diff options
Diffstat (limited to 'šola/ds2/teor.lyx')
-rw-r--r-- | šola/ds2/teor.lyx | 7562 |
1 files changed, 7562 insertions, 0 deletions
diff --git a/šola/ds2/teor.lyx b/šola/ds2/teor.lyx new file mode 100644 index 0000000..c0fe332 --- /dev/null +++ b/šola/ds2/teor.lyx @@ -0,0 +1,7562 @@ +#LyX 2.3 created this file. For more info see http://www.lyx.org/ +\lyxformat 544 +\begin_document +\begin_header +\save_transient_properties true +\origin unavailable +\textclass article +\begin_preamble +\usepackage{hyperref} +\usepackage{siunitx} +\usepackage{pgfplots} +\usepackage{listings} +\usepackage{multicol} +\sisetup{output-decimal-marker = {,}, quotient-mode=fraction, output-exponent-marker=\ensuremath{\mathrm{3}}} +\usepackage{amsmath} +\usepackage{tikz} +\newcommand{\udensdash}[1]{% + \tikz[baseline=(todotted.base)]{ + \node[inner sep=1pt,outer sep=0pt] (todotted) {#1}; + \draw[densely dashed] (todotted.south west) -- (todotted.south east); + }% +}% +\DeclareMathOperator{\Lin}{Lin} +\DeclareMathOperator{\rang}{rang} +\DeclareMathOperator{\sled}{sled} +\DeclareMathOperator{\Aut}{Aut} +\DeclareMathOperator{\red}{red} +\DeclareMathOperator{\karakteristika}{char} +\usepackage{algorithm,algpseudocode} +\providecommand{\corollaryname}{Posledica} +\end_preamble +\use_default_options true +\begin_modules +enumitem +theorems-ams +\end_modules +\maintain_unincluded_children false +\language slovene +\language_package default +\inputencoding auto +\fontencoding global +\font_roman "default" "default" +\font_sans "default" "default" +\font_typewriter "default" "default" +\font_math "auto" "auto" +\font_default_family default +\use_non_tex_fonts false +\font_sc false +\font_osf false +\font_sf_scale 100 100 +\font_tt_scale 100 100 +\use_microtype false +\use_dash_ligatures true +\graphics default +\default_output_format default +\output_sync 0 +\bibtex_command default +\index_command default +\paperfontsize default +\spacing single +\use_hyperref false +\papersize default +\use_geometry true +\use_package amsmath 1 +\use_package amssymb 1 +\use_package cancel 1 +\use_package esint 1 +\use_package mathdots 1 +\use_package mathtools 1 +\use_package mhchem 1 +\use_package stackrel 1 +\use_package stmaryrd 1 +\use_package undertilde 1 +\cite_engine basic +\cite_engine_type default +\biblio_style plain +\use_bibtopic false +\use_indices false +\paperorientation portrait +\suppress_date false +\justification false +\use_refstyle 1 +\use_minted 0 +\index Index +\shortcut idx +\color #008000 +\end_index +\leftmargin 2cm +\topmargin 2cm +\rightmargin 2cm +\bottommargin 2cm +\headheight 2cm +\headsep 2cm +\footskip 1cm +\secnumdepth 3 +\tocdepth 3 +\paragraph_separation indent +\paragraph_indentation default +\is_math_indent 0 +\math_numbering_side default +\quotes_style german +\dynamic_quotes 0 +\papercolumns 1 +\papersides 1 +\paperpagestyle default +\tracking_changes false +\output_changes false +\html_math_output 0 +\html_css_as_file 0 +\html_be_strict false +\end_header + +\begin_body + +\begin_layout Title +Odgovori na vprašanja za teoretični del izpita DS2 IŠRM 2023/24 +\end_layout + +\begin_layout Author + +\noun on +Anton Luka Šijanec +\end_layout + +\begin_layout Date +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +today +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Abstract +Vprašanja je zbral profesor Sandi Klavžar. + Odgovore sem sestavil po svojih zapiskih z njegovih predavanj in drugih + virih. +\end_layout + +\begin_layout Standard +\begin_inset CommandInset toc +LatexCommand tableofcontents + +\end_inset + + +\end_layout + +\begin_layout Section +Slog +\end_layout + +\begin_layout Itemize +Z +\begin_inset Formula $M_{m,n}\mathbb{F}$ +\end_inset + + označim množico matrik z +\begin_inset Formula $m$ +\end_inset + + vrsticami in +\begin_inset Formula $n$ +\end_inset + + stolpci nad poljem +\begin_inset Formula $\mathbb{F}$ +\end_inset + +. +\end_layout + +\begin_layout Itemize +Znak za množenje ali dvojiški operator v grupi izpuščam. + V bigrupoidih izpuščen operator pomeni množenje (drugo operacijo). +\end_layout + +\begin_layout Section +Vprašanja in odgovori +\end_layout + +\begin_layout Subsection +Kaj je stopnja vozlišča grafa in kaj pravi lema o rokovanju? Kako dokažemo + to lemo? +\end_layout + +\begin_layout Standard +Naj bo +\begin_inset Formula $G$ +\end_inset + + graf. +\end_layout + +\begin_layout Definition* +Stopnja vozlišča grafa +\begin_inset Formula $\deg v$ +\end_inset + + za +\begin_inset Formula $v\in VG$ +\end_inset + + +\begin_inset Foot +status open + +\begin_layout Plain Layout +Ko eniški operator zahteva en operand, izpustim oklepaje. + Primer: +\begin_inset Formula $\sin x$ +\end_inset + +, +\begin_inset Formula $VG$ +\end_inset + +, +\begin_inset Formula $\chi G$ +\end_inset + +, +\begin_inset Formula $M_{2,2}\mathbb{R}$ +\end_inset + +. +\end_layout + +\end_inset + + predstavlja število povezav, ki imajo to vozlišče kot krajišče. + +\begin_inset Formula $\deg v=\left|\left\{ e\in EG;v\in e\right\} \right|$ +\end_inset + + +\begin_inset Foot +status open + +\begin_layout Plain Layout +Povezava v grafu je množica natanko dveh vozlišč, toda oklepaje in vejico + izpuščam. + Za +\begin_inset Formula $u,v\in VG$ +\end_inset + + pišem +\begin_inset Formula $uv\in EG$ +\end_inset + +. + Na +\begin_inset Formula $e\in EG$ +\end_inset + + je torej veljavno gledati kot na množico, zato je +\begin_inset Formula $v\in e$ +\end_inset + + smiseln izraz. +\end_layout + +\end_inset + + +\begin_inset Foot +status open + +\begin_layout Plain Layout +Zapis množic: +\begin_inset Formula $\left\{ e\in A;Pe\right\} $ +\end_inset + + pomeni vse take elemente +\begin_inset Formula $A$ +\end_inset + +, za katere velja predikat +\begin_inset Formula $P$ +\end_inset + +. + Ta predikat je običajno izraz. +\end_layout + +\end_inset + +. +\end_layout + +\begin_layout Standard +\begin_inset Separator plain +\end_inset + + +\end_layout + +\begin_layout Definition* +Incidenčna matrika +\begin_inset Formula $BG$ +\end_inset + + za +\begin_inset Formula $VG=\left\{ v_{1},\dots,v_{n}\right\} $ +\end_inset + +, +\begin_inset Formula $EG=\left\{ e_{1},\dots,e_{n}\right\} $ +\end_inset + + je široka +\begin_inset Formula $m$ +\end_inset + + in visoka +\begin_inset Formula $n$ +\end_inset + + in velja +\begin_inset Formula $BG_{ij}=\begin{cases} +1 & ;v_{i}\in e_{i}\\ +0 & ;\text{sicer} +\end{cases}$ +\end_inset + +. +\end_layout + +\begin_layout Lemma* +Lema o rokovanju pravi, da je dvakratnik števila povezav enak vsoti vseh + stopenj vozlišč v grafu +\begin_inset Foot +status open + +\begin_layout Plain Layout +Ko je omenjen graf, je običajno mišljen neusmerjen končen graf. +\end_layout + +\end_inset + +, torej +\begin_inset Formula +\[ +\sum_{v\in VG}\deg v=2\left|EG\right|. +\] + +\end_inset + + +\end_layout + +\begin_layout Remark* +Posledica leme o rokovanju je, da je v vsakem grafu sodo vozlišč lihe stopnje, + saj je vsota soda. +\end_layout + +\begin_layout Proof +Če po vozliščih preštevamo povezave, ki se stikajo vozlišča, bi vsako povezavo + šteli dvakrat; vsakič za eno njeno krajišče. + ZDB V vsakem stolpcu incidenčne matrike sta natanko dve enici. + Torej je enic +\begin_inset Formula $2\left|EG\right|$ +\end_inset + +. + V vsaki vrstici incidenčne matrike je toliko enic, kolikor je stopnja +\begin_inset Formula $i-$ +\end_inset + +tega vozlišča, torej je enic +\begin_inset Formula $\sum_{v\in VG}\deg v$ +\end_inset + +. +\end_layout + +\begin_layout Subsection +Pojasnite sprehod, sklenjen sprehod, pot v grafu, cikel v grafu. + Pokažite, da vsak graf, ki vsebuje sklenjen sprehod lihe dolžine, vsebuje + tudi cikel lihe dolžine. +\end_layout + +\begin_layout Standard +Naj bo +\begin_inset Formula $G=\left(VG,EG\right)$ +\end_inset + +. +\end_layout + +\begin_layout Definition* +Sprehod v +\begin_inset Formula $G$ +\end_inset + + je zaporedje vozlišč +\begin_inset Formula $v_{0},\dots,v_{k}$ +\end_inset + +, +\begin_inset Formula $k\geq0$ +\end_inset + +, tako da je +\begin_inset Formula $\forall i\in\left\{ 1..k\right\} :v_{i}v_{i+1}\in EG$ +\end_inset + + +\begin_inset Foot +status open + +\begin_layout Plain Layout +S +\begin_inset Formula $\left\{ k..n\right\} $ +\end_inset + + označujem množico celih števil od vključno +\begin_inset Formula $k$ +\end_inset + + do vključno +\begin_inset Formula $n$ +\end_inset + +, kot to naredi +\family typewriter +bash +\end_layout + +\end_inset + +. + Nekateri bi +\begin_inset Formula $\left\{ 1..n\right\} $ +\end_inset + + označili z +\begin_inset Formula $\left[n\right]$ +\end_inset + +.. + Dolžina sprehoda je število prehojenih povezav. + Sprehod je +\series bold +sklenjen +\series default +, če +\begin_inset Formula $v_{0}=v_{k}$ +\end_inset + +. + Sprehod je +\series bold +enostaven +\series default +, če so vsa vozlišča medsebojno različna, z izjemo +\begin_inset Formula $v_{0}$ +\end_inset + + sme biti +\begin_inset Formula $v_{k}$ +\end_inset + +. +\end_layout + +\begin_layout Claim* +Če v grafu +\begin_inset Formula $\exists$ +\end_inset + + sprehod med dvema vozliščema, med njima obstaja tudi enostaven sprehod. +\end_layout + +\begin_layout Proof +Naj bo +\begin_inset Formula $Q$ +\end_inset + + sprehod med +\begin_inset Formula $u$ +\end_inset + + in +\begin_inset Formula $v$ +\end_inset + +. + Če je enostaven, je najden, sicer se ponovita vsaj dve vozlišči in je +\begin_inset Formula $Q$ +\end_inset + + oblike +\begin_inset Formula $u,\dots,x,\dots,x,\dots,v$ +\end_inset + +. + Sprehodu priredimo +\begin_inset Formula $Q'$ +\end_inset + +, ki odstrani pot od prvega do zadnjega podvojenega vozlišča +\begin_inset Formula $x$ +\end_inset + +, torej je +\begin_inset Formula $Q'$ +\end_inset + + oblike +\begin_inset Formula $u,\dots,x,\dots,v$ +\end_inset + + (pravzaprav smo odstranili cikel iz poti). + Če je +\begin_inset Formula $Q'$ +\end_inset + + enostaven, je iskani, sicer postopek ponovimo in v končno korakih se postopek + ustavi, saj na vsakem koraku za vsaj 2 zmanjšamo dolžino sicer končno dolgega + sprehoda. +\end_layout + +\begin_layout Definition* +Pot v grafu je podgraf, ki je enostaven sprehod med dvema vozliščema in + je graf Pot ( +\begin_inset Formula $P_{n}$ +\end_inset + +). +\end_layout + +\begin_layout Remark* +Ko govorimo o različnosti/enakosti poti, mislimo različnost/enakost poti + kot podgraf. + Poti sta torej enaki natanko tedaj, ko sta zaporedji (ne množici) vozlišč + poti enaki. +\end_layout + +\begin_layout Definition* +Cikel v grafu je podgraf, ki je enostaven sklenjen sprehod dolžine vsaj + 3. +\end_layout + +\begin_layout Claim* +Če med dvema vozliščema v grafu +\begin_inset Formula $\exists$ +\end_inset + + dve različni poti, potem graf premore cikel. +\end_layout + +\begin_layout Proof +Naj bosta +\begin_inset Formula $P$ +\end_inset + + in +\begin_inset Formula $P'$ +\end_inset + + dve različni poti od +\begin_inset Formula $u$ +\end_inset + + do +\begin_inset Formula $v$ +\end_inset + +. + Naj bo +\begin_inset Formula $x$ +\end_inset + + zadnje (če gledamo usmerjeno +\begin_inset Formula $u,v-$ +\end_inset + +pot) vozlišče, ki je skupno +\begin_inset Formula $P$ +\end_inset + + in +\begin_inset Formula $P'$ +\end_inset + +. + +\begin_inset Formula $x$ +\end_inset + + je lahko +\begin_inset Formula $u$ +\end_inset + +. + Naj bo +\begin_inset Formula $g$ +\end_inset + + prvo naslednje vozlišče za +\begin_inset Formula $x$ +\end_inset + +, ki je na +\begin_inset Formula $P$ +\end_inset + + in +\begin_inset Formula $P'$ +\end_inset + +. + Unija podpoti +\begin_inset Formula $P$ +\end_inset + + od +\begin_inset Formula $x$ +\end_inset + + do +\begin_inset Formula $y$ +\end_inset + + in podpoti +\begin_inset Formula $P'$ +\end_inset + + od +\begin_inset Formula $x$ +\end_inset + + do +\begin_inset Formula $y$ +\end_inset + + določa iskani cikel v grafu. +\end_layout + +\begin_layout Claim* +Če graf premore sklenjen sprehod lihe dolžine, potem premore cikel lihe + dolžine. +\end_layout + +\begin_layout Proof +Indukcija po dolžini sprehoda. + Naj bo +\begin_inset Formula $m$ +\end_inset + + dolžina sprehoda. +\end_layout + +\begin_layout Proof +Baza: +\begin_inset Formula $m=3$ +\end_inset + +, najmanjši sklenjen lihi sprehod je cikel dolžine 3, +\begin_inset Formula $m=4$ +\end_inset + +, drugi najmanjši sklenjen lihi sprehod je cikel dolžine 4. +\end_layout + +\begin_layout Proof +Korak: Naj bo +\begin_inset Formula $Q$ +\end_inset + + poljuben sklenjen sprehod dolžine +\begin_inset Formula $m\geq5$ +\end_inset + +. + Če je +\begin_inset Formula $Q$ +\end_inset + + enostaven, je cikel po definiciji, sicer se vsaj eno vozlišče na sprehodu + vsaj ponovi: +\begin_inset Formula $u,x_{1},\dots,x_{i-1},x_{i},x_{i+1},\dots,x_{j-1},x_{j},x_{j+1},\dots,v$ +\end_inset + + in velja +\begin_inset Formula $x_{i}=x_{j}$ +\end_inset + +. + Poglejmo sprehoda +\begin_inset Formula $Q'=x_{i},\dots,x_{j}=x_{i}$ +\end_inset + + in +\begin_inset Formula $Q''=u,x_{1},\dots,x_{i},x_{j+1},\dots,x_{m}=u$ +\end_inset + +. + +\begin_inset Formula $Q'$ +\end_inset + + in +\begin_inset Formula $Q''$ +\end_inset + + sta sklenjena sprehoda z dolžinama +\begin_inset Formula $m'$ +\end_inset + + in +\begin_inset Formula $m''$ +\end_inset + + in velja +\begin_inset Formula $m=m'+m''$ +\end_inset + +. + Ker je +\begin_inset Formula $m$ +\end_inset + + lih, mora biti lih natanko en izmed +\begin_inset Formula $m'$ +\end_inset + + in +\begin_inset Formula $m''$ +\end_inset + +. + BSŠ +\begin_inset Foot +status open + +\begin_layout Plain Layout +Brez Škode za Splošnost trdimo, da +\end_layout + +\end_inset + + +\begin_inset Formula $m'$ +\end_inset + + lih in +\begin_inset Formula $m'<m$ +\end_inset + +, zato po I. + P. + +\begin_inset Formula $m'$ +\end_inset + + vsebuje lih cikel. +\end_layout + +\begin_layout Subsection +Kaj so dvodelni grafi? Kako jih karakteriziramo? Kako dokažemo to karakterizacij +o? +\end_layout + +\begin_layout Definition* +\begin_inset Formula $G$ +\end_inset + + dvodelen +\begin_inset Foot +status open + +\begin_layout Plain Layout +Pomožni glagol biti med osebkom in povedkovnikom izpuščam. + +\begin_inset Quotes gld +\end_inset + + +\begin_inset Formula $G$ +\end_inset + + dvodelen +\begin_inset Quotes grd +\end_inset + + namesto +\begin_inset Quotes gld +\end_inset + + +\begin_inset Formula $G$ +\end_inset + + je dvodelen +\begin_inset Quotes grd +\end_inset + +. +\end_layout + +\end_inset + + +\begin_inset Formula $\Leftrightarrow\exists A,B\subseteq VG\ni:A\cup B=VG,A\cap B=\emptyset\ni:\forall uv\in EG:u\in A,v\in B\vee v\in A,u\in B$ +\end_inset + +. + ZDB +\begin_inset Foot +status open + +\begin_layout Plain Layout +Z Drugimi Besedami: +\end_layout + +\end_inset + + obstaja razdelitev vozlišč na dve množici, da induciran podgraf posamezne + množice ne vsebuje povezav. + S +\begin_inset Formula $K_{m,n}$ +\end_inset + + označimo poln dvodelni graf +\begin_inset Formula $\left|A\right|=m$ +\end_inset + +, +\begin_inset Formula $\left|B\right|=n$ +\end_inset + +. + Paru +\begin_inset Formula $\left(A,B\right)$ +\end_inset + + pravimo dvodelna razdelitev. +\end_layout + +\begin_layout Theorem* +\begin_inset Formula $G$ +\end_inset + + dvodelen +\begin_inset Formula $\Leftrightarrow$ +\end_inset + + +\begin_inset Formula $G$ +\end_inset + + ne vsebuje lihih ciklov. +\end_layout + +\begin_layout Proof +\begin_inset Formula $G$ +\end_inset + + dvodelen +\begin_inset Formula $\Leftrightarrow$ +\end_inset + + vsaka komponenta +\begin_inset Formula $G$ +\end_inset + + dvodelna, zato BSŠ +\begin_inset Formula $G$ +\end_inset + + povezan. +\end_layout + +\begin_layout Labeling +\labelwidthstring 00.00.0000 +\begin_inset Formula $\left(\Rightarrow\right)$ +\end_inset + + Očitno: Če +\begin_inset Formula $G$ +\end_inset + + vsebuje lih cikel, zagotovo ni dvodelen, saj ne moremo razdeliti niti množice + vozlišč cikla. + S skico dokažemo, da sodi cikli so dvodelni, lihi pa niso (narišemo cikel + kot pot v obliki skeletne formule nenasičenega acikličnega alkana in povežemo + prvo in zadnje vozlišče). +\end_layout + +\begin_layout Labeling +\labelwidthstring 00.00.0000 +\begin_inset Formula $\left(\Leftarrow\right)$ +\end_inset + + +\begin_inset Formula $G$ +\end_inset + + je po predpostavki brez lihih ciklov ****. + Izberimo poljubno +\begin_inset Formula $x_{0}\in VG$ +\end_inset + +. + Naj bo +\begin_inset Formula $A=\left\{ u\in VG;d_{G}\left(u,x_{0}\right)\text{ sod}\right\} ,B=\left\{ u\in VG;d_{G}\left(u,x_{0}\right)\text{ lih}\right\} $ +\end_inset + +. + +\begin_inset Formula $x_{0}$ +\end_inset + + je torej v +\begin_inset Formula $A$ +\end_inset + +, saj je +\begin_inset Formula $d_{G}\left(x_{0},x_{0}\right)=0$ +\end_inset + +. + Trdimo, da je +\begin_inset Formula $\left(A,B\right)$ +\end_inset + + dvodelna razdelitev +\begin_inset Formula $G$ +\end_inset + +. + Razdelitev je, ker je +\begin_inset Formula $A\cup B=\emptyset$ +\end_inset + + in +\begin_inset Formula $A\cup B=VG$ +\end_inset + +. + Za dvodelnost pa mora veljati +\begin_inset Formula $\forall X\in\left\{ A,B\right\} :\forall u,v\in X:uv\not\in EG$ +\end_inset + +. + Preverimo za splošen fiksen +\begin_inset Formula $X\in\left\{ A,B\right\} $ +\end_inset + +: Naj bosta +\begin_inset Formula $u,v\in X$ +\end_inset + +, BSŠ +\begin_inset Formula $d_{G}\left(x_{0},u\right)>d_{G}\left(x_{0},v\right)$ +\end_inset + + *. + Ločimo dva primera: +\end_layout + +\begin_deeper +\begin_layout Description +\begin_inset Formula $d_{G}\left(x_{0},u\right)\not=d_{G}\left(x_{0},v\right):$ +\end_inset + + Vsled iste parnosti velja +\begin_inset Formula $\left|d_{G}\left(x_{0},u\right)-d_{G}\left(x_{0},v\right)\right|\geq2$ +\end_inset + + ***. + PDDRAA +\begin_inset Foot +status open + +\begin_layout Plain Layout +Pa Denimo Da sledeča trditev ne drži (Reductio Ad Absurdum) +\end_layout + +\end_inset + + +\begin_inset Formula $uv\in EG$ +\end_inset + +, tedaj se +\begin_inset Formula $d_{G}\left(x_{0},u\right)$ +\end_inset + + in +\begin_inset Formula $d_{G}\left(x_{0},v\right)$ +\end_inset + + razlikujeta za največ 1 in velja +\begin_inset Formula $d_{G}\left(x_{0},u\right)\leq d_{G}\left(x_{0},v\right)+1$ +\end_inset + + **. + Iz * in ** sledi +\begin_inset Formula $d_{G}\left(x_{0},u\right)-d_{G}\left(x_{0},v\right)=1$ +\end_inset + +, kar je v +\begin_inset Formula $\rightarrow\!\leftarrow$ +\end_inset + + s trditvijo ***. +\end_layout + +\begin_layout Description +\begin_inset Formula $d_{G}\left(x_{0},u\right)=d_{G}\left(x_{0},v\right):$ +\end_inset + + Naj bo +\begin_inset Formula $P_{x}$ +\end_inset + + najkrajša +\begin_inset Formula $x_{0},x-$ +\end_inset + +pot. + PDDRAA +\begin_inset Formula $uv\in EG$ +\end_inset + +, tedaj +\begin_inset Formula $P_{u}=\left\{ ...P_{v},v\right\} $ +\end_inset + + +\begin_inset Foot +status open + +\begin_layout Plain Layout +Prefiksni razširitveni operator +\begin_inset Formula $...$ +\end_inset + + razširi množico oziroma v tem primeru zaporedje v seznam elementov. + S tem lahko množico uporabimo kot seznam. + Povzemam operator +\family typewriter +... + +\family default + iz javascripta. +\end_layout + +\end_inset + +, torej +\begin_inset Formula $\left|P_{u}\right|=1+\left|P_{v}\right|$ +\end_inset + +. + Cikel, ki ga tvorijo +\begin_inset Formula $P_{u}$ +\end_inset + +, +\begin_inset Formula $P_{v}$ +\end_inset + + in povezava +\begin_inset Formula $uv$ +\end_inset + +, je torej dolžine +\begin_inset Formula $2\left|P_{v}\right|+1$ +\end_inset + +, kar je liho število, kar je v +\begin_inset Formula $\rightarrow\!