapBuffers(framebuffer); } const auto executer = [this, current_request_counter, framebuffer_copy = *framebuffer]() { { std::unique_lock lk(request_swap_mutex); if (--request_swap_counters[current_request_counter] != 0) { return; } free_swap_counters.push_back(current_request_counter); } renderer->SwapBuffers(&framebuffer_copy); }; for (size_t i = 0; i < num_fences; i++) { syncpoint_manager.RegisterGuestAction(fences[i].id, fences[i].value, executer); } }); gpu_thread.TickGPU(); WaitForSyncOperation(wait_fence); } GPU& gpu; Core::System& system; Host1x::Host1x& host1x; std::map> cdma_pushers; std::unique_ptr renderer; VideoCore::RasterizerInterface* rasterizer = nullptr; const bool use_nvdec; s32 new_channel_id{1}; /// Shader build notifier std::unique_ptr shader_notify; /// When true, we are about to shut down emulation session, so terminate outstanding tasks std::atomic_bool shutting_down{}; std::array, Service::Nvidia::MaxSyncPoints> syncpoints{}; std::array, Service::Nvidia::MaxSyncPoints> syncpt_interrupts; std::mutex sync_mutex; std::mutex device_mutex; std::condition_variable sync_cv; std::list> sync_requests; std::atomic current_sync_fence{}; u64 last_sync_fence{}; std::mutex sync_request_mutex; std::condition_variable sync_request_cv; const bool is_async; VideoCommon::GPUThread::ThreadManager gpu_thread; std::unique_ptr cpu_context; std::unique_ptr scheduler; std::unordered_map> channels; Tegra::Control::ChannelState* current_channel; s32 bound_channel{-1}; std::deque free_swap_counters; std::deque request_swap_counters; std::mutex request_swap_mutex; }; GPU::GPU(Core::System& system, bool is_async, bool use_nvdec) : impl{std::make_unique(*this, system, is_async, use_nvdec)} {} GPU::~GPU() = default; std::shared_ptr GPU::AllocateChannel() { return impl->AllocateChannel(); } void GPU::InitChannel(Control::ChannelState& to_init) { impl->InitChannel(to_init); } void GPU::BindChannel(s32 channel_id) { impl->BindChannel(channel_id); } void GPU::ReleaseChannel(Control::ChannelState& to_release) { impl->ReleaseChannel(to_release); } void GPU::InitAddressSpace(Tegra::MemoryManager& memory_manager) { impl->InitAddressSpace(memory_manager); } void GPU::BindRenderer(std::unique_ptr renderer) { impl->BindRenderer(std::move(renderer)); } void GPU::FlushCommands() { impl->FlushCommands(); } void GPU::SyncGuestHost() { impl->SyncGuestHost(); } void GPU::OnCommandListEnd() { impl->OnCommandListEnd(); } u64 GPU::RequestFlush(VAddr addr, std::size_t size) { return impl->RequestSyncOperation( [this, addr, size]() { impl->rasterizer->FlushRegion(addr, size); }); } u64 GPU::CurrentSyncRequestFence() const { return impl->CurrentSyncRequestFence(); } void GPU::WaitForSyncOperation(u64 fence) { return impl->WaitForSyncOperation(fence); } void GPU::TickWork() { impl->TickWork(); } /// Gets a mutable reference to the Host1x interface Host1x::Host1x& GPU::Host1x() { return impl->host1x; } /// Gets an immutable reference to the Host1x interface. const Host1x::Host1x& GPU::Host1x() const { return impl->host1x; } Engines::Maxwell3D& GPU::Maxwell3D() { return impl->Maxwell3D(); } const Engines::Maxwell3D& GPU::Maxwell3D() const { return impl->Maxwell3D(); } Engines::KeplerCompute& GPU::KeplerCompute() { return impl->KeplerCompute(); } const Engines::KeplerCompute& GPU::KeplerCompute() const { return impl->KeplerCompute(); } Tegra::DmaPusher& GPU::DmaPusher() { return impl->DmaPusher(); } const Tegra::DmaPusher& GPU::DmaPusher() const { return impl->DmaPusher(); } VideoCore::RendererBase& GPU::Renderer() { return impl->Renderer(); } const VideoCore::RendererBase& GPU::Renderer() const { return impl->Renderer(); } VideoCore::ShaderNotify& GPU::ShaderNotify() { return impl->ShaderNotify(); } const VideoCore::ShaderNotify& GPU::ShaderNotify() const { return impl->ShaderNotify(); } void GPU::RequestSwapBuffers(const Tegra::FramebufferConfig* framebuffer, Service::Nvidia::NvFence* fences, size_t num_fences) { impl->RequestSwapBuffers(framebuffer, fences, num_fences); } void GPU::WaitFence(u32 syncpoint_id, u32 value) { impl->WaitFence(syncpoint_id, value); } void GPU::IncrementSyncPoint(u32 syncpoint_id) { impl->IncrementSyncPoint(syncpoint_id); } u32 GPU::GetSyncpointValue(u32 syncpoint_id) const { return impl->GetSyncpointValue(syncpoint_id); } void GPU::RegisterSyncptInterrupt(u32 syncpoint_id, u32 value) { impl->RegisterSyncptInterrupt(syncpoint_id, value); } u64 GPU::GetTicks() const { return impl->GetTicks(); } bool GPU::IsAsync() const { return impl->IsAsync(); } bool GPU::UseNvdec() const { return impl->UseNvdec(); } void GPU::RendererFrameEndNotify() { impl->RendererFrameEndNotify(); } void GPU::Start() { impl->Start(); } void GPU::NotifyShutdown() { impl->NotifyShutdown(); } void GPU::ObtainContext() { impl->ObtainContext(); } void GPU::ReleaseContext() { impl->ReleaseContext(); } void GPU::PushGPUEntries(s32 channel, Tegra::CommandList&& entries) { impl->PushGPUEntries(channel, std::move(entries)); } void GPU::PushCommandBuffer(u32 id, Tegra::ChCommandHeaderList& entries) { impl->PushCommandBuffer(id, entries); } void GPU::ClearCdmaInstance(u32 id) { impl->ClearCdmaInstance(id); } void GPU::SwapBuffers(const Tegra::FramebufferConfig* framebuffer) { impl->SwapBuffers(framebuffer); } void GPU::FlushRegion(VAddr addr, u64 size) { impl->FlushRegion(addr, size); } void GPU::InvalidateRegion(VAddr addr, u64 size) { impl->InvalidateRegion(addr, size); } void GPU::FlushAndInvalidateRegion(VAddr addr, u64 size) { impl->FlushAndInvalidateRegion(addr, size); } } // namespace Tegra