diff options
Diffstat (limited to 'šola/ds2/kolokvij2.lyx')
-rw-r--r-- | šola/ds2/kolokvij2.lyx | 3368 |
1 files changed, 3368 insertions, 0 deletions
diff --git a/šola/ds2/kolokvij2.lyx b/šola/ds2/kolokvij2.lyx new file mode 100644 index 0000000..0d2e149 --- /dev/null +++ b/šola/ds2/kolokvij2.lyx @@ -0,0 +1,3368 @@ +#LyX 2.3 created this file. For more info see http://www.lyx.org/ +\lyxformat 544 +\begin_document +\begin_header +\save_transient_properties true +\origin unavailable +\textclass article +\begin_preamble +\usepackage{siunitx} +\usepackage{pgfplots} +\usepackage{listings} +\usepackage{multicol} +\sisetup{output-decimal-marker = {,}, quotient-mode=fraction, output-exponent-marker=\ensuremath{\mathrm{3}}} +\DeclareMathOperator{\g}{g} +\DeclareMathOperator{\sled}{sled} +\DeclareMathOperator{\Aut}{Aut} +\DeclareMathOperator{\Cir}{Cir} +\DeclareMathOperator{\ecc}{ecc} +\DeclareMathOperator{\rad}{rad} +\DeclareMathOperator{\diam}{diam} +\newcommand\euler{e} +\end_preamble +\use_default_options true +\begin_modules +enumitem +\end_modules +\maintain_unincluded_children false +\language slovene +\language_package default +\inputencoding auto +\fontencoding global +\font_roman "default" "default" +\font_sans "default" "default" +\font_typewriter "default" "default" +\font_math "auto" "auto" +\font_default_family default +\use_non_tex_fonts false +\font_sc false +\font_osf false +\font_sf_scale 100 100 +\font_tt_scale 100 100 +\use_microtype false +\use_dash_ligatures true +\graphics xetex +\default_output_format default +\output_sync 0 +\bibtex_command default +\index_command default +\paperfontsize default +\spacing single +\use_hyperref false +\papersize default +\use_geometry true +\use_package amsmath 1 +\use_package amssymb 1 +\use_package cancel 1 +\use_package esint 1 +\use_package mathdots 1 +\use_package mathtools 1 +\use_package mhchem 1 +\use_package stackrel 1 +\use_package stmaryrd 1 +\use_package undertilde 1 +\cite_engine basic +\cite_engine_type default +\biblio_style plain +\use_bibtopic false +\use_indices false +\paperorientation portrait +\suppress_date false +\justification false +\use_refstyle 1 +\use_minted 0 +\index Index +\shortcut idx +\color #008000 +\end_index +\leftmargin 1cm +\topmargin 1cm +\rightmargin 1cm +\bottommargin 2cm +\headheight 1cm +\headsep 1cm +\footskip 1cm +\secnumdepth 3 +\tocdepth 3 +\paragraph_separation indent +\paragraph_indentation default +\is_math_indent 0 +\math_numbering_side default +\quotes_style german +\dynamic_quotes 0 +\papercolumns 1 +\papersides 1 +\paperpagestyle default +\tracking_changes false +\output_changes false +\html_math_output 0 +\html_css_as_file 0 +\html_be_strict false +\end_header + +\begin_body + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +setlength{ +\backslash +columnseprule}{0.2pt} +\backslash +begin{multicols}{2} +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Standard +Največja stopnja +\begin_inset Formula $\Delta G$ +\end_inset + +, najmanjša +\begin_inset Formula $\delta G$ +\end_inset + +. +\end_layout + +\begin_layout Standard +Rokovanje: +\begin_inset Formula $\sum_{v\in VG}\deg_{G}v=2\left|EG\right|$ +\end_inset + +. +\end_layout + +\begin_layout Standard +Vsak graf ima sodo mnogo vozlišč lihe stopnje. +\end_layout + +\begin_layout Standard +Presek/unija grafov je presek/unija njunih +\begin_inset Formula $V$ +\end_inset + + in +\begin_inset Formula $E$ +\end_inset + +. +\end_layout + +\begin_layout Standard +\begin_inset Formula $G\cup H$ +\end_inset + + je disjunktna unija grafov +\begin_inset Formula $\sim$ +\end_inset + + +\begin_inset Formula $VG\cap VH=\emptyset$ +\end_inset + +. +\end_layout + +\begin_layout Standard +Komplement grafa: +\begin_inset Formula $\overline{G}$ +\end_inset + + (obratna povezanost) +\end_layout + +\begin_layout Standard +\begin_inset Formula $0\leq\left|EG\right|\leq{\left|VG\right| \choose 2}\quad\quad\quad$ +\end_inset + +Za padajoče +\begin_inset Formula $d_{i}$ +\end_inset + + velja: +\end_layout + +\begin_layout Standard +\begin_inset Formula $\left(d_{1},\dots d_{n}\right)$ +\end_inset + + graf +\begin_inset Formula $\Leftrightarrow\left(d_{2}-1,\dots,d_{d_{1}+1}-1,\dots,d_{n}\right)$ +\end_inset + + graf +\end_layout + +\begin_layout Standard +Če je +\begin_inset Formula $AG$ +\end_inset + + matrika sosednosti, +\begin_inset Formula $\left(\left(AG\right)^{n}\right)_{i,j}$ +\end_inset + + pove št. + +\begin_inset Formula $i,j-$ +\end_inset + +poti. +\end_layout + +\begin_layout Standard +\begin_inset Formula +\[ +\text{Število trikotnikov: }\frac{\sled\left(\left(AG\right)^{3}\right)}{2\cdot3} +\] + +\end_inset + + +\end_layout + +\begin_layout Standard +\begin_inset Formula $\left|EK_{n}\right|={n \choose 2}$ +\end_inset + +, +\begin_inset Formula ${n \choose k}=\frac{n!}{k!\left(n-k\right)!}$ +\end_inset + + +\end_layout + +\begin_layout Paragraph +Sprehod +\end_layout + +\begin_layout Standard +je zaporedje vozlišč, ki so verižno povezana. +\end_layout + +\begin_layout Standard +Dolžina sprehoda je število prehojenih povezav. +\end_layout + +\begin_layout Standard +Sklenjen sprehod dolžine +\begin_inset Formula $k$ +\end_inset + +: +\begin_inset Formula $v_{0}=v_{k}$ +\end_inset + + +\end_layout + +\begin_layout Standard +Enostaven sprehod ima disjunktna vozlišča razen +\begin_inset Formula $\left(v_{0},v_{k}\right)$ +\end_inset + +. +\end_layout + +\begin_layout Standard +Pot v grafu: podgraf +\begin_inset Formula $P_{k}$ +\end_inset + + +\begin_inset Formula $\sim$ +\end_inset + + enostaven nesklenjen sprehod. +\end_layout + +\begin_layout Paragraph +Cikel +\end_layout + +\begin_layout Standard +podgraf, ki je enostaven sklenjen sprehod dolžine +\begin_inset Formula $>3$ +\end_inset + +. +\end_layout + +\begin_layout Standard +Če v +\begin_inset Formula $G$ +\end_inset + + +\begin_inset Formula $\exists$ +\end_inset + + dve različni +\begin_inset Formula $u,v-$ +\end_inset + +poti +\begin_inset Formula $\Leftrightarrow$ +\end_inset + + +\begin_inset Formula $G$ +\end_inset + + premore cikel +\end_layout + +\begin_layout Standard +Sklenjen sprehod lihe dolžine +\begin_inset Formula $\in G$ +\end_inset + + +\begin_inset Formula $\Leftrightarrow$ +\end_inset + + lih cikel +\begin_inset Formula $\in G$ +\end_inset + + +\end_layout + +\begin_layout Paragraph +Povezanost +\end_layout + +\begin_layout Standard +\begin_inset Formula $u,v$ +\end_inset + + sta v isti komponenti +\begin_inset Formula $\text{\ensuremath{\sim}}$ +\end_inset + + +\begin_inset Formula $\text{\ensuremath{\exists}}$ +\end_inset + + +\begin_inset Formula $u,v-$ +\end_inset + +pot +\end_layout + +\begin_layout Standard +Število komponent grafa: +\begin_inset Formula $\Omega G$ +\end_inset + +. + +\begin_inset Formula $G$ +\end_inset + + povezan +\begin_inset Formula $\sim\Omega G=1$ +\end_inset + + +\end_layout + +\begin_layout Standard +Komponenta je maksimalen povezan