\leftarrow$ +\end_inset + + s trditvijo ****. +\end_layout + +\end_deeper +\begin_layout Subsection +Kaj je homomorfizem grafov, izomorfizem grafov in avtomorfizem grafa? Kaj + je to +\begin_inset Formula $\Aut\left(G\right)$ +\end_inset + +? Kakšno algebrsko strukturo ima? +\end_layout + +\begin_layout Standard +Naj bosta +\begin_inset Formula $G$ +\end_inset + + in +\begin_inset Formula $H$ +\end_inset + + grafa. +\end_layout + +\begin_layout Definition* +Preslikava +\begin_inset Formula $f:VG\to VH$ +\end_inset + + je hm +\begin_inset Formula $\varphi$ +\end_inset + + +\begin_inset Foot +status open + +\begin_layout Plain Layout +homomorfizem +\end_layout + +\end_inset + + grafov +\begin_inset Formula $G$ +\end_inset + + in +\begin_inset Formula $H\Leftrightarrow\forall u,v\in VG:uv\in EG\Rightarrow fufv\in EH$ +\end_inset + +, ZDB če slika povezave v povezave. +\end_layout + +\begin_layout Remark* +Če je +\begin_inset Formula $f$ +\end_inset + + hm +\begin_inset Formula $\text{\ensuremath{\varphi}},$ +\end_inset + +porodi preslikavo +\begin_inset Formula $f':EG\to EH$ +\end_inset + +. +\end_layout + +\begin_layout Example* +\begin_inset Formula $f:VK_{n,m}\to VK_{2}$ +\end_inset + + s predpisom +\begin_inset Formula $fx=\begin{cases} +u & ;x\in A\\ +v & ;x\in B +\end{cases}$ +\end_inset + + je hm +\begin_inset Formula $\varphi$ +\end_inset + +. + +\begin_inset Formula $K_{2}$ +\end_inset + + je homomorfna slika vsakega dvodelnega grafa. +\end_layout + +\begin_layout Definition* +Če je hm +\begin_inset Formula $\varphi$ +\end_inset + + surjektiven po povezavah in vozliščih, je epimorfizem. + Če je injektiven na vozliščih (in posledično na povezavah), je monomorfizem + ali vložitev. + Vložitev je izometrična, če +\begin_inset Formula $\forall u,v\in VG:d_{G}\left(u,v\right)=d_{H}\left(fu,fv\right)$ +\end_inset + + ZDB ohranja razdalje. +\end_layout + +\begin_layout Claim* +Če sta +\begin_inset Formula $f:VG\to VH$ +\end_inset + + in +\begin_inset Formula $g:VH\to VK$ +\end_inset + + hm +\begin_inset Formula $\varphi$ +\end_inset + +, je +\begin_inset Formula $g\circ f:VG\to VK$ +\end_inset + + spet hm +\begin_inset Formula $\varphi$ +\end_inset + +. +\end_layout + +\begin_layout Definition* +Če je +\begin_inset Formula $f:VG\to VH$ +\end_inset + + bijekcija, hm +\begin_inset Formula $\varphi$ +\end_inset + + in +\begin_inset Formula $f^{-1}$ +\end_inset + + hm +\begin_inset Formula $\varphi$ +\end_inset + + (ZDB slika nepovezave v nepovezave), je +\begin_inset Formula $f$ +\end_inset + + im +\begin_inset Formula $\varphi$ +\end_inset + + +\begin_inset Foot +status open + +\begin_layout Plain Layout +izomorfizem +\end_layout + +\end_inset + + grafov +\begin_inset Formula $G$ +\end_inset + + in +\begin_inset Formula $H$ +\end_inset + +. + ZDB +\begin_inset Formula $f:VG\to VH$ +\end_inset + + im +\begin_inset Formula $\varphi$ +\end_inset + + +\begin_inset Formula $\Leftrightarrow f$ +\end_inset + + bijekcija +\begin_inset Formula $\wedge\forall u,v\in VG:uv\in EG\Leftrightarrow fufv\in EH$ +\end_inset + +. + Če +\begin_inset Formula $\text{\ensuremath{\exists}}$ +\end_inset + + im +\begin_inset Formula $\varphi$ +\end_inset + + grafov +\begin_inset Formula $G$ +\end_inset + + in +\begin_inset Formula $H$ +\end_inset + +, pravimo, da sta +\begin_inset Formula $G$ +\end_inset + + in +\begin_inset Formula $H$ +\end_inset + + izomorfna in pišemo +\begin_inset Formula $G\cong H$ +\end_inset + +. +\end_layout + +\begin_layout Claim* +\begin_inset Formula $\cong$ +\end_inset + + je na +\begin_inset Formula $\mathcal{G}$ +\end_inset + + +\begin_inset Foot +status open + +\begin_layout Plain Layout +množica vseh grafov +\end_layout + +\end_inset + + ekvivalenčna (refleksivna, simetrična, tranzitivna). +\end_layout + +\begin_layout Definition* +im +\begin_inset Formula $\varphi$ +\end_inset + + +\begin_inset Formula $G\to G$ +\end_inset + + je am +\begin_inset Formula $\varphi$ +\end_inset + + +\begin_inset Foot +status open + +\begin_layout Plain Layout +avtomorfizem +\end_layout + +\end_inset + +. + Vse am +\begin_inset Formula $\varphi$ +\end_inset + + grafa +\begin_inset Formula $G$ +\end_inset + + združimo v množico in jo opremimo z operacijo komponiranja. + Dobimo +\begin_inset Quotes gld +\end_inset + +grupo avtomorfizmov grafa +\begin_inset Formula $G$ +\end_inset + + +\begin_inset Quotes grd +\end_inset + +, ki jo označimo z +\begin_inset Formula $\Aut G$ +\end_inset + +. +\end_layout + +\begin_layout Example* +\begin_inset Formula $\Aut C_{4}=\left(\left\{ id,\left(2,4\right),\left(12\right)\left(34\right),\left(1234\right),\left(13\right),\left(13\right)\left(24\right),\left(1423\right),\left(4321\right)\right\} ,\circ\right)$ +\end_inset + +, +\begin_inset Formula $\Aut K_{n}=\left(S_{n},\circ\right)$ +\end_inset + + za +\begin_inset Formula $S_{n}$ +\end_inset + + množica vseh permutacij +\begin_inset Formula $n$ +\end_inset + + elementov, +\begin_inset Formula $\Aut P_{n}=\left(\left\{ id,f\left(i\right)=n-i-1\right\} ,\circ\right)$ +\end_inset + + +\end_layout + +\begin_layout Fact* +Za vsako končno grupo +\begin_inset Formula $X$ +\end_inset + + +\begin_inset Formula $\exists$ +\end_inset + + graf +\begin_inset Formula $G\ni:\Aut G=X$ +\end_inset + +. + Algebra +\begin_inset Formula $\subseteq$ +\end_inset + + Diskretne strukture. + Dokaz na magisteriju. +\end_layout + +\begin_layout Subsection +Kaj pomeni, da je graf +\begin_inset Formula $H$ +\end_inset + + minor grafa +\begin_inset Formula $G$ +\end_inset + +? Kdaj sta dva grafa homeomorfna? Pojasni operacijo kartezičnega produkta + grafov. +\end_layout + +\begin_layout Definition* + +\series bold +Odstranjevanje vozlišč +\series default +: za neko +\begin_inset Formula $S\subseteq VG$ +\end_inset + + je +\begin_inset Formula $G-S$ +\end_inset + + graf, ki ga dobimo, ko iz +\begin_inset Formula $G$ +\end_inset + + odstranimo vozlišča in vozliščem pripadajoče povezave iz +\begin_inset Formula $S$ +\end_inset + +. + Za +\begin_inset Formula $S=\left\{ u\right\} $ +\end_inset + + pišemo tudi +\begin_inset Formula $G-u$ +\end_inset + +. + +\series bold +Odstranjevanje povezav +\series default +: za neko +\begin_inset Formula $F\subseteq EG$ +\end_inset + + je +\begin_inset Formula $G-F$ +\end_inset + + graf, ki ga dobimo, ko iz +\begin_inset Formula $G$ +\end_inset + + odstranimo povezave iz +\begin_inset Formula $F$ +\end_inset + +. + Za +\begin_inset Formula $S=\left\{ e\right\} $ +\end_inset + + pišemo tudi +\begin_inset Formula $G-e$ +\end_inset + +. + +\series bold +Skrčitev povezave +\series default +: za +\begin_inset Formula $e=\left\{ u,v\right\} \in EG$ +\end_inset + + je +\begin_inset Formula $G/e$ +\end_inset + + graf, ki ga dobimo tako, da identificiramo +\begin_inset Formula $u$ +\end_inset + + in +\begin_inset Formula $v$ +\end_inset + + in odstranimo morebitne vzporedne povezave, s čimer odstranimo tudi zanko + +\begin_inset Formula $\left\{ u,u=v\right\} $ +\end_inset + +. + +\begin_inset Formula $G/e_{1}/e_{2}/\dots/e_{n}$ +\end_inset + + označimo z +\begin_inset Formula $G/\left\{ e_{1},e_{2},\dots,e_{n}\right\} $ +\end_inset + + . +\end_layout + +\begin_layout Standard +\begin_inset Separator plain +\end_inset + + +\end_layout + +\begin_layout Definition* +\begin_inset Formula $H$ +\end_inset + + minor +\begin_inset Formula $G\Leftrightarrow$ +\end_inset + + +\begin_inset Formula $H$ +\end_inset + + dobimo iz +\begin_inset Formula $G$ +\end_inset + + z nekim zaporedjem operacij, kjer so dovoljene operacije odstranjevanje + vozlišča, odstranjevanje povezave in skrčitev povezave. + Ekvivalentno je +\begin_inset Formula $H$ +\end_inset + + minor +\begin_inset Formula $G$ +\end_inset + +, če ga lahko dobimo iz nekega podgrafa +\begin_inset Formula $G$ +\end_inset + +, ki mu skrčimo poljubno povezav. +\end_layout + +\begin_layout Standard +\begin_inset Separator plain +\end_inset + + +\end_layout + +\begin_layout Definition* +Subdivizija povezav: +\begin_inset Formula $G\to G^{+}e$ +\end_inset + + za +\begin_inset Formula $e\in EG$ +\end_inset + +: +\begin_inset Formula $VG^{+}e=VG\cup\left\{ x_{e}\right\} $ +\end_inset + +, +\begin_inset Formula $EG^{+}e=EG\setminus e\cup\left\{ x_{e}u,x_{e}v\right\} $ +\end_inset + +. + Graf +\begin_inset Formula $H$ +\end_inset + + je subdivizija +\begin_inset Formula $G\Leftrightarrow H$ +\end_inset + + dobimo iz +\begin_inset Formula $G$ +\end_inset + + z zaporedjem subdivizij povezav +\begin_inset Formula $G$ +\end_inset + + ZDB povezave v +\begin_inset Formula $G$ +\end_inset + + zamenjamo s poljubno dolčimi potmi. + Relacija je refleksivna ( +\begin_inset Formula $G$ +\end_inset + + subdivizija +\begin_inset Formula $G$ +\end_inset + +). +\end_layout + +\begin_layout Standard +\begin_inset Separator plain +\end_inset + + +\end_layout + +\begin_layout Definition* +Glajenje vozlišča +\begin_inset Formula $u$ +\end_inset + + stopnje +\begin_inset Formula $2$ +\end_inset + +: (obratna operacija od subdivizije) +\begin_inset Formula $G^{-}u=\left(VG\setminus u,\left(EG\setminus\left\{ e,f\right\} \right)\cup\left\{ \left\{ v,w\right\} \right\} \right)$ +\end_inset + +, kjer sta +\begin_inset Formula $e$ +\end_inset + + in +\begin_inset Formula $f$ +\end_inset + + povezavi, ki vsebujeta +\begin_inset Formula $u$ +\end_inset + +, +\begin_inset Formula $v$ +\end_inset + + in +\begin_inset Formula $w$ +\end_inset + + pa njuni drugi krajišči (tisti krajišči, ki nista +\begin_inset Formula $u$ +\end_inset + +). +\end_layout + +\begin_layout Standard +\begin_inset Separator plain +\end_inset + + +\end_layout + +\begin_layout Definition* +Grafa sta homeomorfna, če sta izomorfna po gladitvi vseh vozlišč stopnje + 2. +\end_layout + +\begin_layout Standard +\begin_inset Separator plain +\end_inset + + +\end_layout + +\begin_layout Definition* +Naj bosta +\begin_inset Formula $G$ +\end_inset + +, +\begin_inset Formula $H$ +\end_inset + + grafa. + Kartezični produkt grafov +\begin_inset Formula $G$ +\end_inset + + in +\begin_inset Formula $H$ +\end_inset + + označimo z +\begin_inset Formula $G\square H$ +\end_inset + +: +\begin_inset Formula $V\left(G\square H\right)=VG\times VH,E\left(G\square H\right)=\left\{ \left(g,h\right)\left(g',h'\right);g=g'\wedge hh'\in EH\vee h=h'\wedge gg'\in EG\right\} $ +\end_inset + +. +\end_layout + +\begin_layout Remark* +\begin_inset Formula $\left(\mathcal{G},\square\right)$ +\end_inset + + je monoid, kajti +\begin_inset Formula $K_{1}$ +\end_inset + + je enota, operacija je komutativna in notranja. +\end_layout + +\begin_layout Example* +\begin_inset