
Function Parameters what it does

void reset( ) none
Resets the ADS1115. Be careful this function uses the I2C general call 

reset. Therefore all devices listening to general calls will be resetted. 

bool init ( ) none
Sets the Configuration Register to default values. Returns false if the 

ADS1115 is not connected

void setAlertPinMode( mode  ) 

ADS1115_ASSERT_AFTER_X

with X  =  1, 2, 4; or:

ADS1115_DISABLE_ALERT (default)

When alert limits are set, this function defines after how many out of 

range samples the alarm pin will assert. 

When the alert pin is set to conversion ready alert, you also need call this 

function with any parameter except ADS1115_DISABLE_ALERT. Which one 

you choose exactly doesn't matter. 

void setAlertLatch( mode  ) 
ADS1115_LATCH_DISABLED 

ADS1115_LATCH_ENABLED 

When the alert latch is enabled, the alert pin will be active until you call 

clearAlert or until you call getResult_V / getResult_mV. When disabled, 

the alert pin will be deactivated, if the results are within limits.  

void setAlertPol( polarity ) 
ADS1115_ACTIVE_HIGH 

ADS1115_ACTIVE_LOW (default)
The alert pin can be set active-high or active-low

void setAlertModeAndLimit_V( mode,

upper limit, lower limit ) 

mode:

ADS1115_MAX_LIMIT

ADS1115_WINDOW

limits: voltage [V]

In max limit mode the alert pin will be active when the max limit is 

exceeded. The pin will be deactivated again, when the the results are 

below the lower limit (if latch is not enabled) 

In the window mode the alert pin will be active when result are out of the 

window limits. It will be deactivated, when results are in the window 

limits again (if latch is not enabled). 

void setConvRate( rate  ) 

ADS1115_X _SPS

with X  = 8, 16, 32, 64, 128, 250, 

475, 860

Sets the conversion rate in number of samples per second (SPS).

convRate getConvRate( ) none Returns the conversion rate as convRate, i.e. ADS1115_ X _SPS

void setMeasureMode( mode  ) 
ADS1115_CONTINUOUS

ADS1115_SINGLE

Sets continuous or single-shot mode. In single-shot mode the 

measurements need to be triggered manually (startSingleMeasurement). 

After a single-shot measurement the device goes into power-down mode.  

void setVoltageRange_mV( range  )

ADS1115_RANGE_X

with X = 6144, 4096, 2048, 1024, 

0512, 0256

Sets voltage range in mV and therefore the gain amplifier. The range is 

alway from -X  to +X.  Voltages applied to the input pins shall not exceed 

VCC + 0.3 Volt. 

If you change the range the compare registers will be updated 

automatically.

void setAutoRange( ) none

Switches into the maximum range and continuous mode (if in single shot 

mode), measures the voltage and then switches to the smallest range in 

which the measured voltage is below 80% of the maximum of the range. If 

the ADS1115 was in single shot mode before it changes back again. 

You should only use this function if you expect non- or slow-changing 

voltages. The procedure takes several conversion times.  

void setPermanentAutoRangeMode

( true /false  )
true / false 

Sets the automatic voltage range permanantly, but the range will only be 

changed if the vmeasured value is outside 30 - 80% of the maximum value 

of the current range.  Therefore this method is faster than 

setAutoRange().

void setCompareChannels( )

ADS1115_COMP_X

with X = 0_1, 0_2, 1_3, 2_3, 0_GND, 

1_GND, 2_GND, 3_GND

Sets the channels to be compared channels to be compared to GND

bool isBusy( ) none Reads the Conversion Ready flag. Works only in single-shot mode. 

void startSingleMeasurement( ) none Triggers a single-shot measurement.

void getResult_V( ) / getResult_mV( ) none

Returns the result currently available in the conversion register either in 

Volt or Millivolt. It does not wait for the current conversion to be 

completed. 

int getRawResult( ) none

Returns the raw result from the conversion registers which depends on 

the voltage as well as on the voltage range. E. g. if you choose 

ADS1115_RANGE_6144 a value of +32767 means 6144 mV; for 

ADS1115_RANGE_0256 a value of +32767 would mean 256 mV.

int getResultWithRange( min, max  ) 

int getResultWithRange( min, max, 

maxVolt  )

min / max: minimum / maximum of 

the range you scale to

maxVolt: maximum of the voltage 

range you scale to

Best to be explained with an example:

Condition: voltage range of the ADS1115 is ADS1115_6144 and you use 

getResultWithRange(-1023, +1023, +5000)

Effect: the range of -32767 to +32767 is scaled down to -1023 to +1023. 

The third parameter (5000) leads to 5000 mV delivering a return value of 

+1023 -> like an Arduino UNO ADC with standard conditions. 

You have to take care that maxVolt is within the voltage range 

(ADS1115_RANGE_XXXX).

If you don't use the third parameter, the voltage scale (maxVolt) will be 

equal to the voltage range XXXX in ADS1115_RANGE_XXXX. 

unsigned int getVoltageRange_mV( ) none
Returns the voltage range / gain you have chosen. In simple words it 

returns the XXXX in ADS1115_RANGE_XXXX.

void setAlertPinToConversionReady( ) none

The alert pin will be active when a conversion is completed. You will also 

need to call the setAlertPinMode function. You can either use the alert 

pin for limit alerts or conversion ready alerts, not both in parallel.

void clearAlert( ) none
When the alert latch is enabled, the alert will be active until you call this 

function or until you call getResult_V / getResult_mV. 

List of commands (public functions) of the ADS1115_WE library 