podgraf. +\end_layout + +\begin_layout Standard +Premer: +\begin_inset Formula $\diam G=\max\left\{ d_{G}\left(v,u\right);\forall v,u\in VG\right\} $ +\end_inset + + +\end_layout + +\begin_layout Standard +Ekscentričnost: +\begin_inset Formula $\ecc_{G}u=max\left\{ d_{G}\left(u,x\right);\forall x\in VG\right\} $ +\end_inset + + +\end_layout + +\begin_layout Standard +Polmer: +\begin_inset Formula $\rad G=\min\left\{ \ecc u;\forall u\in VG\right\} $ +\end_inset + + +\end_layout + +\begin_layout Standard +\begin_inset Formula $\diam C_{n}=\rad C_{n}=\lfloor\frac{n}{2}\rfloor$ +\end_inset + + +\end_layout + +\begin_layout Standard +(Liha) ožina ( +\begin_inset Formula $\g G$ +\end_inset + +) je dolžina najkrajšega (lihega) cikla. +\end_layout + +\begin_layout Standard +Vsaj en od +\begin_inset Formula $G$ +\end_inset + + in +\begin_inset Formula $\overline{G}$ +\end_inset + + je povezan. +\end_layout + +\begin_layout Standard +Povezava +\begin_inset Formula $e$ +\end_inset + + je most +\begin_inset Formula $\Leftrightarrow$ +\end_inset + + +\begin_inset Formula $\Omega\left(G-e\right)>\Omega G$ +\end_inset + + +\end_layout + +\begin_layout Standard +\begin_inset Formula $u$ +\end_inset + + je prerezno vozlišče +\begin_inset Formula $\Leftrightarrow$ +\end_inset + + +\begin_inset Formula $\Omega\left(G-u\right)>\Omega G$ +\end_inset + + +\end_layout + +\begin_layout Standard +Za nepovezan +\begin_inset Formula $G$ +\end_inset + + velja +\begin_inset Formula $\diam\overline{G}\leq2$ +\end_inset + + +\end_layout + +\begin_layout Paragraph +Dvodelni +\end_layout + +\begin_layout Standard +\begin_inset Formula $\sim V=A\cup B,A\cap B=\emptyset,\forall uv\in E:u\in A\oplus v\in A$ +\end_inset + + +\end_layout + +\begin_layout Standard +\begin_inset Formula $K_{m,n}$ +\end_inset + + je poln dvodelni graf, +\begin_inset Formula $\left|A\right|=m$ +\end_inset + +, +\begin_inset Formula $\left|B\right|=n$ +\end_inset + + +\end_layout + +\begin_layout Standard +\begin_inset Formula $G$ +\end_inset + + dvodelen +\begin_inset Formula $\Leftrightarrow\forall$ +\end_inset + + komponenta +\begin_inset Formula $G$ +\end_inset + + dvodelna +\end_layout + +\begin_layout Standard +Pot, sod cikel, hiperkocka so dvodelni, petersenov ni. +\end_layout + +\begin_layout Standard +\begin_inset Formula $G$ +\end_inset + + dvodelen +\begin_inset Formula $\Leftrightarrow G$ +\end_inset + + ne vsebuje lihega cikla. +\end_layout + +\begin_layout Standard +Biparticija glede na parnost +\begin_inset Formula $d_{G}\left(u,x_{0}\right)$ +\end_inset + +, +\begin_inset Formula $x_{0}$ +\end_inset + + fiksen. +\end_layout + +\begin_layout Standard +Dvodelen +\begin_inset Formula $k-$ +\end_inset + +regularen, +\begin_inset Formula $\left|E\right|\ge1\Rightarrow$ +\end_inset + + +\begin_inset Formula $\left|A\right|=\left|B\right|$ +\end_inset + +. + Dokaz: +\begin_inset Formula $\sum_{u\in A}\deg u=\left|E\right|=\cancel{k}\left|A\right|=\cancel{k}\left|B\right|=\sum_{u\in B}\deg u$ +\end_inset + + +\end_layout + +\begin_layout Paragraph +Krožni +\end_layout + +\begin_layout Standard +\begin_inset Formula $\Cir\left(n,\left\{ s_{1},\dots,s_{k}\right\} \right):\left|V\right|=n,$ +\end_inset + + množica preskokov +\end_layout + +\begin_layout Standard +\begin_inset Formula $\Omega\Cir\left(n,\left\{ s,n-s\right\} \right)=\gcd\left\{ n,s\right\} $ +\end_inset + + +\end_layout + +\begin_layout Standard +\begin_inset Formula $W_{n}$ +\end_inset + + (kolo) pa je cikel z univerzalnim vozliščem. +\end_layout + +\begin_layout Paragraph +Homomorfizem +\end_layout + +\begin_layout Standard +\begin_inset Formula $\varphi:VG\to VH$ +\end_inset + + slika povezave v povezave +\end_layout + +\begin_layout Standard +Primer: +\begin_inset Formula $K_{2}$ +\end_inset + + je homomorfna slika +\begin_inset Formula $\forall$ +\end_inset + + bipartitnega grafa. +\end_layout + +\begin_layout Standard +V povezavah in vozliščih surjektiven +\begin_inset Formula $hm\varphi$ +\end_inset + + je epimorfizem. +\end_layout + +\begin_layout Standard +V vozliščih injektiven +\begin_inset Formula $hm\varphi$ +\end_inset + + je monomorfizem/vložitev. +\end_layout + +\begin_layout Standard +Vložitev, ki ohranja razdalje, je izometrična. +\end_layout + +\begin_layout Standard +Kompozitum homomorfizmov je spet homomorfizem. +\end_layout + +\begin_layout Standard +Izomorfizem je bijektivni +\begin_inset Formula $hm\varphi$ +\end_inset + + s homomorfnim inverzom. +\end_layout + +\begin_layout Standard +\begin_inset Formula $im\varphi$ +\end_inset + + +\begin_inset Formula $f:VG\to VH$ +\end_inset + + +\begin_inset Formula $\forall u,v\in VG:uv\in EG\Leftrightarrow fufv\in EH$ +\end_inset + + +\end_layout + +\begin_layout Standard +Nad množico vseh grafov +\begin_inset Formula $\mathcal{G}$ +\end_inset + + je izomorfizem ( +\begin_inset Formula $\cong$ +\end_inset + +) ekv. + rel. +\end_layout + +\begin_layout Standard +\begin_inset Formula $im\varphi$ +\end_inset + + +\begin_inset Formula $G\to G$ +\end_inset + + je avtomorfizem. +\end_layout + +\begin_layout Standard +\begin_inset Formula $\Aut G$ +\end_inset + + je grupa avtomorfizmov s komponiranjem. +\end_layout + +\begin_layout Standard +\begin_inset Formula $\Aut K_{n}=\left\{ \pi\in S_{n}=\text{permutacije }n\text{ elementov}\right\} $ +\end_inset + + +\end_layout + +\begin_layout Standard +\begin_inset Formula $\Aut P_{n}=\left\{ \text{trivialni }id,f\left(i\right)=n-i-1\right\} $ +\end_inset + +, +\begin_inset Formula $\Aut G\cong\Aut\overline{G}$ +\end_inset + + +\end_layout + +\begin_layout Standard +Izomorfizem ohranja stopnje, št. + +\begin_inset Formula $C_{4}$ +\end_inset + +, povezanost, +\begin_inset Formula $\left|EG\right|,\dots$ +\end_inset + + +\end_layout + +\begin_layout Standard +\begin_inset Formula $G\cong\overline{G}\Rightarrow\left|VG\right|\%4\in\left\{ 0,1\right\} $ +\end_inset + + +\end_layout + +\begin_layout Paragraph +Operacije +\end_layout + +\begin_layout Standard +\begin_inset Formula $H$ +\end_inset + + vpeti podgraf +\begin_inset Formula $G\Leftrightarrow\exists F\subseteq EG\ni:H=G-F$ +\end_inset + + +\end_layout + +\begin_layout Standard +\begin_inset Formula $H$ +\end_inset + + inducirani podgraf +\begin_inset Formula $G\Leftrightarrow\exists S\subseteq VG\ni:H=G-S$ +\end_inset + + +\end_layout + +\begin_layout Standard +\begin_inset Formula $H$ +\end_inset + + podgraf +\begin_inset Formula $G\Leftrightarrow\exists S\subseteq VG,F\subseteq EG\ni:H=\left(G-F\right)-S$ +\end_inset + + +\end_layout + +\begin_layout Standard +\begin_inset Formula $uv=e\in EG$ +\end_inset + +. + +\begin_inset Formula $G/e$ +\end_inset + + je skrčitev. + (identificiramo +\begin_inset Formula $u=v$ +\end_inset + +) +\end_layout + +\begin_layout Standard +\begin_inset Formula $H$ +\end_inset + + minor +\begin_inset Formula $G$ +\end_inset + +: +\begin_inset Formula $H=f_{1}...f_{k}G$ +\end_inset + + za +\begin_inset