Formula $K_{2}\square K_{2}\cong C_{4}$ +\end_inset + + +\end_layout + +\begin_layout Subsection +Kaj so to prerezna vozlišča in prerezne povezave grafa? Kdaj je graf +\begin_inset Formula $k-$ +\end_inset + +povezan in kaj je to povezanost grafa? +\end_layout + +\begin_layout Standard +Naj bo +\begin_inset Formula $G$ +\end_inset + + graf z +\begin_inset Formula $m$ +\end_inset + + vozlišči. +\end_layout + +\begin_layout Definition* +\begin_inset Formula $u,v\in VG$ +\end_inset + + sta v isti povezani komponenti, če v +\begin_inset Formula $G$ +\end_inset + + obstaja sprehod med njima. + Število komponent +\begin_inset Formula $G$ +\end_inset + + označimo z +\begin_inset Formula $\Omega G$ +\end_inset + +. + +\begin_inset Formula $G$ +\end_inset + + povezan +\begin_inset Formula $\Leftrightarrow\Omega G=1$ +\end_inset + +. +\end_layout + +\begin_layout Remark* +Biti v isti komponenti je ekvivalenčna relacija (refleksivna, simetrična + in tranzitivna). +\end_layout + +\begin_layout Definition* +\begin_inset Formula $x\in VG$ +\end_inset + + prerezno +\begin_inset Formula $\Leftrightarrow\Omega\left(G-x\right)>\Omega G$ +\end_inset + +. + +\begin_inset Formula $e\in EG$ +\end_inset + + prerezna +\begin_inset Formula $\sim e$ +\end_inset + + most +\begin_inset Formula $\Leftrightarrow\Omega\left(G-e\right)>\Omega G$ +\end_inset + +. + +\begin_inset Formula $X\subseteq VG$ +\end_inset + + je prerezna množica +\begin_inset Formula $\Leftrightarrow\Omega\left(G-X\right)>\Omega G$ +\end_inset + +. + +\begin_inset Formula $X\subseteq EG$ +\end_inset + + je prerezna množica povezav +\begin_inset Formula $\Leftrightarrow\Omega\left(G-X\right)>\Omega G$ +\end_inset + +. +\end_layout + +\begin_layout Standard +\begin_inset Separator plain +\end_inset + + +\end_layout + +\begin_layout Definition* +Povezan graf +\begin_inset Formula $G$ +\end_inset + + je +\begin_inset Formula $k-$ +\end_inset + +povezan +\begin_inset Formula $\Leftrightarrow\left|VG\right|\geq k+1\wedge\forall X\text{ prerezna}\subseteq VG:\left|X\right|>=k$ +\end_inset + + prerezna. + ZDB ima vsaj +\begin_inset Formula $k+1$ +\end_inset + + vozlišč in +\series bold +ne +\series default + vsebuje prerezne množice moči manjše od +\begin_inset Formula $k$ +\end_inset + +. + Povezanost grafa +\begin_inset Formula $G\sim\kappa G$ +\end_inset + + je največji +\begin_inset Formula $k\in\mathbb{N}$ +\end_inset + +, za katerega je +\begin_inset Formula $G$ +\end_inset + + +\begin_inset Formula $k-$ +\end_inset + +povezan ZDB najmanjše število vozlišč, ki jih moramo odstraniti iz grafa, + da graf ne bo več povezan. +\end_layout + +\begin_layout Remark* +\begin_inset Formula $\kappa G=k\Rightarrow G$ +\end_inset + + nima prerezne množice moči +\begin_inset Formula $<k$ +\end_inset + +. +\end_layout + +\begin_layout Example* +\begin_inset Formula $\kappa K_{n}=n-1$ +\end_inset + +, +\begin_inset Formula $\kappa P_{n}=1$ +\end_inset + +, +\begin_inset Formula $\kappa C_{n}=2$ +\end_inset + +, +\begin_inset Formula $\kappa K_{m,n}=\min\left\{ n,m\right\} $ +\end_inset + +, +\begin_inset Formula $\kappa Q_{n}=n$ +\end_inset + +, +\begin_inset Formula $\kappa G\leq\delta G$ +\end_inset + + +\begin_inset Foot +status open + +\begin_layout Plain Layout +\begin_inset Formula $\delta G$ +\end_inset + + je minimalna stopnja vozlišča v grafu +\begin_inset Formula $G$ +\end_inset + + +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Subsection +Pojasnite Whitney-ev izrek, ki katekterizira +\begin_inset Formula $2-$ +\end_inset + +povezane grafe. + Skicirajte dokaz tega izreka. + Zapišite Mengerjev izrek. +\end_layout + +\begin_layout Definition* +Poti +\begin_inset Formula $\left[p_{1},p_{2},\dots,p_{n-1},p\right]$ +\end_inset + + in +\begin_inset Formula $\left[r_{1},r_{2},\dots,r_{m-1},r_{m}\right]$ +\end_inset + + sta notranje disjunktni, če sta disjunktni množici njunih vozlišč izvzemši + prvo in zadnje vozlišče. +\end_layout + +\begin_layout Theorem* +Graf +\begin_inset Formula $G$ +\end_inset + +, +\begin_inset Formula $\left|VG\right|\geq2$ +\end_inset + +, je +\begin_inset Formula $2-$ +\end_inset + +povezan +\begin_inset Formula $\Leftrightarrow\forall u,v\in VG\exists$ +\end_inset + + notranje disjunktni +\begin_inset Formula $u,v-$ +\end_inset + +poti. +\end_layout + +\begin_layout Proof +Dokazujemo ekvivalenco: +\end_layout + +\begin_deeper +\begin_layout Description +\begin_inset Formula $\left(\Leftarrow\right)$ +\end_inset + + Po predpostavki za poljubna +\begin_inset Formula $u,v$ +\end_inset + + obstajata dve notranje disjunktni +\begin_inset Formula $u,v-$ +\end_inset + +poti. + Dokazujemo, da je +\begin_inset Formula $G$ +\end_inset + + +\begin_inset Formula $2-$ +\end_inset + +povezan +\begin_inset Formula $\Leftrightarrow$ +\end_inset + + nima prereznega vozlišča +\begin_inset Formula $\Leftrightarrow$ +\end_inset + + ne obstaja prerezna množica, ki je singleton +\begin_inset Foot +status open + +\begin_layout Plain Layout +množica moči ena +\end_layout + +\end_inset + +. + Dokažimo, da poljubno +\begin_inset Formula $x\in VG$ +\end_inset + + ni prerezno, torej da po odstranitvi tega vozlišča še vedno obstaja povezava + med poljubnima +\begin_inset Formula $u,v\in V\left(G-x\right)$ +\end_inset + +. + Ločimo 3 primere: +\begin_inset Formula $x$ +\end_inset + + je na prvi +\begin_inset Formula $u,v-$ +\end_inset + +poti, +\begin_inset Formula $x$ +\end_inset + + je na drugi +\begin_inset Formula $u,v-$ +\end_inset + +poti, +\begin_inset Formula $x$ +\end_inset + + ni na nobeni izmed +\begin_inset Formula $u,v-$ +\end_inset + +poti. + V vsakem primeru sta +\begin_inset Formula $u,v$ +\end_inset + + v +\begin_inset Formula $G-x$ +\end_inset + + še vedno v isti povezani komponenti. + +\end_layout + +\begin_layout Description +\begin_inset Formula $\left(\Rightarrow\right)$ +\end_inset + + Po predpostavki je +\begin_inset Formula $G$ +\end_inset + + +\begin_inset Formula $2-$ +\end_inset + +povezan. + Vzemimo poljubna +\begin_inset Formula $u,v\in VG$ +\end_inset + +. + Indukcija po +\begin_inset Formula $d_{G}\left(u,v\right)$ +\end_inset + +: +\end_layout + +\begin_deeper +\begin_layout Standard +Baza: +\begin_inset Formula $d_{G}\left(u,v\right)=1$ +\end_inset + + (sosednji vozlišči) +\begin_inset Formula $G-e$ +\end_inset + + je povezan, sicer je RAAPDD +\begin_inset Formula $uv$ +\end_inset + + most, kar bi bilo v +\begin_inset Formula $\rightarrow\!\leftarrow$ +\end_inset + + s predpostavko, ker bi bil en izmed +\begin_inset Formula $u,v$ +\end_inset + + prerezno, saj ima +\begin_inset Formula $G$ +\end_inset + + vsaj 3 vozlišča in ima vsaj eden izmed +\begin_inset Formula $u,v$ +\end_inset + + še enega soseda. + Sedaj vemo, da +\begin_inset Formula $\exists u,v-$ +\end_inset + +pot, ki ni +\begin_inset Formula $uv$ +\end_inset + +. + Imamo torej dve notranje disjunktni +\begin_inset Formula $u,v-$ +\end_inset + +poti: +\begin_inset Formula $e$ +\end_inset + + in tisto drugo. +\end_layout + +\begin_layout Standard +Korak: +\begin_inset Formula $d_{G}\left(u,v\right)=k\geq2$ +\end_inset + +. + Naj bo +\begin_inset Formula $P$ +\end_inset + + najkrajša +\begin_inset Formula $u,v-$ +\end_inset + +pot. + Predzadnje vozlišče na njej (tik pred +\begin_inset Formula $v$ +\end_inset + +) naj bo +\begin_inset Formula $w$ +\end_inset + +. + +\begin_inset Formula $d_{G}\left(u,w\right)=k-1$ +\end_inset + + in po I. + P. + obstajata dve notranje disjunktni +\begin_inset Formula $u,w-$ +\end_inset + +poti +\begin_inset Formula $R$ +\end_inset + + in +\begin_inset Formula $S$ +\end_inset + +. + Ločimo primera: +\end_layout + +\begin_layout Labeling +\labelwidthstring 00.00.0000 +\begin_inset Formula $v\in VR\cup VS$ +\end_inset + + Tedaj je +\begin_inset Formula $v$ +\end_inset + + na ciklu, ki ga tvorita poti +\begin_inset Formula $R$ +\end_inset + + in +\begin_inset Formula $S$ +\end_inset + + (je na eni izmed poti). + Zato obstajata dve notranje disjunktni +\begin_inset Formula $u,v-$ +\end_inset + +poti; ena v eno smer po ciklu, druga v drugo. +\end_layout + +\begin_layout Labeling +\labelwidthstring 00.00.0000 +\begin_inset Formula $v\not\in VR\cup VS$ +\end_inset + + Tedaj +\begin_inset Formula $v$ +\end_inset + + ni na tem ciklu, vendar je sosed +\begin_inset Formula $w$ +\end_inset + +, ki je na ciklu. + +\begin_inset Formula $G-w$ +\end_inset + + mora biti povezan, saj smo odstranili le eno vozlišče, torej +\begin_inset Formula $\exists u,v-$ +\end_inset + +pot +\begin_inset Formula $T$ +\end_inset + +. + Ločimo primera: +\end_layout + +\begin_deeper +\begin_layout Labeling +\labelwidthstring 00.00.0000 +\begin_inset Formula $T\cap\left(VS\cup VR\right)=\left\{ u\right\} $ +\end_inset + + Našli smo dve notranje disjunktni poti v +\begin_inset Formula $G$ +\end_inset + +: +\begin_inset Formula $T$ +\end_inset + + in +\begin_inset Formula $\left[\dots R,v\right]$ +\end_inset + + ( +\begin_inset Formula $R$ +\end_inset + + in +\begin_inset Formula $wv$ +\end_inset + + povezava). +\end_layout + +\begin_layout Labeling +\labelwidthstring 00.00.0000 +\begin_inset Formula $\left|T\cap\left(VS\cup VR\right)\right|\geq2$ +\end_inset + + Naj bo +\begin_inset Formula $x$ +\end_inset + + zadnje (kjer je +\begin_inset Formula $v$ +\end_inset + + konec poti) vozlišče na +\begin_inset Formula $T$ +\end_inset + +, ki je na +\begin_inset Formula $R\cup S$ +\end_inset + +. + BSŠ +\begin_inset Formula $x\in VS$ +\end_inset + +. + +\begin_inset Formula $x\not=w$ +\end_inset + + po konstrukciji +\begin_inset Formula $T$ +\end_inset + +. + Dve poti: po +\begin_inset Formula $S$ +\end_inset + + do +\begin_inset Formula $x$ +\end_inset + + in nato po +\begin_inset Formula $T$ +\end_inset + + do +\begin_inset Formula $v$ +\end_inset + + ter +\begin_inset Formula $\left[\dots R,v\right]$ +\end_inset + + ( +\begin_inset Formula $R$ +\end_inset + + in +\begin_inset Formula $wv$ +\end_inset + + povezava). +\end_layout + +\end_deeper +\end_deeper +\end_deeper +\begin_layout Theorem* +Menger (posplošitev Whitneya): naj bo +\begin_inset Formula $G$ +\end_inset + + graf z vsak +\begin_inset Formula $k+1$ +\end_inset + + vozlišči. + Tedaj je +\begin_inset Formula $G$ +\end_inset + + +\begin_inset Formula $k-$ +\end_inset + +povezan +\begin_inset Formula $\Leftrightarrow\forall u,v\in VG\exists k$ +\end_inset + + paroma notranje disjunktnih +\begin_inset Formula $u,v-$ +\end_inset + +poti. +\end_layout + +\begin_layout Definition* +Graf je +\begin_inset Formula $k-$ +\end_inset + + povezan po povezavah, če +\begin_inset Formula $\nexists$ +\end_inset + + prerezna množica povezav moči +\begin_inset Formula $<k$ +\end_inset + +. + Povezanost grafa +\begin_inset Formula $G$ +\end_inset + + po povezavah ( +\begin_inset Formula $\kappa'G$ +\end_inset + +) je največji +\begin_inset Formula $k$ +\end_inset + +, da je +\begin_inset Formula $G$ +\end_inset + + +\begin_inset Formula $k-$ +\end_inset + +povezan po povezavah. +\end_layout + +\begin_layout Theorem* +Menger': +\begin_inset Formula $G$ +\end_inset + + je +\begin_inset Formula $k-$ +\end_inset + +povezan po povezavah +\begin_inset Formula $\Leftrightarrow\forall u,v\in VG\exists k$ +\end_inset + + po povezavah notranje disjunktnih +\begin_inset Formula $u,v-$ +\end_inset + +poti. +\end_layout + +\begin_layout Standard +\begin_inset Separator plain +\end_inset + + +\end_layout + +\begin_layout Theorem* +\begin_inset Formula $\forall G\in\mathcal{G}:\kappa G\leq\kappa'G$ +\end_inset + + in +\begin_inset Formula $\kappa'G\leq\delta G$ +\end_inset + +. +\end_layout + +\begin_layout Standard +Dokaze zadnjih treh izrekov najdete na magisteriju. +\end_layout + +\begin_layout Subsection +Kaj je drevo in kaj je gozd? Katere katekterizacije dreves poznate? +\end_layout + +\begin_layout Definition* +Gozd je graf brez ciklov. + Drevo je povezan gozd. + List je vozlišče stopnje 1. +\end_layout + +\begin_layout Lemma +\begin_inset CommandInset label +LatexCommand label +name "lem:Vsako-drevo-z" + +\end_inset + +Vsako drevo z vsaj dvema vozliščema premore list. +\end_layout + +\begin_layout Proof +Naj bo +\begin_inset Formula $T$ +\end_inset + + drevo, +\begin_inset Formula $v\in VT$ +\end_inset + + poljubno. + +\begin_inset Formula $\left|VT\right|\geq2\wedge T$ +\end_inset + + povezan +\begin_inset Formula $\Rightarrow v$ +\end_inset + + ima soseda +\begin_inset Formula $v_{1}$ +\end_inset + +. + Če je +\begin_inset Formula $v_{1}$ +\end_inset + + edini sosed +\begin_inset Formula $v$ +\end_inset + +, je +\begin_inset Formula $v$ +\end_inset + + list, sicer je tudi +\begin_inset Formula $v_{2}\not=v_{1}$ +\end_inset + + sosed +\begin_inset Formula $v$ +\end_inset + +. + Če je +\begin_inset Formula $v$ +\end_inset + + edini sosed +\begin_inset Formula $v_{2}$ +\end_inset + +, je +\begin_inset Formula $v_{2}$ +\end_inset + + list, sicer je tudi +\begin_inset Formula $v_{3}$ +\end_inset + + sosed +\begin_inset Formula $v$ +\end_inset + +. + Postopek ponavljamo, dokler ne najdemo lista. + V grafu ni ciklov in graf je končen, zato se postopek ustavi. +\end_layout + +\begin_layout Lemma +\begin_inset CommandInset label +LatexCommand label +name "lem:-drevo" + +\end_inset + + +\begin_inset Formula $T$ +\end_inset + + drevo +\begin_inset Formula $\Rightarrow\left|ET\right|=\left|VT\right|-1$ +\end_inset + + +\end_layout + +\begin_layout Proof +z indukcijo po številu vozlišč: +\end_layout + +\begin_layout Proof +Baza: +\begin_inset Formula $\left|VT=1\right|$ +\end_inset + +, +\begin_inset Formula $\left|EG\right|=0$ +\end_inset + + (izolirano vozlišče je drevo) +\end_layout + +\begin_layout Proof +Korak: +\begin_inset Formula $T$ +\end_inset + + poljubno drevo +\begin_inset Formula $\left|VG\right|\geq2$ +\end_inset + +. + +\begin_inset Formula $v\in VT$ +\end_inset + + naj bo list v +\begin_inset Formula $T$ +\end_inset + + po lemi +\begin_inset CommandInset ref +LatexCommand ref +reference "lem:Vsako-drevo-z" +plural "false" +caps "false" +noprefix "false" + +\end_inset + +. + Po I. + P. + je +\begin_inset Formula $\left|E\left(T-v\right)\right|=\left|V\left(T-v\right)\right|-1$ +\end_inset + +, po konstrukciji +\begin_inset Formula $T-v$ +\end_inset + + pa je +\begin_inset Formula $\left|E\left(T-v\right)\right|=\left|ET\right|-1$ +\end_inset + +, +\begin_inset Formula $\left|V\left(T-v\right)\right|=\left|VT\right|-1$ +\end_inset + +, torej +\begin_inset Formula $\left|ET\right|=\left|VT\right|-1$ +\end_inset + +. +\end_layout + +\begin_layout Lemma +\begin_inset CommandInset label +LatexCommand label +name "lem:lema3drevesa-enaciklu-g-e-povezan" + +\end_inset + + +\begin_inset Formula $G$ +\end_inset + + povezan, +\begin_inset Formula $e\in EG$ +\end_inset + + leži na ciklu +\begin_inset Formula $\Rightarrow G-e$ +\end_inset + + povezan. +\end_layout + +\begin_layout Proof +Trdimo, da v +\begin_inset Formula $G-e\exists u,v-$ +\end_inset + +pot. + Ker je +\begin_inset Formula $G$ +\end_inset + + povezan, +\begin_inset Formula $\exists u,v-$ +\end_inset + +pot +\begin_inset Formula $P$ +\end_inset + + v +\begin_inset Formula $G$ +\end_inset + +. + Če +\begin_inset Formula $e\not\in P$ +\end_inset + +, ta pot obstaja tudi v +\begin_inset Formula $G-e$ +\end_inset + +. + Če +\begin_inset Formula $e\in P$ +\end_inset + +, očitno dobimo pot tako, da +\begin_inset Formula $e$ +\end_inset + + v +\begin_inset Formula $P$ +\end_inset + + nadomestimo s preostankom cikla, na katerem leži +\begin_inset Formula $e$ +\end_inset + + v +\begin_inset Formula $G$ +\end_inset + +. +\end_layout + +\begin_layout Lemma +\begin_inset CommandInset label +LatexCommand label +name "lem:-povezan-." + +\end_inset + + +\begin_inset Formula $G$ +\end_inset + + povezan +\begin_inset Formula $\Rightarrow\left|EG\right|\geq\left|VG\right|-1$ +\end_inset + +. +\end_layout + +\begin_layout Proof +Če je +\begin_inset Formula $G$ +\end_inset + + drevo, velja enakost po lemi +\begin_inset CommandInset ref +LatexCommand ref +reference "lem:-drevo" +plural "false" +caps "false" +noprefix "false" + +\end_inset + +, sicer +\begin_inset Formula $G$ +\end_inset + + premore cikel. + Po lemi +\begin_inset CommandInset ref +LatexCommand ref +reference "lem:lema3drevesa-enaciklu-g-e-povezan" +plural "false" +caps "false" +noprefix "false" + +\end_inset + + +\begin_inset Formula $\exists e\in EG\ni:G-e$ +\end_inset + + povezan. + Odstranjevanje povezav iz ciklov ponavljamo, dokler ne dobimo drevesa +\begin_inset Formula $T$ +\end_inset + +. + Velja +\begin_inset Formula $VT=VG$ +\end_inset + + (*) in +\begin_inset Formula $\left|ET\right|<\left|EG\right|$ +\end_inset + + (**). + Torej: +\begin_inset Formula $\left|VG\right|-1\overset{\text{(*)}}{=}\left|VT\right|-1\overset{\text{lema \ref{lem:-drevo}}}{=}\left|ET\right|\overset{\text{(**)}}{<}\left|EG\right|$ +\end_inset + +. +\end_layout + +\begin_layout Theorem* +Karakterizacija dreves. + NTSE za graf +\begin_inset Formula $G$ +\end_inset + +: +\end_layout + +\begin_deeper +\begin_layout Enumerate +\begin_inset CommandInset label +LatexCommand label +name "enu:-drevo" + +\end_inset + + +\begin_inset Formula $G$ +\end_inset + + drevo +\end_layout + +\begin_layout Enumerate +\begin_inset CommandInset label +LatexCommand label +name "enu:-pot-ZDB" + +\end_inset + + +\begin_inset Formula $\forall u,v\in VG\exists!$ +\end_inset + + +\begin_inset Formula $u,v-$ +\end_inset + +pot ZDB za vsak par vozlišč obstaja enolična pot +\end_layout + +\begin_layout Enumerate +\begin_inset CommandInset label +LatexCommand label +name "enu:-povezan-" + +\end_inset + + +\begin_inset Formula $G$ +\end_inset + + povezan +\begin_inset Formula $\wedge\forall e\in EG:e$ +\end_inset + + most +\end_layout + +\begin_layout Enumerate +\begin_inset CommandInset label +LatexCommand label +name "enu:-povezan" + +\end_inset + + +\begin_inset Formula $G$ +\end_inset + + povezan +\begin_inset Formula $\wedge\left|EG\right|=\left|VG\right|-1$ +\end_inset + + +\end_layout + +\end_deeper +\begin_layout Proof +Dokazujemo ekvivalenco: +\end_layout + +\begin_deeper +\begin_layout Labeling +\labelwidthstring 00.00.0000 +\begin_inset Formula $\left(\ref{enu:-drevo}\Rightarrow\ref{enu:-pot-ZDB}\right)$ +\end_inset + + PDDRAA +\begin_inset Formula $\exists$ +\end_inset + + dve različni +\begin_inset Formula $u,v-$ +\end_inset + +poti za neka +\begin_inset Formula $u,v\in VG$ +\end_inset + +. + Tedaj graf premore cikel +\begin_inset Formula $\Rightarrow$ +\end_inset + + ni gozd +\begin_inset Formula $\Rightarrow$ +\end_inset + + ni drevo +\begin_inset Formula $\rightarrow\!\leftarrow$ +\end_inset + +. + PDDRAA +\begin_inset Formula $\nexists$ +\end_inset + + +\begin_inset Formula $u,v-$ +\end_inset + +pot za neka +\begin_inset Formula $u,v\in VG\Rightarrow\Omega G\not=1\Rightarrow$ +\end_inset + + ni drevo +\begin_inset Formula $\rightarrow\!\leftarrow$ +\end_inset + +. +\end_layout + +\begin_layout Labeling +\labelwidthstring 00.00.0000 +\begin_inset Formula $\left(\ref{enu:-pot-ZDB}\Rightarrow\ref{enu:-povezan-}\right)$ +\end_inset + + PDDRAA +\begin_inset Formula $\exists uv\in EG\ni:$ +\end_inset + + ni most +\begin_inset Formula $\Rightarrow\exists u,v-$ +\end_inset + +pot v +\begin_inset Formula $G-e\Rightarrow\exists$ +\end_inset + + dve različni +\begin_inset Formula $u,v-$ +\end_inset + +poti v +\begin_inset Formula $G$ +\end_inset + + ( +\begin_inset Formula $uv$ +\end_inset + + in tista v +\begin_inset Formula $G-e$ +\end_inset + +) +\begin_inset Formula $\rightarrow\!