Formula $f_{i}$ +\end_inset + + skrčitev/odstranjevanje +\end_layout + +\begin_layout Standard +\begin_inset Formula $VG^{+}e\coloneqq VG\cup\left\{ x_{e}\right\} $ +\end_inset + +, +\begin_inset Formula $EG^{+}e\coloneqq EG\setminus e\cup\left\{ x_{e}u,x_{e}v\right\} $ +\end_inset + + +\end_layout + +\begin_layout Standard +\begin_inset Formula $VG^{+}e$ +\end_inset + + je subdivizija, +\begin_inset Formula $e\in EG$ +\end_inset + +. + Na +\begin_inset Formula $e$ +\end_inset + + dodamo vozlišče. +\end_layout + +\begin_layout Standard +\begin_inset Formula $H$ +\end_inset + + subdivizija +\begin_inset Formula $G$ +\end_inset + + +\begin_inset Formula $\Leftrightarrow H=G^{+}\left\{ e_{1},\dots,e_{k}\right\} ^{+}\left\{ f_{1}\dots f_{j}\right\} ^{+}\dots$ +\end_inset + + +\end_layout + +\begin_layout Standard +Stopnja vozlišč se s subdivizijo ne poveča. +\end_layout + +\begin_layout Standard +Glajenje +\begin_inset Formula $G^{-}v$ +\end_inset + +, +\begin_inset Formula $v\in VG$ +\end_inset + + je obrat subdivizije. + +\begin_inset Formula $\deg_{G}v=2$ +\end_inset + + +\end_layout + +\begin_layout Standard +\begin_inset Formula $G$ +\end_inset + + in +\begin_inset Formula $H$ +\end_inset + + sta homeomorfna, če sta subdivizija istega grafa. +\end_layout + +\begin_layout Standard +Kartezični produkt: +\begin_inset Formula $V\left(G\square H\right)\coloneqq VG\times VH$ +\end_inset + +, +\begin_inset Formula $E\left(G\square H\right)\coloneqq\left\{ \left\{ \left(g,h\right),\left(g',h'\right)\right\} ;g=g'\wedge hh'\in EH\vee h=h'\wedge gg'\in EG\right\} $ +\end_inset + + +\end_layout + +\begin_layout Standard +\begin_inset Formula $\left(\mathcal{G},\square\right)$ +\end_inset + + monoid, enota +\begin_inset Formula $K_{1}$ +\end_inset + +. + +\begin_inset Formula $Q_{n}\cong Q_{n-1}\square K_{2}=Q_{n-2}\square K_{2}^{\square,2}$ +\end_inset + + +\end_layout + +\begin_layout Standard +Disjunktna unija: +\begin_inset Formula $G$ +\end_inset + +, +\begin_inset Formula $H$ +\end_inset + + disjunktna. + +\begin_inset Formula $V\left(G\cup H\right)\coloneqq VG\cup VH$ +\end_inset + +, +\begin_inset Formula $E\left(G\cup H\right)\coloneqq EG\cup EH$ +\end_inset + + +\end_layout + +\begin_layout Standard +\begin_inset Formula $G,H$ +\end_inset + + dvodelna +\begin_inset Formula $\Rightarrow G\square H$ +\end_inset + + dvodelen +\end_layout + +\begin_layout Paragraph +\begin_inset Formula $k-$ +\end_inset + +povezan graf +\end_layout + +\begin_layout Standard +ima +\begin_inset Formula $\geq k+1$ +\end_inset + + vozlišč in ne vsebuje prerezne množice moči +\begin_inset Formula $<k$ +\end_inset + + +\end_layout + +\begin_layout Standard +\begin_inset Formula $X\subseteq VG$ +\end_inset + + je prerezna množica +\begin_inset Formula $\Leftrightarrow\Omega\left(G-X\right)>\Omega G$ +\end_inset + + +\end_layout + +\begin_layout Standard +\begin_inset Formula $Y\subseteq EG$ +\end_inset + + prerezna množica povezav +\begin_inset Formula $\Leftrightarrow\Omega\left(G-Y\right)>\Omega G$ +\end_inset + + +\end_layout + +\begin_layout Standard +Povezanost grafa: +\begin_inset Formula $\kappa G=\max k$ +\end_inset + +, da je +\begin_inset Formula $G$ +\end_inset + + +\begin_inset Formula $k-$ +\end_inset + +povezan. + Primeri: +\begin_inset Formula $\kappa K_{n}=n-1$ +\end_inset + +, +\begin_inset Formula $\kappa P_{n}=1$ +\end_inset + +, +\begin_inset Formula $\kappa C_{n}=2$ +\end_inset + +, +\begin_inset Formula $\kappa K_{n,m}=\min\left\{ n,m\right\} $ +\end_inset + +, +\begin_inset Formula $\kappa Q_{n}=n$ +\end_inset + +, +\begin_inset Formula $\kappa G\text{\ensuremath{\leq}}\delta G$ +\end_inset + + +\end_layout + +\begin_layout Standard +Izrek (Menger): +\begin_inset Formula $\left|VG\right|\geq k+1$ +\end_inset + +: +\begin_inset Formula $G$ +\end_inset + + +\begin_inset Formula $k-$ +\end_inset + +povezan +\begin_inset Formula $\Leftrightarrow\forall u,v\in VG,uv\not\in EG:\exists k$ +\end_inset + + notranje disjunktnih +\begin_inset Formula $u,v-$ +\end_inset + +poti +\end_layout + +\begin_layout Standard +Graf je +\begin_inset Formula $k-$ +\end_inset + +povezan po povezavah, če ne vsebuje prerezne množice povezav moči +\begin_inset Formula $<k$ +\end_inset + +. + Povezanost grafa po povezavah: +\begin_inset Formula $\kappa'G=\max k$ +\end_inset + +, da je +\begin_inset Formula $G$ +\end_inset + + +\begin_inset Formula $k-$ +\end_inset + +povezan po povezavah. + Primeri: +\begin_inset Formula $\kappa'K_{n}=n-1$ +\end_inset + +, +\begin_inset Formula $\kappa'P_{n}=1$ +\end_inset + +, +\begin_inset Formula $\kappa'C_{n}=2$ +\end_inset + + +\end_layout + +\begin_layout Standard +Izrek (Menger'): +\begin_inset Formula $G$ +\end_inset + + +\begin_inset Formula $k-$ +\end_inset + +povezan +\begin_inset Formula $\Leftrightarrow\forall u,v\in VG\exists k$ +\end_inset + + po povezavah disjunktnih +\begin_inset Formula $u,v-$ +\end_inset + +poti +\end_layout + +\begin_layout Standard +\begin_inset Formula $\forall G\in\mathcal{G}:\kappa G\leq\kappa'G\leq\delta G$ +\end_inset + + +\end_layout + +\begin_layout Paragraph +Drevo +\end_layout + +\begin_layout Standard +je povezan gozd. + Gozd je graf brez ciklov. +\end_layout + +\begin_layout Standard +Drevo z vsaj dvema vozliščema premore dva lista. +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +hspace*{ +\backslash +fill} +\end_layout + +\end_inset + +NTSE: +\end_layout + +\begin_layout Standard +\begin_inset Formula $G$ +\end_inset + + drevo +\begin_inset Formula $\Leftrightarrow\forall u,v\in VG\exists!u,v-$ +\end_inset + +pot +\begin_inset Formula $\Leftrightarrow\Omega G=1\wedge\forall e\in EG:e$ +\end_inset + + most +\begin_inset Formula $\Leftrightarrow\Omega G=1\wedge\left|EG\right|=\left|VG\right|-1$ +\end_inset + + +\end_layout + +\begin_layout Standard +Vpeto drevo grafa je vpet podgraf, ki je drevo. +\end_layout + +\begin_layout Standard +\begin_inset Formula $\tau G\sim$ +\end_inset + + število vpetih dreves. + +\begin_inset Formula $\Omega G=1\Leftrightarrow\tau G\geq1$ +\end_inset + + +\end_layout + +\begin_layout Standard +\begin_inset Formula $\forall e\in EG:\tau G=\tau\left(G-e\right)+\tau\left(G/e\right)$ +\end_inset + + +\end_layout + +\begin_layout Standard +\begin_inset Formula +\[ +\text{\text{\text{Laplaceova matrika: }}}L\left(G\right)_{ij}=\begin{cases} +\deg_{G}v_{i} & ;i=j\\ +-\left(\text{št. uv povezav}\right) & ;\text{drugače} +\end{cases} +\] + +\end_inset + + +\end_layout + +\begin_layout Standard +Izrek (Kirchoff): za +\begin_inset Formula $G$ +\end_inset + + povezan multigraf je +\begin_inset Formula $\forall i:\tau G=\det\left(LG\text{ brez \ensuremath{i}te vrstice in \ensuremath{i}tega stolpca}\right)$ +\end_inset + +. + +\begin_inset Formula $\tau K_{n}=n^{n-2}$ +\end_inset + + +\end_layout + +\begin_layout Standard +Prüferjeva koda, če lahko linearno uredimo vozlišča: Ponavljaj, dokler +\begin_inset Formula $VG\not=\emptyset$ +\end_inset + +: vzemi prvi list, ga odstrani in v vektor dodaj njegovega soseda. +\end_layout + +\begin_layout Standard +Blok je maksimalen povezan podgraf brez prereznih vozlišč. +\end_layout + +\begin_layout Standard +\begin_inset Formula $\tau G=\tau B_{1}\cdot\cdots\cdot\tau B_{k}$ +\end_inset + + za bloke +\begin_inset Formula $\vec{B}$ +\end_inset + + grafa +\begin_inset Formula $G$ +\end_inset + +. +\end_layout + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +end{multicols} +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +begin{multicols}{2} +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Paragraph +Eulerjev +\end_layout + +\begin_layout Standard +sprehod v m.grafu vsebuje vse povezave po enkrat. +\end_layout + +\begin_layout Standard +Eulerjev obhod je sklenjen eulerjev sprehod. +\end_layout + +\begin_layout Standard +Eulerjev graf premore eulerjev obhod. +\end_layout + +\begin_layout Standard +Za povezan multigraf +\begin_inset Formula $G$ +\end_inset + + eulerjev +\begin_inset Formula $\Leftrightarrow\forall v\in VG:\deg_{G}v$ +\end_inset + + sod +\end_layout + +\begin_layout Standard +Fleuryjev algoritem za eulerjev obhod v eulerjevem grafu: Začnemo v poljubni + povezavi, jo izbrišemo, nadaljujemo na mostu le, če nimamo druge možne + povezave. +\end_layout + +\begin_layout Standard +Dekompozicija: delitev na povezavno disjunktne podgrafe. +\end_layout + +\begin_layout Standard +Dekompozicija je lepa, če so podgrafi izomorfni. + ( +\begin_inset Formula $\exists$ +\end_inset + + za +\begin_inset Formula $P_{5,2}$ +\end_inset + +) +\end_layout + +\begin_layout Standard +Vsak eulerjev graf premore dekompozicijo v cikle. +\end_layout + +\begin_layout Standard +\begin_inset Formula $Q_{n}$ +\end_inset + + eulerjev +\begin_inset Formula $\Leftrightarrow n$ +\end_inset + + sod +\end_layout + +\begin_layout Standard +\begin_inset Formula $K_{m,n,p}$ +\end_inset + + eulerjev +\begin_inset Formula $\Leftrightarrow m,n,p$ +\end_inset + + iste parnosti +\end_layout + +\begin_layout Standard +\begin_inset Formula $G$ +\end_inset + + eulerjev +\begin_inset Formula $\wedge H$ +\end_inset + + eulerjev +\begin_inset Formula $\Rightarrow G\square H$ +\end_inset + + eulerjev +\end_layout + +\begin_layout Paragraph +Hamiltonov +\end_layout + +\begin_layout Standard +cikel vsebuje vsa vozlišča grafa. +\end_layout + +\begin_layout Standard +Hamilton graf premore Hamiltonov cikel. +\end_layout + +\begin_layout Standard +Hamiltonova pot vsebuje vsa vozlišča. +\end_layout + +\begin_layout Standard +\begin_inset Formula $G$ +\end_inset + + hamiltonov, +\begin_inset Formula $S\subseteq VG\Rightarrow\Omega\left(G-S\right)\leq\left|S\right|$ +\end_inset + + torej: +\end_layout + +\begin_layout Standard +\begin_inset Formula $\exists S\in VG:\Omega\left(G-S\right)>\left|S\right|\Rightarrow G$ +\end_inset + + ni hamiltonov. + Primer: +\begin_inset Formula $G$ +\end_inset + + vsebuje prerezno vozlišče +\begin_inset Formula $\Rightarrow G$ +\end_inset + + ni hamiltonov. +\end_layout + +\begin_layout Standard +\begin_inset Formula $K_{n,m}$ +\end_inset + + je hamiltonov +\begin_inset Formula $\Leftrightarrow m=n$ +\end_inset + + (za +\begin_inset Formula $S$ +\end_inset + + vzamemo +\begin_inset Formula $\min\left\{ m,n\right\} $ +\end_inset + +) +\end_layout + +\begin_layout Standard +\begin_inset Formula $\left|VG\right|\geq3,\forall u,v\in VG:\deg_{G}u+\deg_{G}v\geq\left|VG\right|\Rightarrow G$ +\end_inset + + hamil. +\end_layout + +\begin_layout Standard +Dirac: +\begin_inset Formula $\left|VG\right|\geq3,\forall u\in VG:\deg_{G}u\geq\frac{\left|VG\right|}{2}\Rightarrow G$ +\end_inset + + hamilton. +\end_layout + +\begin_layout Paragraph +Ravninski +\end_layout + +\begin_layout Standard +graf brez sekanja povezav narišemo v ravnino +\end_layout + +\begin_layout Standard +\begin_inset Formula $K_{2,3}$ +\end_inset + + je ravninski, +\begin_inset Formula $K_{3,3}$ +\end_inset + +, +\begin_inset Formula $K_{5}$ +\end_inset + +, +\begin_inset Formula $C_{5}\square C_{5}$ +\end_inset + + in +\begin_inset Formula $P_{5,2}$ +\end_inset + + niso ravninski. +\end_layout + +\begin_layout Standard +Vložitev je ravninski graf z ustrezno risbo v ravnini. +\end_layout + +\begin_layout Standard +Lica so sklenjena območja vložitve brez vozlišč in povezav. +\end_layout + +\begin_layout Standard +\begin_inset Formula $G$ +\end_inset + + lahko vložimo v ravnino +\begin_inset Formula $\Leftrightarrow G$ +\end_inset + + lahko vložimo na sfero. +\end_layout + +\begin_layout Standard +Dolžina lica +\begin_inset Formula $F\sim lF$ +\end_inset + + je št. + povezav obhoda lica. +\end_layout + +\begin_layout Standard +Drevo je ravninski graf z enim licem dolžine +\begin_inset Formula $2\left|ET\right|$ +\end_inset + + +\end_layout + +\begin_layout Standard +\begin_inset Formula $\sum_{F\in FG}lF=2\left|EG\right|$ +\end_inset + +, +\begin_inset Formula $lF\geq gG$ +\end_inset + + za ravninski +\begin_inset Formula $G$ +\end_inset + + +\end_layout + +\begin_layout Standard +\begin_inset Formula $2\left|EG\right|=\sum_{F\in FG}lF\geq\sum_{F\in FG}gG=gG\left|FG\right|$ +\end_inset + + ( +\begin_inset Formula $G$ +\end_inset + + ravn.) +\end_layout + +\begin_layout Standard +\begin_inset Formula $G$ +\end_inset + + ravninski +\begin_inset Formula $\Rightarrow\left|EG\right|\geq\frac{gG}{2}$ +\end_inset + + +\begin_inset Formula $\left|FG\right|$ +\end_inset + + +\end_layout + +\begin_layout Standard +Euler: +\begin_inset Formula $\left|VG\right|-\left|EG\right|+\left|FG\right|=1+\Omega G$ +\end_inset + + za ravninski +\begin_inset Formula $G$ +\end_inset + + +\end_layout + +\begin_layout Standard +\begin_inset Formula $G$ +\end_inset + + ravninski, +\begin_inset Formula $\left|VG\right|\geq3\Rightarrow\left|EG\right|\leq3\left|VG\right|-6$ +\end_inset + + +\end_layout + +\begin_layout Standard +\begin_inset Formula $G$ +\end_inset + + ravninski brez +\begin_inset Formula $C_{3}$ +\end_inset + +, +\begin_inset Formula $\left|VG\right|\geq3\Rightarrow\left|EG\right|\text{\ensuremath{\leq2\left|VG\right|-4}}$ +\end_inset + + +\end_layout + +\begin_layout Standard +Triangulacija je taka vložitev, da so vsa lica omejena s +\begin_inset Formula $C_{3}$ +\end_inset + +. +\end_layout + +\begin_layout Standard +V maksimalen ravninski graf ne moremo dodati povezave, da bi ostal ravninski. + +\begin_inset Formula $\sim$ +\end_inset + + Ni pravi vpet podgraf ravn. + grafa. +\end_layout + +\begin_layout Standard +\begin_inset Formula $K_{5}-e$ +\end_inset + + je maksimalen ravninski graf +\begin_inset Formula $\forall e\in EK_{5}$ +\end_inset + + +\end_layout + +\begin_layout Standard +\begin_inset Formula $G$ +\end_inset + + ravninski. + NTSE: +\begin_inset Formula $G$ +\end_inset + + triangulacija +\begin_inset Formula $\Leftrightarrow G$ +\end_inset + + maksimalen ravninski +\begin_inset Formula $\Leftrightarrow\left|EG\right|=3\left|VG\right|-6$ +\end_inset + + +\end_layout + +\begin_layout Standard +\begin_inset Formula $G$ +\end_inset + + ravninski +\begin_inset Formula $\Leftrightarrow$ +\end_inset + + vsaka subdivizija +\begin_inset Formula $G$ +\end_inset + + ravninska. +\end_layout + +\begin_layout Standard +Kuratovski: +\begin_inset Formula $G$ +\end_inset + + ravn. + +\begin_inset Formula $\Leftrightarrow$ +\end_inset + + ne vsebuje subdivizije +\begin_inset Formula $K_{5}$ +\end_inset + + ali +\begin_inset Formula $K_{3,3}$ +\end_inset + + +\end_layout + +\begin_layout Standard +Wagner: +\begin_inset Formula $G$ +\end_inset + + ravn. + +\begin_inset Formula $\Leftrightarrow$ +\end_inset + + niti +\begin_inset Formula $K_{5}$ +\end_inset + + niti +\begin_inset Formula $K_{3,3}$ +\end_inset + + nista njegova minorja +\end_layout + +\begin_layout Standard +Zunanje-ravninski ima vsa vozlišča na robu zunanjega lica. +\end_layout + +\begin_layout Standard +\begin_inset Formula $2-$ +\end_inset + +povezan zunanje-ravninski je +\series bold +hamiltonov +\series default +. +\end_layout + +\begin_layout Standard +Zunanje-ravninski +\begin_inset Formula $G$ +\end_inset + +, +\begin_inset Formula $\left|VG\right|\geq2$ +\end_inset + + ima vozlišče stopnje +\begin_inset Formula $\leq2$ +\end_inset + +. +\end_layout + +\begin_layout Paragraph +Barvanje vozlišč +\end_layout + +\begin_layout Standard +je taka +\begin_inset Formula $C:VG\to\left\{ 1..k\right\} \Leftrightarrow\forall uv\in EG:Cu\not=Cv$ +\end_inset + + +\end_layout + +\begin_layout Standard +Kromatično število +\begin_inset Formula $\chi G$ +\end_inset + + je najmanjši +\begin_inset Formula $k$ +\end_inset + +, +\begin_inset Formula $\ni:\exists$ +\end_inset + + +\begin_inset Formula $k-$ +\end_inset + +barvanje +\begin_inset Formula $G$ +\end_inset + + +\end_layout + +\begin_layout Standard +\begin_inset Formula $\chi C_{n}=\begin{cases} +2 & ;n\text{ sod}\\ +3 & ;n\text{ lih} +\end{cases}$ +\end_inset + +, +\begin_inset Formula $\chi G\leq\left|VG\right|,\chi G=\left|VG\right|\Leftrightarrow G\cong K_{n}$ +\end_inset + + +\end_layout + +\begin_layout Standard +\begin_inset Formula $H$ +\end_inset + + podgraf +\begin_inset Formula $G\Rightarrow\chi G\geq\chi H$ +\end_inset + +. + +\begin_inset Formula $\chi\text{bipartitni}=2$ +\end_inset + + +\end_layout + +\begin_layout Standard +Barvni razred so vsa vozlišča iste barve. + Je brez povezav +\begin_inset Formula $\sim$ +\end_inset + + +\series bold +neodvisna množica +\series default +. +\end_layout + +\begin_layout Standard +\begin_inset Formula $\chi G=k\Leftrightarrow\chi G\leq k\wedge\chi G\geq k$ +\end_inset + + +\end_layout + +\begin_layout Standard +Klično št.: +\begin_inset Formula $\omega G\coloneqq$ +\end_inset + + +\begin_inset Formula $\left|V\right|$ +\end_inset + + najv. + polnega podgr. + v +\begin_inset Formula $G$ +\end_inset + +. + +\begin_inset Formula $\omega G\leq\chi G$ +\end_inset + +. +\end_layout + +\begin_layout Standard +Trditev: +\begin_inset Formula $\forall n\in\mathbb{N}\exists G\in\mathcal{G}\ni:\omega G=2\wedge\chi G=n$ +\end_inset + + +\end_layout + +\begin_layout Standard +Požrešno barvanje: Vozlišča v poljubnem vrstnem redu barvamo z najnižno + možno barvo. +\end_layout + +\begin_layout Standard +Vedno +\begin_inset Formula $\exists$ +\end_inset + + vrstni red, ki vrne barvanje s +\begin_inset Formula $\chi G$ +\end_inset + + barvami. +\end_layout + +\begin_layout Standard +\begin_inset Formula $\forall G\in\mathcal{G}:\chi G\leq\Delta G+1$ +\end_inset + +, če +\begin_inset Formula $G$ +\end_inset + + ni regularen celo +\begin_inset Formula $\chi G\leq\Delta G$ +\end_inset + + +\end_layout + +\begin_layout Standard +Brooks: +\begin_inset Formula $G$ +\end_inset + + povezan, +\begin_inset Formula $G$ +\end_inset + + ni poln niti lihi cikel +\begin_inset Formula $\Rightarrow\chi G\leq\Delta G$ +\end_inset + + +\end_layout + +\begin_layout Standard +let +\begin_inset Formula $d_{1}\geq\cdots\geq d_{n}$ +\end_inset + + stopnje. + +\begin_inset Formula $\chi G=1+\max_{i=1}^{n}\min\left\{ d_{i},i-1\right\} $ +\end_inset + + +\end_layout + +\begin_layout Standard +Spoj +\begin_inset Formula $G\oplus H$ +\end_inset + + je disjunktna unija +\begin_inset Formula $G$ +\end_inset + +, +\begin_inset Formula $H$ +\end_inset + + z vsemi pov. + med njima +\end_layout + +\begin_layout Standard +Disjunktna unija je unija brez preseka. +\end_layout + +\begin_layout Standard +\begin_inset Formula $\chi\left(G\oplus H\right)=\chi G+\chi H$ +\end_inset + + +\end_layout + +\begin_layout Standard +Ravninski graf ima +\begin_inset Formula $\chi G\leq4$ +\end_inset + + +\end_layout + +\begin_layout Paragraph +Barvanje povezav +\end_layout + +\begin_layout Standard +Povezavi s skupnim vozl. + +\begin_inset Formula $\Rightarrow$ +\end_inset + + razl. + barvi. +\end_layout + +\begin_layout Standard +Kromatični indeks +\begin_inset Formula $\chi'G$ +\end_inset + + je najm. + št. + barv za barv. + pov. + +\begin_inset Formula $G$ +\end_inset + +. +\end_layout + +\begin_layout Standard +\begin_inset Formula $\chi'C_{n}=\begin{cases} +2 & ;n\text{ sod}\\ +3 & ;n\text{ lih} +\end{cases}$ +\end_inset + + +\end_layout + +\begin_layout Standard +Vizing: +\begin_inset Formula $\forall G\in\mathcal{G}:\Delta G\geq\chi'G\geq\Delta G+1$ +\end_inset + + +\end_layout + +\begin_layout Standard +\begin_inset Formula $\chi G\in\left\{ \Delta G\text{ razred I.},\Delta G+1\text{ razred II.}\right\} $ +\end_inset + + +\end_layout + +\begin_layout Standard +\begin_inset Formula $K_{2k+1}\in$ +\end_inset + + II., +\begin_inset Formula $K_{2k}\in$ +\end_inset + + I., bipartitni +\begin_inset Formula $\in$ +\end_inset + + I. +\end_layout + +\begin_layout Paragraph +Neodvisne množice +\end_layout + +\begin_layout Standard +\begin_inset Formula $I\subseteq VG$ +\end_inset + + je neodvisna, če je podgraf, induciran z +\begin_inset Formula $I$ +\end_inset + +, brez povezav. +\end_layout + +\begin_layout Standard +Neodvisnostno št +\begin_inset Formula $\alpha G$ +\end_inset + + je moč največje neodvisne množice. +\end_layout + +\begin_layout Standard +\begin_inset Formula $\alpha K_{n}=1$ +\end_inset + +, +\begin_inset Formula $\alpha C_{n}=\lfloor\frac{n}{2}\rfloor$ +\end_inset + + +\end_layout + +\begin_layout Standard +\begin_inset Formula $\alpha G\leq\sum_{i=1}^{k}\alpha H_{i}$ +\end_inset + +, kjer so +\begin_inset Formula $H_{i}$ +\end_inset + + disjunktni inducirani podgr. + +\begin_inset Formula $G$ +\end_inset + +. +\end_layout + +\begin_layout Standard +\begin_inset Formula $\forall G\in\mathcal{G}:\alpha G\cdot\chi G\geq\left|VG\right|$ +\end_inset + + +\end_layout + +\begin_layout Standard +\begin_inset Formula $\frac{\left|VG\right|}{\chi G}\leq\alpha G\leq\left|VG\right|-\frac{\left|EG\right|}{\Delta G}$ +\end_inset + + — zgornja in spodnja meja. +\end_layout + +\begin_layout Standard +\begin_inset Formula $Iu$ +\end_inset + + je +\begin_inset Formula $\alpha$ +\end_inset + + poddrevesa s korenom +\begin_inset Formula $u$ +\end_inset + + v +\begin_inset Formula $T$ +\end_inset + + +\end_layout + +\begin_layout Standard +\begin_inset Formula $\alpha T=Ir=\max\left\{ 1+\sum_{u\text{ sinovi }r}Iu,\sum_{u\text{ vnuki }r}Iu\right\} $ +\end_inset + + +\end_layout + +\begin_layout Paragraph +Dominantne množice +\end_layout + +\begin_layout Standard +Neodvisna +\begin_inset Formula $I\subseteq G$ +\end_inset + + je maksimalna +\begin_inset Formula $\sim\nexists S\text{ neodvisna}\subseteq G\ni:I\subset S\sim$ +\end_inset + + ni prava +\begin_inset Formula $\subset$ +\end_inset + + neodv. + mn. +\end_layout + +\begin_layout Standard +Dominantna množica je maksimalna neodvisna, kjer ima vsako vozlišče iz +\begin_inset Formula $G\setminus I$ +\end_inset + + soseda v +\begin_inset Formula $I$ +\end_inset + +. +\end_layout + +\begin_layout Standard +\begin_inset Formula $D\subseteq VG$ +\end_inset + + dominira +\begin_inset Formula $X\subseteq VG$ +\end_inset + +, če je vsako vozlišče iz +\begin_inset Formula $X$ +\end_inset + + v +\begin_inset Formula $D$ +\end_inset + + ali pa ima soseda v +\begin_inset Formula $D$ +\end_inset + +. +\end_layout + +\begin_layout Standard +\begin_inset Formula $N_{G}\left(u\right)=$ +\end_inset + +sosedje +\begin_inset Formula $u$ +\end_inset + + v +\begin_inset Formula $G$ +\end_inset + +, +\begin_inset Formula $N_{G}\left[u\right]=N_{G}\left(u\right)\cup\left\{ u\right\} $ +\end_inset + + zap. + sos. + +\begin_inset Formula $u$ +\end_inset + + +\end_layout + +\begin_layout Standard +\begin_inset Formula $N_{G}\left[D\right]=\bigcup_{u\in D}N_{G}\left[u\right]$ +\end_inset + + zaprta soseščina množice +\begin_inset Formula $D$ +\end_inset + + +\end_layout + +\begin_layout Standard +\begin_inset Formula $D$ +\end_inset + + dominira +\begin_inset Formula $X\sim X\subseteq N_{G}\left[D\right]$ +\end_inset + +. +\end_layout + +\begin_layout Standard +\begin_inset Formula $D$ +\end_inset + + dominira +\begin_inset Formula $VG\sim D$ +\end_inset + + dominantna množica +\begin_inset Formula $G$ +\end_inset + +. +\end_layout + +\begin_layout Standard +Dominacijsko število +\begin_inset Formula $\gamma G=$ +\end_inset + + moč največje dom. + mn. +\end_layout + +\begin_layout Standard +Vsaka maksimalna neodvisna mn. + +\begin_inset Formula $G$ +\end_inset + + je dom. + mn. + +\begin_inset Formula $G$ +\end_inset + + +\end_layout + +\begin_layout Standard +\begin_inset Formula $\gamma K_{n}=1$ +\end_inset + +, +\begin_inset Formula $\gamma C_{n}=\lceil\frac{n}{3}\rceil$ +\end_inset + +, +\begin_inset Formula $\gamma P=3$ +\end_inset + + +\end_layout + +\begin_layout Standard +Za vsak graf brez izoliranih vozlišč +\begin_inset Formula $\lceil\frac{\left|VG\right|}{\Delta G+1}\rceil\leq\gamma G\leq\lfloor\frac{\left|VG\right|}{2}\rfloor$ +\end_inset + + +\end_layout + +\begin_layout Standard +\begin_inset Formula $X$ +\end_inset + + je 2-pakiranje +\begin_inset Formula $G$ +\end_inset + +, če +\begin_inset Formula $\forall x,y\in X:x\not=y\Rightarrow d_{G}\left(x,y\right)\geq3$ +\end_inset + + zdb +\begin_inset Formula $\forall x,y\in X:x\not=y\Rightarrow N_{G}x\cap N_{G}y=\emptyset$ +\end_inset + + +\end_layout + +\begin_layout Standard +Moč največjega 2-pakiranja je 2-pakirno število +\begin_inset Formula $\rho G$ +\end_inset + +. +\end_layout + +\begin_layout Standard +\begin_inset Formula $G$ +\end_inset + + povezan +\begin_inset Formula $\Rightarrow\gamma G\geq\rho G$ +\end_inset + + +\end_layout + +\begin_layout Standard +Dominantna +\begin_inset Formula $X$ +\end_inset + + je popolna koda +\begin_inset Formula $G\Leftrightarrow\bigcup_{u\in X}N_{G}\left[u\right]=VG$ +\end_inset + + +\end_layout + +\begin_layout Standard +Če graf premore popolno kodo +\begin_inset Formula $\Rightarrow\gamma G=\rho G$ +\end_inset + + +\end_layout + +\begin_layout Standard +\begin_inset Formula $H$ +\end_inset + + vpet podgraf +\begin_inset Formula $G\Rightarrow\gamma G\leq\gamma H$ +\end_inset + + +\end_layout + +\begin_layout Standard +Povezan +\begin_inset Formula $G$ +\end_inset + + premore vpeto drevo +\begin_inset Formula $T\ni:\gamma G=\gamma T$ +\end_inset + +. + Dokaz: odstrani vse povezave, kjer +\begin_inset Formula $G-e$ +\end_inset + + ohrani +\begin_inset Formula $\gamma$ +\end_inset + + in povezanost. +\end_layout + +\begin_layout Standard +\begin_inset Formula $\left|VG\right|\geq1\Rightarrow\gamma G\leq\chi\overline{G}$ +\end_inset + + +\end_layout + +\begin_layout Standard +Povezana dom. + mn. + inducira povez. + podgraf. + — +\begin_inset Formula $\gamma_{c}$ +\end_inset + + +\end_layout + +\begin_layout Standard +Neodvisna dom. + mn. + inducira podgraf brez povezav — +\begin_inset Formula $\gamma_{i}$ +\end_inset + + +\end_layout + +\begin_layout Standard +\begin_inset Formula $X$ +\end_inset + + je celotna dom. + mn. + +\begin_inset Formula $\Leftrightarrow\forall v\in VG:N_{G}\left(v\right)\cap X\not=\emptyset$ +\end_inset + + — +\begin_inset Formula $\gamma_{t}$ +\end_inset + + +\end_layout + +\begin_layout Standard +\begin_inset Formula $G$ +\end_inset + + brez izol. + vozl.: +\begin_inset Formula $\gamma G\leq\gamma_{t}G\leq2\gamma G$ +\end_inset + + +\end_layout + +\begin_layout Paragraph +Algebrske strukture z eno operacijo +\end_layout + +\begin_layout Standard +Grupoid: notranjost, polgrupa: asociativen grupoid, monoid: polgrupa z enoto +\end_layout + +\begin_layout Standard +Grupa: +\begin_inset Formula $\forall a\in A\exists a^{-1}\in A\ni:a\cdot a^{-1}=a^{-1}\cdot a=e$ +\end_inset + + +\end_layout + +\begin_layout Standard +Potence v monoidu: +\begin_inset Formula $n\in\mathbb{N}_{0}$ +\end_inset + +. + +\begin_inset Formula $a^{0}=e$ +\end_inset + +, +\begin_inset Formula $a^{n}=a\cdot a^{n-1}$ +\end_inset + + +\end_layout + +\begin_layout Standard +\begin_inset Formula $\left(a\cdot b\right)^{-1}=b^{-1}\cdot a^{-1}$ +\end_inset + +, +\begin_inset Formula $a^{n}\cdot a^{m}=a^{n+m},\left(a^{n}\right)^{m}=a^{nm}$ +\end_inset + + +\end_layout + +\begin_layout Standard +\begin_inset Formula $\left(a^{-1}\right)^{n}=\left(a^{n}\right)^{-1}$ +\end_inset + + +\end_layout + +\begin_layout Standard +\begin_inset Formula $\left(\mathbb{Z}_{m},+_{m}\right)$ +\end_inset + + grupa, +\begin_inset Formula $\left(\mathbb{Z}_{m},\cdot_{n}\right)$ +\end_inset + + monoid +\end_layout + +\begin_layout Standard +\begin_inset Formula $k\in\mathbb{Z}_{n}$ +\end_inset + + obrnljiv v +\begin_inset Formula $\left(\mathbb{Z}_{n},\cdot_{n}\right)\Leftrightarrow k\perp n\sim\gcd\left\{ k,n\right\} =1$ +\end_inset + + +\end_layout + +\begin_layout Standard +Komutativni grupi pravimo abelova. +\end_layout + +\begin_layout Standard +Cayleyeva tabela je predpis za grupoid +\begin_inset Formula $\cdot:A^{2}\to A$ +\end_inset + +. +\end_layout + +\begin_layout Standard +red +\begin_inset Formula $a$ +\end_inset + + je najmanjši +\begin_inset Formula $n\in\mathbb{N}\ni:a^{n}=e$ +\end_inset + + oz. + +\begin_inset Formula $\infty$ +\end_inset + +, če ne obstaja. +\end_layout + +\begin_layout Standard +Def.: +\begin_inset Formula $H\subseteq G$ +\end_inset + + podgrupa, če je grupa za isto operacijo. +\end_layout + +\begin_layout Standard +Izrek: +\begin_inset Formula $H\subseteq G$ +\end_inset + + podgrupa +\begin_inset Formula $\Leftrightarrow\forall x,y\in H:x^{-1}y\in H$ +\end_inset + + +\end_layout + +\begin_layout Standard +Trivialni podgrupi +\begin_inset Formula $G$ +\end_inset + + sta +\begin_inset Formula $\left\{ e\right\} $ +\end_inset + + in +\begin_inset Formula $G$ +\end_inset + +. + +\begin_inset space \hfill{} +\end_inset + +Ciklična podgrupa: +\end_layout + +\begin_layout Standard +\begin_inset Formula $\left\langle a\right\rangle \coloneqq\left\{ a^{n};\forall n\in\mathbb{Z}\right\} $ +\end_inset + + je podgrupa v +\begin_inset Formula $G$ +\end_inset + + za +\begin_inset Formula $a\in\text{grupa }G$ +\end_inset + + +\end_layout + +\begin_layout Standard +Center grupe: +\begin_inset Formula $ZG=\left\{ a\in G;\forall x\in G:ax=xa\right\} $ +\end_inset + +. +\end_layout + +\begin_layout Standard +\begin_inset Formula $\left(ZG,\cdot\right)$ +\end_inset + +je podgrupa grupe +\begin_inset Formula $\left(G,\cdot\right)$ +\end_inset + +. +\end_layout + +\begin_layout Paragraph +Permutacijske grupe +\end_layout + +\begin_layout Standard +Permutacija je bijekcija +\begin_inset Formula $A\to A$ +\end_inset + +. +\end_layout + +\begin_layout Standard +perm. + gr. + so permutacije +\begin_inset Formula $A$ +\end_inset + +, ki tvorijo grupo za +\begin_inset Formula $\circ$ +\end_inset + +. +\end_layout + +\begin_layout Standard +Polna simetrična grupa +\begin_inset Formula $S_{n}\coloneqq\left\{ \pi:\left\{ 1..n\right\} \to\left\{ 1..n\right\} ;\pi\text{ bijekcija}\right\} $ +\end_inset + + +\end_layout + +\begin_layout Standard +Alternirajoča grupa +\begin_inset Formula $A_{n}\coloneqq\left\{ \pi\in S_{n};\pi\text{ soda}\right\} $ +\end_inset + + +\end_layout + +\begin_layout Standard +Permutacija kot produkt disjunktnih ciklov dolžin +\begin_inset Formula $l_{1},\dots,l_{n}$ +\end_inset + + je soda, če je +\begin_inset Formula $\left(l_{1}-1\right)+\cdots+\left(l_{n}-1\right)$ +\end_inset + + sod. +\end_layout + +\begin_layout Standard +\begin_inset Formula $\left|S_{n}\right|=n!$ +\end_inset + +, +\begin_inset Formula $\left|A_{n}\right|=\frac{n!}{2}$ +\end_inset + + +\end_layout + +\begin_layout Standard +\begin_inset Formula $\left(G,\circ\right)$ +\end_inset + +, +\begin_inset Formula $\left(H,*\right)$ +\end_inset + + grupi. + +\begin_inset Formula $f:G\to H$ +\end_inset + + je hm +\begin_inset Formula $\varphi\Leftrightarrow\forall x,y\in G:f\left(x\circ y\right)=fx*fy$ +\end_inset + +. + +\begin_inset Formula $f$ +\end_inset + + je še celo im +\begin_inset Formula $\varphi\Leftrightarrow f$ +\end_inset + + bijekcija. +\end_layout + +\begin_layout Standard +Grupi sta izomorfni +\begin_inset Formula $\sim\text{\ensuremath{\exists}}$ +\end_inset + +im +\begin_inset Formula $\varphi$ +\end_inset + + med njima: +\begin_inset Formula $G\approx H$ +\end_inset + + +\end_layout + +\begin_layout Standard +Vsaka grupa je izomorfna neki permutacijski grupi +\end_layout + +\begin_layout Paragraph +Odseki in podgrupe edinke +\end_layout + +\begin_layout Standard +\begin_inset Formula $\left(G,\circ\right)$ +\end_inset + + grupa, +\begin_inset Formula $H\subseteq G$ +\end_inset + +. + za +\begin_inset Formula $a\in G$ +\end_inset + +: +\begin_inset Formula $aH=\left\{ ah;h\in H\right\} ,Ha=\left\{ ha;h\in H\right\} $ +\end_inset + +. + Za +\begin_inset Formula $H$ +\end_inset + + podgrupo pravimo +\begin_inset Formula $aH$ +\end_inset + + levi odsek +\begin_inset Formula $H$ +\end_inset + + in +\begin_inset Formula $Ha$ +\end_inset + + desni. + Velja: +\begin_inset Formula $a\in aH$ +\end_inset + +, +\begin_inset Formula $aH=H\Leftrightarrow a\in H$ +\end_inset + +, +\begin_inset Formula $aH=bH\nabla aH\cap bH=\emptyset$ +\end_inset + +, +\begin_inset Formula $aH=bH\Leftrightarrow a^{-1}b\in H$ +\end_inset + +, +\begin_inset Formula $\left|aH\right|=\left|bH\right|$ +\end_inset + +, +\begin_inset Formula $aH=Ha\Leftrightarrow H=aHa^{-1}$ +\end_inset + +, +\begin_inset Formula $aH\subseteq G\Leftrightarrow a\in H$ +\end_inset + + +\end_layout + +\begin_layout Standard +general linear +\begin_inset Formula $GL_{2}\mathbb{R}=\left\{ A\in M_{2,2}\mathbb{R},\det A\not=0\right\} $ +\end_inset + + +\end_layout + +\begin_layout Standard +special linear +\begin_inset Formula $SL_{2}\mathbb{R}=\left\{ A\in M_{2,2}\mathbb{R},\det A=1\right\} $ +\end_inset + + +\end_layout + +\begin_layout Standard +Lagrange: +\begin_inset Formula $H$ +\end_inset + + podgrupa končne grupe +\begin_inset Formula $G\Rightarrow\left|H\right|\text{ deli }\left|G\right|$ +\end_inset + + in število različnih levih/desnih odeskov po +\begin_inset Formula $H$ +\end_inset + + je +\begin_inset Formula $\frac{\left|G\right|}{\left|H\right|}$ +\end_inset + +. +\end_layout + +\begin_layout Standard +\begin_inset Formula $a\in$ +\end_inset + + končne grupe +\begin_inset Formula $G\Rightarrow$ +\end_inset + + red +\begin_inset Formula $a$ +\end_inset + + deli +\begin_inset Formula $\left|G\right|$ +\end_inset + + +\end_layout + +\begin_layout Paragraph +Podgrupe edinke in faktorske grupe +\end_layout + +\begin_layout Standard +\begin_inset Formula $H$ +\end_inset + + podgrupa +\begin_inset Formula $G$ +\end_inset + + je edinka +\begin_inset Formula $\Leftrightarrow\forall a\in G:aH=Ha\sim aHa^{-1}=H$ +\end_inset + + +\end_layout + +\begin_layout Standard +Podgrupa konjugiranka +\begin_inset Formula $H^{a}\coloneqq aHa^{-1}$ +\end_inset + +. +\end_layout + +\begin_layout Standard +\begin_inset Formula $H\triangleleft G\sim H$ +\end_inset + + edinka v +\begin_inset Formula $G$ +\end_inset + + +\begin_inset Formula $\Leftrightarrow\forall a\in G:H^{A}=H$ +\end_inset + + +\end_layout + +\begin_layout Standard +V Abelovi grupi je vsaka podgrupa edinka. +\end_layout + +\begin_layout Standard +Center je podgrupa edinka. +\end_layout + +\begin_layout Standard +\begin_inset Formula $G/H\coloneqq\left\{ aH:a\in G\right\} $ +\end_inset + + z oper. + +\begin_inset Formula $\left(aH\right)*\left(bH\right)=\left(ab\right)H$ +\end_inset + + +\end_layout + +\begin_layout Standard +Izrek o faktorskih grupah: +\begin_inset Formula $H\triangleleft G\Rightarrow\left(G/H,*\right)$ +\end_inset + + grupa +\end_layout + +\begin_layout Paragraph +Kolobarji in polja +\end_layout + +\begin_layout Standard +\begin_inset Formula $\left(R,+,\cdot\right)\text{kolobar}\Rightarrow$ +\end_inset + + +\begin_inset Formula $\left(R,+\right)$ +\end_inset + + abelova grupa, +\begin_inset Formula $\left(R,\cdot\right)$ +\end_inset + + polgrupa, distributivnost. +\end_layout + +\begin_layout Standard +Kolobar je komutativen, če je +\begin_inset Formula $\cdot$ +\end_inset + + komutativna. +\end_layout + +\begin_layout Standard +Kolobar je z enoto, če obstaja enota za +\begin_inset Formula $\cdot$ +\end_inset + +. +\end_layout + +\begin_layout Standard +Direktna vsota kolobarjev +\begin_inset Formula $\left(R\oplus S,+,\cdot\right)$ +\end_inset + + je kolobar. + +\begin_inset Formula $R\oplus S=R\times S$ +\end_inset + +, +\begin_inset Formula $+$ +\end_inset + + in +\begin_inset Formula $\cdot$ +\end_inset + + po komponentah. +\end_layout + +\begin_layout Standard +\begin_inset Formula $R$ +\end_inset + + in +\begin_inset Formula $S$ +\end_inset + + komutativna +\begin_inset Formula $\Rightarrow R\oplus S$ +\end_inset + + komutativen. +\end_layout + +\begin_layout Standard +\begin_inset Formula $R$ +\end_inset + + in +\begin_inset Formula $S$ +\end_inset + + z enoto +\begin_inset Formula $\Rightarrow R\oplus S$ +\end_inset + + z enoto. +\end_layout + +\begin_layout Standard +\begin_inset Formula $R$ +\end_inset + + kolobar. + +\begin_inset Formula $S\subseteq R$ +\end_inset + + je za podedovani operaciji kolobar, če je +\begin_inset Formula $\left(S,+,\cdot\right)$ +\end_inset + + kolobar. + Izrek: +\begin_inset Formula $S$ +\end_inset + + podkolobar +\begin_inset Formula $\Leftrightarrow0\in S$ +\end_inset + + in zaprta za +\begin_inset Formula $-,\cdot$ +\end_inset + + +\end_layout + +\begin_layout Standard +Center kolobarja: +\begin_inset Formula $ZR=\left\{ a\in R;\forall x\in R:ax=xa\right\} $ +\end_inset + + je podk. +\end_layout + +\begin_layout Paragraph +Delitelji niča in celi kolobarji +\end_layout + +\begin_layout Standard +\begin_inset Formula $\left(\mathbb{Z}_{n},+_{n},\cdot_{n}\right)$ +\end_inset + + je vedno kol. +\end_layout + +\begin_layout Standard +Def.: Če v kolobarju velja +\begin_inset Formula $ab=0$ +\end_inset + + in +\begin_inset Formula $a\not=0$ +\end_inset + + in +\begin_inset Formula $b\not=0$ +\end_inset + +, sta +\begin_inset Formula $a$ +\end_inset + + in +\begin_inset Formula $b$ +\end_inset + + delitelja niča. +\end_layout + +\begin_layout Standard +Pravilo krajšanja: +\begin_inset Formula $\forall a,b,c\in R,a\not=0:ab=ac\Rightarrow b=c$ +\end_inset + + +\end_layout + +\begin_layout Standard +\begin_inset Formula $R$ +\end_inset + + cel +\begin_inset Formula $\Leftrightarrow$ +\end_inset + + komutativen z enoto +\begin_inset Formula $1\not=0$ +\end_inset + + brez deliteljev niča. +\end_layout + +\begin_layout Standard +Za komutativen z enoto +\begin_inset Formula $1\not=0$ +\end_inset + + velja: cel +\begin_inset Formula $\Leftrightarrow$ +\end_inset + + velja prav. + krajš. +\end_layout + +\begin_layout Standard +\begin_inset Formula $\left(R,+,\cdot\right)$ +\end_inset + + z enoto +\begin_inset Formula $1\not=0$ +\end_inset + + je polje, če je +\begin_inset Formula $\left(R\setminus\left\{ 0\right\} ,\cdot\right)$ +\end_inset + + abelova g. +\end_layout + +\begin_layout Standard +\begin_inset Formula $\left(R,+,\cdot\right)$ +\end_inset + + z enoto +\begin_inset Formula $1\not=0$ +\end_inset + + je obseg, če je +\begin_inset Formula $\left(R\setminus\left\{ 0\right\} ,\cdot\right)$ +\end_inset + + grupa. +\end_layout + +\begin_layout Standard +Vsako polje je cel kolobar. +\end_layout + +\begin_layout Standard +Polje je cel kolobar z multiplik. + inverzi za vse neničelne. +\end_layout + +\begin_layout Standard +Končen cel kolobar +\begin_inset Formula $\Rightarrow$ +\end_inset + + polje. +\end_layout + +\begin_layout Standard +\begin_inset Formula $\forall n\in\mathbb{N}\setminus\left\{ 1\right\} :\mathbb{Z}_{n}$ +\end_inset + + cel +\begin_inset Formula $\Leftrightarrow$ +\end_inset + + +\begin_inset Formula $\mathbb{Z}_{n}$ +\end_inset + + polje +\begin_inset Formula $\Leftrightarrow$ +\end_inset + + +\begin_inset Formula $n$ +\end_inset + + praštevilo +\end_layout + +\begin_layout Standard +\begin_inset Formula $S\subseteq$ +\end_inset + + polje +\begin_inset Formula $R$ +\end_inset + + je podpolje za poded. + operaciji, če je +\begin_inset Formula $S$ +\end_inset + + polje. + Zadošča preveriti +\begin_inset Formula $1\in S$ +\end_inset + +, zaprtost za +\begin_inset Formula $-$ +\end_inset + + in deljenje z nenič.ž +\end_layout + +\begin_layout Standard +\begin_inset Formula $n\cdot'a$ +\end_inset + + naj pomeni +\begin_inset Formula $a+\cdots+a$ +\end_inset + + +\begin_inset Formula $n$ +\end_inset + +-krat za +\begin_inset Formula $n\in\mathbb{N}$ +\end_inset + + +\end_layout + +\begin_layout Standard +Karakteristika kolobarja je najmanjši +\begin_inset Formula $n\in N\ni:\forall a\in R:n\cdot'a=0$ +\end_inset + +. + Če ne obstaja, pravimo char +\begin_inset Formula $R=0$ +\end_inset + +. +\end_layout + +\begin_layout Standard +Izrek: Če je red1 +\begin_inset Formula $=n\Rightarrow$ +\end_inset + + char +\begin_inset Formula $R=n$ +\end_inset + + +\end_layout + +\begin_layout Standard +Izrek: Za cel kolobar +\begin_inset Formula $R$ +\end_inset + + je char +\begin_inset Formula $R=0$ +\end_inset + + ali char +\begin_inset Formula $R=$ +\end_inset + + praštevilo +\end_layout + +\begin_layout Paragraph +Ideali +\end_layout + +\begin_layout Standard +\begin_inset Formula $S$ +\end_inset + + podkolobar +\begin_inset Formula $R$ +\end_inset + + je ideal +\begin_inset Formula $R\Leftrightarrow\forall r\in R,s\in S:rs,sr\in S$ +\end_inset + + +\end_layout + +\begin_layout Standard +Primer: večkratniki +\begin_inset Formula $n$ +\end_inset + + so za fiksen +\begin_inset Formula $n$ +\end_inset + + ideal v +\begin_inset Formula $\mathbb{Z}$ +\end_inset + +. +\end_layout + +\begin_layout Standard +\begin_inset Formula $I\subseteq R$ +\end_inset + + je ideal +\begin_inset Formula $\Leftrightarrow0\in I$ +\end_inset + +, zaprt za +\begin_inset Formula $-$ +\end_inset + +, zaprt za zunanje množ. +\end_layout + +\begin_layout Standard +Operaciji nad ideali: +\begin_inset Formula $I\overset{+}{\cdot}J=\left\{ i\overset{+}{\cdot}j;\forall i\in I,j\in J\right\} $ +\end_inset + + +\end_layout + +\begin_layout Standard +Za ideala +\begin_inset Formula $I,J$ +\end_inset + + v +\begin_inset Formula $R$ +\end_inset + + sta +\begin_inset Formula $I+J$ +\end_inset + + in +\begin_inset Formula $I\cdot J$ +\end_inset + + zopet ideala v +\begin_inset Formula $R$ +\end_inset + +. +\end_layout + +\begin_layout Standard +V aditivne odseke +\begin_inset Formula $R/I=\left\{ a+I;\forall a\in R\right\} $ +\end_inset + + vpeljemo operaciji +\begin_inset Formula $\left(a+I\right)\overset{+}{\cdot}\left(b+I\right)=\left(a\overset{+}{\cdot}b\right)I$ +\end_inset + +. + Če je +\begin_inset Formula $I$ +\end_inset + + ideal v +\begin_inset Formula $R$ +\end_inset + +, je +\begin_inset Formula $R/I$ +\end_inset + + za operaciji kolobar. +\end_layout + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +end{multicols} +\end_layout + +\end_inset + + +\end_layout + +\end_body +\end_document |