\leftarrow$ +\end_inset + +. +\end_layout + +\begin_layout Labeling +\labelwidthstring 00.00.0000 +\begin_inset Formula $\left(\ref{enu:-povezan-}\Rightarrow\ref{enu:-povezan}\right)$ +\end_inset + + +\begin_inset Formula $G$ +\end_inset + + povezan +\begin_inset Formula $\Rightarrow G$ +\end_inset + + povezan velja vedno. + Dokažimo +\begin_inset Formula $\left|EG\right|=\left|VG\right|-1$ +\end_inset + + z indukcijo po številu vozlišč: +\end_layout + +\begin_deeper +\begin_layout Standard +Baza: V +\begin_inset Formula $K_{2}$ +\end_inset + + je edina povezava most in +\begin_inset Formula $\left|EK_{2}\right|=2-1=1=\left|VK_{2}\right|$ +\end_inset + + +\end_layout + +\begin_layout Standard +Korak: +\begin_inset Formula $e\in EG$ +\end_inset + + poljuben: +\begin_inset Formula $\Omega\left(G-e\right)=2$ +\end_inset + +, dve komponenti +\begin_inset Formula $G-e$ +\end_inset + + naj bosta +\begin_inset Formula $G_{1}$ +\end_inset + + in +\begin_inset Formula $G_{2}$ +\end_inset + +. + Slednja sta povezana in za njiju velja, da je vsaka povezava most in sta + manjša grafa. + Po I. + P. + velja +\begin_inset Formula $\left|EG_{1}\right|=\left|VG_{1}\right|-1$ +\end_inset + + in +\begin_inset Formula $\left|EG_{2}\right|=\left|VG_{2}\right|-1$ +\end_inset + +. + Velja +\begin_inset Formula $\left|EG\right|=\left|EG_{1}\right|+\left|EG_{2}\right|+1=\left|VG_{1}\right|-1+\left|VG_{2}\right|-1+1=\left|VG_{1}\right|+\left|VG_{2}\right|-1=\left|VG\right|-1$ +\end_inset + +. +\end_layout + +\end_deeper +\begin_layout Labeling +\labelwidthstring 00.00.0000 +\begin_inset Formula $\left(\ref{enu:-povezan}\Rightarrow\ref{enu:-pot-ZDB}\right)$ +\end_inset + + PDDRAA +\begin_inset Formula $G$ +\end_inset + + premore cikel +\begin_inset Formula $\overset{\text{lema \ref{lem:lema3drevesa-enaciklu-g-e-povezan}}}{\Rightarrow}$ +\end_inset + + če mu odstranimo povezavo s cikla, bo ostal povezan. + Obenem zaradi velja +\begin_inset Formula $\left|E\left(G-e\right)\right|=\left|V\left(G-e\right)\right|-2$ +\end_inset + +, kar je v +\begin_inset Formula $\rightarrow\!\leftarrow$ +\end_inset + + z lemo +\begin_inset CommandInset ref +LatexCommand ref +reference "lem:-povezan-." +plural "false" +caps "false" +noprefix "false" + +\end_inset + + ( +\begin_inset Formula $G$ +\end_inset + + povezan, toda ne velja implikacija). +\end_layout + +\end_deeper +\begin_layout Subsection +Kaj je vpeto drevo grafa? Kateri grafi premorejo vpeta drevesa? Kako lahko + rekurzivno določimo število vpetih dreves povezanega grafa? +\end_layout + +\begin_layout Definition* +Podgraf +\begin_inset Formula $H$ +\end_inset + + grafa +\begin_inset Formula $G$ +\end_inset + + je vpet, če velja +\begin_inset Formula $VP=VG$ +\end_inset + +. + (Lahko pa ima ima +\begin_inset Formula $G$ +\end_inset + + povezave, ki jih +\begin_inset Formula $H$ +\end_inset + + nima). +\end_layout + +\begin_layout Standard +\begin_inset Separator plain +\end_inset + + +\end_layout + +\begin_layout Definition* +Vpeto drevo grafa +\begin_inset Formula $G$ +\end_inset + + je vpet podgraf, ki je drevo. +\end_layout + +\begin_layout Theorem* +\begin_inset Formula $G$ +\end_inset + + povezan +\begin_inset Formula $\Leftrightarrow G$ +\end_inset + + premore vpeto drevo. +\end_layout + +\begin_layout Proof +\begin_inset Formula $\left(\Leftarrow\right)$ +\end_inset + + očitno. + +\begin_inset Formula $\left(\Rightarrow\right)$ +\end_inset + +: Če je +\begin_inset Formula $G$ +\end_inset + + drevo, je sam sebi vpeto drevo, sicer vsebuje cikel in iterativno uporabljamo + lemo +\begin_inset CommandInset ref +LatexCommand ref +reference "lem:lema3drevesa-enaciklu-g-e-povezan" +plural "false" +caps "false" +noprefix "false" + +\end_inset + +, dokler ne konstruiramo vpetega drevesa. +\end_layout + +\begin_layout Definition* +\begin_inset Formula $\tau G$ +\end_inset + + naj bo število vpetih dreves grafa +\begin_inset Formula $G$ +\end_inset + +. +\end_layout + +\begin_layout Remark* +\begin_inset Formula $T$ +\end_inset + + drevo +\begin_inset Formula $\Rightarrow\tau T=1$ +\end_inset + +, +\begin_inset Formula $\Omega G>1\Rightarrow\tau G=0$ +\end_inset + +, +\begin_inset Formula $\tau C_{n}=n$ +\end_inset + + +\end_layout + +\begin_layout Definition* +Z +\begin_inset Formula $G/e$ +\end_inset + + označimo skrčitev povezave +\begin_inset Formula $e$ +\end_inset + + v multigrafu +\begin_inset Foot +status open + +\begin_layout Plain Layout +V multigrafu se ista povezava lahko pojavi večkrat. +\end_layout + +\end_inset + + +\begin_inset Formula $G$ +\end_inset + +. + To je enako kot skrčitev povezave v grafu ( +\begin_inset Formula $G\backslash e$ +\end_inset + +), le da ne odstranimo večkratnih vzporednih povezav. +\end_layout + +\begin_layout Claim* +\begin_inset Formula $G$ +\end_inset + + povezan, +\begin_inset Formula $e\in EG\Rightarrow\tau G=\tau\left(G-e\right)+\tau\left(G/e\right)$ +\end_inset + + +\end_layout + +\begin_layout Proof +Naj bo +\begin_inset Formula $T$ +\end_inset + + vpeto drevo v +\begin_inset Formula $G$ +\end_inset + +. + Naj bo +\begin_inset Formula $e\in EG$ +\end_inset + + poljuben fiksen. + Vpetih dreves, za katere +\begin_inset Formula $e\not\in T$ +\end_inset + +, je +\begin_inset Formula $\tau\left(G-e\right)$ +\end_inset + +. + Vpetih dreves, za katere +\begin_inset Formula $e\in T$ +\end_inset + +, je +\begin_inset Formula $\tau\left(G/e\right)$ +\end_inset + +. +\end_layout + +\begin_layout Standard +Rekurzivno torej določamo število vpetih dreves grafa z zgornjo trditvijo + tako, da izbiramo poljubne povezave in jih ožamo ter odstranjujemo in nato + seštejemo +\begin_inset Formula $\tau$ +\end_inset + + teh dveh operacij. +\end_layout + +\begin_layout Subsection +Kaj je Laplaceova matrika multigrafa? Kaj pravi Kirchoffov izrek o številu + vpetih dreves multigrafa? +\end_layout + +\begin_layout Definition* +Laplaceova matrika +\begin_inset Formula $LG$ +\end_inset + + je kvadratna matrika dimenzije +\begin_inset Formula $n$ +\end_inset + +, katere vrstice in stolpci so indeksirani z vozlišči multigrafa +\begin_inset Formula $G$ +\end_inset + + in velja +\begin_inset Formula +\[ +LG_{ij}=\begin{cases} +\deg_{G}v & ;i=j\\ +-\left(\text{število povezav med \ensuremath{v_{i}} in \ensuremath{v_{j}}}\right) & ;i\not=j +\end{cases} +\] + +\end_inset + + +\end_layout + +\begin_layout Theorem* +Kirchoff: Če je +\begin_inset Formula $G$ +\end_inset + + povezan multigraf, potem je +\begin_inset Formula $\tau G=\det\left(LG\text{ brez \ensuremath{i}tega stolpca in \ensuremath{i}te vrstice}\right)$ +\end_inset + + za poljuben +\begin_inset Formula $i$ +\end_inset + +. + ZDB +\begin_inset Formula $\tau G=\det LG_{i,i}$ +\end_inset + +. +\end_layout + +\begin_layout Subsection +Kaj pomeni, da je graf Eulerjev? Kako karakteriziramo Eulerjeve grafe? Skicirajt +e dokaz slednjega rezultata. +\end_layout + +\begin_layout Definition* +Sprehod v multigrafu je Eulerjev, če vsebuje vse povezave in sicer vsako + zgolj enkrat. + +\series bold +Sklenjen +\series default + Eulerjev sprehod je Eulerjev obhod. + Graf je Eulerjev, če premore Eulerjev obhod. +\end_layout + +\begin_layout Theorem* +\begin_inset Formula $G$ +\end_inset + + Eulerjev +\begin_inset Formula $\Leftrightarrow\forall v\in VG:\deg_{G}v$ +\end_inset + + sod. +\end_layout + +\begin_layout Proof +\begin_inset Formula $\left(\Rightarrow\right)$ +\end_inset + + očitno. + +\begin_inset Formula $\left(\Leftarrow\right)$ +\end_inset + +: +\begin_inset Formula $\forall v\in VG:\deg_{G}v$ +\end_inset + + sod +\begin_inset Formula $\Rightarrow$ +\end_inset + + +\begin_inset Formula $G$ +\end_inset + + premore cikel. + Indukcija po številu povezav: +\end_layout + +\begin_layout Proof +Baza: Izolirano vozlišče, multigraf +\begin_inset Formula $VG=\left\{ u,v\right\} ,EG=\left\{ uv,uv\right\} $ +\end_inset + + in +\begin_inset Formula $C_{3}$ +\end_inset + + so vsi Eulerjevi. +\end_layout + +\begin_layout Proof +Korak: Naj bo +\begin_inset Formula $\left|VG\right|\geq4$ +\end_inset + +. + +\begin_inset Formula $G$ +\end_inset + + gotovo premore cikel +\begin_inset Formula $C$ +\end_inset + +, ker je povezan in nima listov (ni drevo). + Naj bo +\begin_inset Formula $H\coloneqq G-EC$ +\end_inset + +. + +\begin_inset Formula $\forall u\in VC:\deg_{H}u=\deg_{G}u-2$ +\end_inset + +, +\begin_inset Formula $\forall u\not\in VC:\deg_{H}u=\deg_{G}u$ +\end_inset + + +\begin_inset Formula $\Rightarrow\forall v\in H:\deg_{H}v$ +\end_inset + + sod +\begin_inset Formula $\Rightarrow$ +\end_inset + + vsaka komponenta +\begin_inset Formula $H$ +\end_inset + + je Eulerjev graf po I. + P., saj je manjši graf. + +\begin_inset Formula $G$ +\end_inset + + je tudi Eulerjev, obhodimo ga lahko po ciklu +\begin_inset Formula $C$ +\end_inset + +; vsakič, ko naletimo na vozlišče, ki je del komponente +\begin_inset Formula $H$ +\end_inset + +, jo obhodimo in nadaljujemo pot po ciklu. +\end_layout + +\begin_layout Paragraph* +Fleuryjev algoritem +\end_layout + +\begin_layout Standard +sprejme graf in vrne obhod +\end_layout + +\begin_layout Enumerate +Začnemo v poljubni povezavi +\end_layout + +\begin_layout Enumerate +Ko povezavo prehodimo, jo izbrišemo +\end_layout + +\begin_layout Enumerate +Postopek nadaljujemo in pri tem pazimo le na to, da gremo na most le v primeru, + če ni druge možnosti. +\end_layout + +\begin_layout Theorem* +Če je +\begin_inset Formula $G$ +\end_inset + + Eulerjev graf, potem Fleuryjev algoritem vrne Eulerjev obhod. +\begin_inset Note Note +status open + +\begin_layout Plain Layout +dodaj dekompozicijo in dekompozicijo v cikle +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Subsection +Kdaj je graf Hamiltonov? Navedite in pojasnite potrebni pogoj z razpadom + grafa za obstoj Hamiltonovega cikla v grafu. +\end_layout + +\begin_layout Definition* + +\series bold +Hamiltonov cikel +\series default +v grafu je cikel, ki vsebuje vsa vozlišča grafa ZDB Hamiltonov cikel je + vpet podgraf, ki je cikel. + +\series bold +Graf je Hamiltonov +\series default +, če premore Hamiltonov cikel. + +\series bold +Hamiltonova pot +\series default + v grafu je pot, ki vsebuje vsa vozlišča grafa ZDB vpet podgraf, ki je pot. +\end_layout + +\begin_layout Theorem* +\begin_inset Formula $G$ +\end_inset + + Hamiltonov, +\begin_inset Formula $S\subseteq VG\Rightarrow\Omega\left(G-S\right)\leq\left|S\right|$ +\end_inset + +. + (potreben pogoj za obstoj Hamiltonovega cikla) +\end_layout + +\begin_layout Proof +Naj bo +\begin_inset Formula $VG=\left\{ v_{1},\dots,v_{n}\right\} $ +\end_inset + + Hamiltonov. + BSŠ naj bo +\begin_inset Formula $\left[v_{1},\dots,v_{n}\right]$ +\end_inset + + Hamiltonov cikel. + Skica dokaza: Naj bosta +\begin_inset Formula $v_{i},v_{j}\in S,i<j$ +\end_inset + +. + Tedaj +\begin_inset Formula $G-S$ +\end_inset + + razbije +\begin_inset Formula $G$ +\end_inset + + na dva podgrafa: +\begin_inset Formula $K_{1}\left\{ v_{i+1},\dots,v_{j-1}\right\} $ +\end_inset + + in +\begin_inset Formula $K_{2}=\left(VG\cap\left\{ v_{i},v_{j}\right\} \right)\cap K_{1}=\left\{ v_{j+1},\dots,v_{n},v_{1},\dots,v_{i-1}\right\} $ +\end_inset + +. + Če +\begin_inset Formula $i=j-1$ +\end_inset + +, je ena podgraf prazen, če +\begin_inset Formula $n=3$ +\end_inset + + prav tako. + Podgrafa sta lahko povezana in tvorita skupno komponento, lahko pa nista + in tvorita dve komponenti. + Toda z odstranjevanjem +\begin_inset Formula $\left|S\right|$ +\end_inset + + vozlišč iz cikla lahko napravimo največ +\begin_inset Formula $\left|S\right|$ +\end_inset + + komponent. +\end_layout + +\begin_layout Remark* +Izrek uporabimo v kontrapoziciji: +\begin_inset Formula $\exists S\subseteq VG\ni:\Omega\left(G-S\right)>\left|S\right|\Rightarrow G$ +\end_inset + + ni Hamiltonov. +\end_layout + +\begin_layout Example* +\begin_inset Formula $G$ +\end_inset + + vsebuje prerezno vozlišče +\begin_inset Formula $\Rightarrow G$ +\end_inset + + ni Hamiltonov. +\end_layout + +\begin_layout Claim* +\begin_inset Formula $K_{m,n}$ +\end_inset + + Hamiltonov +\begin_inset Formula $\Leftrightarrow m=n$ +\end_inset + +. +\end_layout + +\begin_layout Proof +\begin_inset Formula $\left(\Rightarrow\right)$ +\end_inset + + Uporabimo izrek o potrebnem pogoju. + RAAPDD BSŠ +\begin_inset Formula $m>n$ +\end_inset + +: +\begin_inset Formula $\Omega\left(G-n\right)=m$ +\end_inset + +, kar vodi v +\begin_inset Formula $\rightarrow\!\leftarrow$ +\end_inset + +. + +\begin_inset Formula $\left(\Leftarrow\right)$ +\end_inset + + Očitno lahko skiciramo Hamiltonov cikel. +\end_layout + +\begin_layout Claim* +\begin_inset Formula $G$ +\end_inset + + dvodelen z razdelitvijo +\begin_inset Formula $\left(A,B\right)$ +\end_inset + +, +\begin_inset Formula $\left|A\right|\not=\left|B\right|\Rightarrow G$ +\end_inset + + ni Hamiltonov. +\end_layout + +\begin_layout Subsection +Navedite Orejev zadostni pogoj za obstoj Hamiltonovega cikla v grafu. + Skicirajte dokaz tega izreka. +\end_layout + +\begin_layout Theorem* +Ore: +\begin_inset Formula $G$ +\end_inset + + graf, +\begin_inset Formula $\left|VG\right|\geq3$ +\end_inset + +, +\begin_inset Formula $\left(\forall u,v\in VG:uv\not\in EG\Rightarrow\deg u+\deg v\geq\left|VG\right|\right)\Rightarrow G$ +\end_inset + + Hamiltonov. + ZDB če za vsak par nesosednjih vozlišč v grafu z vsaj tremi vozlišči velja + +\begin_inset Formula $\deg u+\deg v\geq\left|VG\right|$ +\end_inset + +, je graf Hamiltonov. +\end_layout + +\begin_layout Proof +Dokaz z metodo najmanjšega protiprimera. + RAAPDD izrek ne velja. + Tedaj +\begin_inset Formula $\exists G$ +\end_inset + +, da predpostavka velja, zaključek pa ne. + Med vsemi takimi grafi izberimo tiste z najmanj vozlišči, izmed njih pa + enega izmed tistih, ki imajo največ povezav, in ga fiksiramo. + Naj bo to graf +\begin_inset Formula $G$ +\end_inset + +. + Zanj velja: +\end_layout + +\begin_deeper +\begin_layout Itemize +\begin_inset Formula $\forall u,v\in VG:uv\not\in EG\Rightarrow\deg u+\deg v\geq\left|VG\right|$ +\end_inset + + +\end_layout + +\begin_layout Itemize +\begin_inset Formula $G$ +\end_inset + + ni Hamiltonov +\begin_inset Formula $\Rightarrow G$ +\end_inset + + gotovo ni polni graf +\begin_inset Formula $\Rightarrow\exists u,v\in VG\ni:uv\not\in EG$ +\end_inset + +. + Naj bo +\begin_inset Formula $H$ +\end_inset + + graf, da velja +\begin_inset Formula $VH\coloneqq VG$ +\end_inset + + in +\begin_inset Formula $EH\coloneqq EG\cup uv$ +\end_inset + +. + Zanj še vedno velja prejšnja točka, zaradi izbire +\begin_inset Formula $G$ +\end_inset + + (največ povezav) pa ni več protiprimer za izrek, zato je Hamiltonov. + Vsak Hamiltonov cikel v +\begin_inset Formula $H$ +\end_inset + + vsebuje +\begin_inset Formula $uv$ +\end_inset + +, sicer bi obstajal že v +\begin_inset Formula $G$ +\end_inset + +. + Vseeno pa +\begin_inset Formula $G$ +\end_inset + + premore Hamiltonovo pot, saj smo do cikla namreč dodali le eno povezavo. + Naj bo +\begin_inset Formula $\left[u=v_{1},v_{2},\dots,v_{n-1},v_{n}=v\right]$ +\end_inset + + Hamiltonov cikel v +\begin_inset Formula $H$ +\end_inset + +. + Vpeljimo množici +\begin_inset Formula $S=\left\{ v_{i},uv_{i+1}\in EG\right\} $ +\end_inset + + (ZDB predhodniki sosedov +\begin_inset Formula $u$ +\end_inset + + na Hamiltonovi poti v +\begin_inset Formula $G$ +\end_inset + +) in +\begin_inset Formula $T=\left\{ v_{i},vv_{i}\in EG\right\} $ +\end_inset + + (ZDB sosedje +\begin_inset Formula $v$ +\end_inset + + na Hamiltonovi poti v +\begin_inset Formula $G$ +\end_inset + +). + Velja +\begin_inset Formula $\left|S\cup T\right|=\left|S\right|+\left|T\right|-\left|S\cap T\right|$ +\end_inset + +, torej +\begin_inset Formula $\left|S\cup T\right|+\left|S\cup T\right|=\left|S\right|+\left|T\right|=\deg_{G}u+\deg_{G}v\overset{\text{predpostavka}}{\geq}\left|VG\right|=n$ +\end_inset + +. + Toda ker je +\begin_inset Formula $\left|S\cup T\right|=\left|VG\right|$ +\end_inset + +, +\begin_inset Formula $\left|S\cap T\right|\not=\emptyset$ +\end_inset + +, torej ima +\begin_inset Formula $v$ +\end_inset + + soseda iz +\begin_inset Formula $S$ +\end_inset + + (recimo mu +\begin_inset Formula $v_{i}$ +\end_inset + +), torej lahko konstruiramo Hamiltonov cikel v +\begin_inset Formula $G$ +\end_inset + +: +\begin_inset Formula $\left[u=v_{1},v_{2},\dots,v_{i},v_{n}=v,v_{n-1},\dots,v_{i+1},v_{1}=u\right]$ +\end_inset + + ( +\begin_inset Formula $v_{i+1}$ +\end_inset + + je namreč po konstrukciji +\begin_inset Formula $S$ +\end_inset + + sosed +\begin_inset Formula $u$ +\end_inset + +), kar vodi v +\begin_inset Formula $\rightarrow\!\leftarrow$ +\end_inset + +. +\end_layout + +\end_deeper +\begin_layout Subsection +\begin_inset CommandInset label +LatexCommand label +name "subsec:Kaj-so-ravninski" + +\end_inset + +Kaj so ravninski grafi? Kaj so lica ravninske vložitve grafa in čemu je + enaka vsota dolžin vseh lic ravninske vložitve grafa? Kako lahko omejimo + število povezav ravninskega grafa s pomočjo njegove ožine? +\end_layout + +\begin_layout Definition* +Graf +\begin_inset Formula $G$ +\end_inset + + ravninski +\begin_inset Formula $\Leftrightarrow$ +\end_inset + + lahko ga narišemo v ravnino tako, da se nobeni povezavi ne križata. + Ravninski graf skupaj z ustrezno risbo (vložitvijo) je graf, vložen v ravnino. +\end_layout + +\begin_layout Example* +\begin_inset Formula $K_{2,3}$ +\end_inset + + je ravninski, +\begin_inset Formula $K_{3,3}$ +\end_inset + + ni ravninski. +\end_layout + +\begin_layout Theorem* +Jordan: Sklenjena enostavna krivulja (t. + j. + taka, ki same sebe ne križa) v ravnini razdeli ravnino v notranjost, zunanjost + in krivuljo samo. +\end_layout + +\begin_layout Definition* +Naj bo +\begin_inset Formula $G$ +\end_inset + + ravninski, vložen v ravnino. + Sklenjena območja v ravnini, dobljena tako, da iz risbe odstranimo točke, + ki ustrezajo vozliščem in povezavam, imenujemo +\series bold +lica vložitve +\series default +. + S +\begin_inset Formula $FG$ +\end_inset + + označimo množico lič vložitve. + Seveda je tudi zunanje/neomejeno območje lice. +\end_layout + +\begin_layout Example* +\begin_inset Formula $\left|FQ_{3}\right|=6$ +\end_inset + + +\end_layout + +\begin_layout Remark* +\begin_inset Formula $G$ +\end_inset + + lahko vložimo v ravnino +\begin_inset Formula $\Leftrightarrow$ +\end_inset + + lahko ga vložimo na sfero. +\end_layout + +\begin_layout Definition* +Dolžina lica +\begin_inset Formula $F$ +\end_inset + + +\begin_inset Formula $(\text{\ensuremath{\ell F}}),$ +\end_inset + +je število povezav, ki jih prehodimo, ko obhodimo lice\SpecialChar endofsentence + +\end_layout + +\begin_layout Remark* +Vsako drevo je ravninski graf. + Ima eno lice, katerega dolžina je +\begin_inset Formula $2\left|ET\right|$ +\end_inset + +. +\end_layout + +\begin_layout Definition* +Ožina grafa +\begin_inset Formula $G$ +\end_inset + +, +\begin_inset Formula $gG$ +\end_inset + +, je dolžina najkrajšega cikla v +\begin_inset Formula $G$ +\end_inset + +. + Če je +\begin_inset Formula $G$ +\end_inset + + gozd, je +\begin_inset Formula $gG\coloneqq\infty$ +\end_inset + +. +\end_layout + +\begin_layout Claim* +Če je +\begin_inset Formula $G$ +\end_inset + + ravninsli graf, vložen v ravnino, velja +\begin_inset Formula +\[ +\sum_{F\in FG}\ell F=2\left|EG\right| +\] + +\end_inset + + +\end_layout + +\begin_layout Claim* +Naj +\begin_inset Formula $G$ +\end_inset + + premore cikel. + Naj bo +\begin_inset Formula $F\in FG$ +\end_inset + +. + +\begin_inset Formula $\ell F\geq gG$ +\end_inset + +. + +\begin_inset Formula $2\left|EG\right|=\sum_{F\in FG}\ell F\geq\sum_{F\in FG}gG=gG\left|FG\right|$ +\end_inset + + +\end_layout + +\begin_layout Claim* +Posledično: Če je +\begin_inset Formula $G$ +\end_inset + + ravninski graf z vsaj enim ciklom in je vložen v ravnino, je +\begin_inset Formula $\left|EG\right|\geq\frac{gG}{2}\left|FG\right|$ +\end_inset + +(*). +\end_layout + +\begin_layout Subsection +Kaj pravi Eulerjeva formula za ravninske grafe? Skicirajte njen dokaz. + Katere posledice Eulerjeve formule poznate? +\end_layout + +\begin_layout Theorem* +Eulerjeva formula: Če je +\begin_inset Formula $G$ +\end_inset + + ravninski vložen v ravnino, velja +\begin_inset Formula $\left|VG\right|-\left|EG\right|+\left|FG\right|=1+\Omega G$ +\end_inset + +. +\end_layout + +\begin_layout Example* +Graf +\begin_inset Quotes gld +\end_inset + +tri hiše +\begin_inset Quotes grd +\end_inset + +: +\begin_inset Formula $\left|VG\right|=15$ +\end_inset + +, +\begin_inset Formula $\left|EG\right|=18$ +\end_inset + +, +\begin_inset Formula $\left|FG\right|=7$ +\end_inset + +, +\begin_inset Formula $\Omega G=3$ +\end_inset + +, +\begin_inset Formula $15+16+7=1+3$ +\end_inset + + +\end_layout + +\begin_layout Proof +Dokažimo najprej za povezan multigraf +\begin_inset Formula $G$ +\end_inset + +. + Dokazujemo +\begin_inset Formula $\left|VG\right|-\left|EG\right|+\left|FG\right|=2$ +\end_inset + +. + Indukcija po številu vozlišč: +\end_layout + +\begin_layout Proof +Baza: Izolirano vozlišče: +\begin_inset Formula $\left|VG\right|=1$ +\end_inset + +, +\begin_inset Formula $\left|EG\right|=0+z$ +\end_inset + +, +\begin_inset Formula $\left|FG\right|=1+z$ +\end_inset + +, kjer je +\begin_inset Formula $z$ +\end_inset + + število zank (za navaden graf +\begin_inset Formula $z=0$ +\end_inset + +). + Drži. +\end_layout + +\begin_layout Proof +Korak: Naj bo +\begin_inset Formula $e\in EG$ +\end_inset + + poljubna. + Skrčimo jo (kot v multigrafu). + +\begin_inset Formula $\left|V\left(G/e\right)\right|=\left|VG\right|-1$ +\end_inset + +, +\begin_inset Formula $\left|E\left(G/e\right)\right|=\left|EG\right|-1$ +\end_inset + +, +\begin_inset Formula $\left|F\left(G/e\right)\right|=\left|FE\right|$ +\end_inset + +. + Velja +\begin_inset Formula $\left|VG\right|-\left|EG\right|+\left|FG\right|=2$ +\end_inset + +, saj po I. + P. + velja +\begin_inset Formula $\left|V\left(G/e\right)\right|+1-\left|E\left(G/e\right)\right|-1+\left|F\left(G/e\right)\right|=2$ +\end_inset + +. +\end_layout + +\begin_layout Proof +Sedaj dokažimo še za nepovezan multigraf +\begin_inset Formula $G$ +\end_inset + + z +\begin_inset Formula $\Omega G$ +\end_inset + + komponentami. + Grafu lahko dodamo +\begin_inset Formula $\Omega G-1$ +\end_inset + + povezav, da ga povežemo, s čimer ne spremenimo niti +\begin_inset Formula $\left|FG\right|$ +\end_inset + + niti +\begin_inset Formula $\left|VG\right|$ +\end_inset + +. + Če je +\begin_inset Formula $E$ +\end_inset + + množica povezav, ki jo moramo dodati, velja +\begin_inset Formula $\left|VG\right|-\left|EG\cup E\right|+\left|FG\right|=2=\left|VG\right|-\left|EG\right|-\Omega G+1+\left|FG\right|\Rightarrow\left|VG\right|-\left|EG\right|+\left|FG\right|=2-1+\Omega G=1+\Omega G$ +\end_inset + +. +\end_layout + +\begin_layout Theorem* +Za ravninski graf z vsaj tremi vozlišči velja +\begin_inset Formula $\left|EG\right|\leq3\left|VG\right|-6$ +\end_inset + +, če je slednji brez trikotnikov, a ima cikel, pa celo +\begin_inset Formula $\left|EG\right|\leq2\left|VG\right|-4$ +\end_inset + +. +\end_layout + +\begin_layout Proof +Dokažimo za povezan ravninski graf, sicer mu lahko samo dodamo povezave + in ga povežemo. + Ločimo primera: +\end_layout + +\begin_layout Labeling +\labelwidthstring 00.00.0000 +\begin_inset Formula $\left(G\text{ drevo}\right)$ +\end_inset + + +\begin_inset Formula $\left|EG\right|=\left|VG\right|-1$ +\end_inset + + (karakterizacija dreves) +\begin_inset Formula $\overset{?}{\leq}3\left|VG\right|-6$ +\end_inset + +. + Drži, kajti +\begin_inset Formula $\left|VG\right|\geq3$ +\end_inset + +. +\end_layout + +\begin_deeper +\begin_layout Labeling +\labelwidthstring 00.00.0000 +\begin_inset Formula $\left(G\text{ premore cikel}\right)$ +\end_inset + + Po Eulerjevi formuli velja +\begin_inset Formula +\[ +2=\left|VG\right|-\left|EG\right|+\left|FG\right|\overset{\text{(*) iz \ref{subsec:Kaj-so-ravninski}}}{\leq}\left|VG\right|-\left|EG\right|+\frac{2\left|EG\right|}{gG} +\] + +\end_inset + + +\begin_inset Formula +\[ +2\leq\left|VG\right|-\left|EG\right|+\frac{2\left|EG\right|}{gG} +\] + +\end_inset + + +\begin_inset Formula +\[ +2-\left|VG\right|\leq\left|EG\right|\left(\frac{2}{gG}-1\right)\quad\quad\quad\quad/^{-1} +\] + +\end_inset + + +\begin_inset Formula +\[ +\left|VG\right|-2\geq\left|EG\right|\left(1-\frac{2}{gG}\right)=\left|EG\right|\left(\frac{gG-2}{gG}\right) +\] + +\end_inset + + +\begin_inset Formula +\[ +\left(\left|VG\right|-2\right)\frac{gG}{gG-2}\geq\left|EG\right| +\] + +\end_inset + + +\end_layout + +\begin_layout Standard +\begin_inset Formula $\frac{gG}{gG-2}$ +\end_inset + + je največ 3 in to tedaj, ko graf premore trikotnik. + Če za vse večje +\begin_inset Formula $gG$ +\end_inset + + bo ta ulomek manjši, torej lahko levo stran omejimo navzdol: +\begin_inset Formula $3\left|VG\right|-6\geq\left(\left|VG\right|-2\right)\frac{gG}{gG-2}\geq\left|EG\right|$ +\end_inset + + +\end_layout + +\begin_layout Standard +Če pa graf ne premore trikotnika, a ima cikel, pa je +\begin_inset Formula $\frac{gG}{gG-2}=2$ +\end_inset + + in levo stran strožje omejimo navzgor in velja +\begin_inset Formula $2\left|VG\right|-4\geq\left|EG\right|$ +\end_inset + +. + +\end_layout + +\end_deeper +\begin_layout Subsection +Kaj je kromatično število +\begin_inset Formula $\chi\left(G\right)$ +\end_inset + + grafa +\begin_inset Formula $G$ +\end_inset + +? Pojasnite požrešni algoritem barvanja grafa. + Kako lahko z njegovo pomočjo navzgor omejimo +\begin_inset Formula $\chi\left(G\right)$ +\end_inset + +? +\end_layout + +\begin_layout Definition* +\begin_inset Formula $k-$ +\end_inset + +barvanje grafa +\begin_inset Formula $G$ +\end_inset + + je preslikava +\begin_inset Formula $C:VG\to\left\{ 1..k\right\} $ +\end_inset + +, za katero velja +\begin_inset Formula $uv\in EG\Rightarrow Cu\not=Cv$ +\end_inset + +. + Kromatično število +\begin_inset Formula $\chi G$ +\end_inset + + je najmanjši +\begin_inset Formula $k$ +\end_inset + +, za katerega najdemo +\begin_inset Formula $k-$ +\end_inset + +barvanje +\begin_inset Formula $G$ +\end_inset + +. + Za fiksen +\begin_inset Formula $i$ +\end_inset + + je +\begin_inset Formula $\left\{ u\in VG;Cu=i\right\} $ +\end_inset + + barvni razred, ki je neodvisna množica +\begin_inset Foot +status open + +\begin_layout Plain Layout +Za neodvisno množico +\begin_inset Formula $S\subseteq VG$ +\end_inset + + velja +\begin_inset Formula $\forall u,v\in S:uv\not\in EG$ +\end_inset + + ZDB je +\begin_inset Quotes gld +\end_inset + +brez povezav +\begin_inset Quotes grd +\end_inset + +. + Glej vprašanje +\begin_inset CommandInset ref +LatexCommand ref +reference "subsec:Kaj-je-neodvisnostno" +plural "false" +caps "false" +noprefix "false" + +\end_inset + +. +\end_layout + +\end_inset + +. +\end_layout + +\begin_layout Example* +\begin_inset Formula $\chi K_{n}=n$ +\end_inset + +, +\begin_inset Formula $\chi C_{n}=\begin{cases} +2 & ;n\text{ sod}\\ +3 & ;n\text{ lih} +\end{cases}$ +\end_inset + +, +\begin_inset Formula $\chi P_{5,2}=3$ +\end_inset + +. +\end_layout + +\begin_layout Definition* +Klično število grafa +\begin_inset Formula $G$ +\end_inset + + označimo z +\begin_inset Formula $\omega G$ +\end_inset + +. + Velja +\begin_inset Formula $\omega G=\left|VH\right|$ +\end_inset + +, kjer je +\begin_inset Formula $H$ +\end_inset + + največji poln podgraf v +\begin_inset Formula $G$ +\end_inset + +. +\end_layout + +\begin_layout Remark* +\begin_inset Formula $\forall G\in\mathcal{G}:\chi G\geq\omega G$ +\end_inset + +. +\end_layout + +\begin_layout Definition* +Požrešni algoritem barvanja: V poljubnem vrstnem redu zaporedno barvamo + vozlišča. + Posameznemu vozlišču priredimo najnižjo barvo, ki še ni uporabljena na + njegovih sosedih. +\end_layout + +\begin_layout Fact* +Vedno +\begin_inset Formula $\exists$ +\end_inset + + vrstni red barvanja, da požrešni algoritem vrne barvanje s +\begin_inset Formula $\chi G$ +\end_inset + + barvami. +\end_layout + +\begin_layout Claim* +\begin_inset Formula $\forall G\in\mathcal{G}:\chi G\leq\Delta G+1$ +\end_inset + + ZDB +\begin_inset Formula $\chi G$ +\end_inset + + je kvečjemu 1 večji od največje stopnje v grafu. +\end_layout + +\begin_layout Proof +Naj bo +\begin_inset Formula $x_{1},\dots,x_{n}$ +\end_inset + + poljuben vrstni red vozlišč. + Poženemo požrešni algoritem. + Na poljubnem +\begin_inset Formula $i$ +\end_inset + +tem koraku, ko barvamo +\begin_inset Formula $x_{i}$ +\end_inset + +, je kvečjemu +\begin_inset Formula $\deg_{G}x_{i}$ +\end_inset + + barv, ki niso na razpolago, kar je +\begin_inset Formula $\leq\Delta G$ +\end_inset + +. +\end_layout + +\begin_layout Claim* +\begin_inset Formula $G$ +\end_inset + + ni regularen +\begin_inset Formula $\Rightarrow\forall G\in\mathcal{G}:\chi G\leq\Delta G$ +\end_inset + + +\end_layout + +\begin_layout Proof +Naj bo +\begin_inset Formula $x$ +\end_inset + + tisto vozlišče, ki največje stopnje (*). + Vzamemo ga kot koren za BFS in z BFS vozlišča zmečemo v zaporedje +\begin_inset Formula $a$ +\end_inset + +. + Nato požrešno barvamo v obratni smeri, kot jo določa +\begin_inset Formula $a$ +\end_inset + +. + Na vsakem koraku, razen na korenu, bomo imeli soseda, ki še ni pobarvan, + torej je kvečjemu +\begin_inset Formula $\deg_{G}x_{i}-1$ +\end_inset + + barv, ki niso na razpolago, kar je +\begin_inset Formula $\leq\Delta G$ +\end_inset + +. + Na zadnjem koraku (koren) pa po predpostavki (*) na razpolago ni kvečjemu + +\begin_inset Formula $\Delta G-1$ +\end_inset + + barv. +\end_layout + +\begin_layout Theorem* +Brooks: +\begin_inset Formula $G$ +\end_inset + + povezan, +\begin_inset Formula $G$ +\end_inset + + niti poln niti lihi cikel +\begin_inset Formula $\Rightarrow\chi G\leq\Delta G$ +\end_inset + +. +\end_layout + +\begin_layout Standard +\begin_inset Separator plain +\end_inset + + +\end_layout + +\begin_layout Theorem* +Naj bo +\begin_inset Formula $d_{1}\geq d_{2}\geq\cdots\geq d_{n}$ +\end_inset + + zaporedje stopenj grafa +\begin_inset Formula $G$ +\end_inset + +. + Tedaj velja +\begin_inset Formula $\chi G\leq1+\max_{i=1}^{n}\left(\min\left\{ d_{i},i-1\right\} \right)$ +\end_inset + + +\end_layout + +\begin_layout Proof +Poženimo požrešni algoritem barvanja v padajočem zaporedju stopenj. + Na +\begin_inset Formula $i$ +\end_inset + +tem barvamo vozlišče stopnje +\begin_inset Formula $d_{i}$ +\end_inset + +, zato imamo gotovo na voljo barvo iz +\begin_inset Formula $\left\{ 1..d_{i}+1\right\} $ +\end_inset + +. + Ker smo doslej pobarvali zgolj +\begin_inset Formula $i-1$ +\end_inset + + vozlišč, imamo gotovo na voljo barvo iz +\begin_inset Formula $\left\{ 1..i\right\} $ +\end_inset + +. + Algoritem pobarva vozlišče z barvo +\begin_inset Formula $\leq\min\left\{ i,d_{i}+1\right\} $ +\end_inset + +. + Največja uporabljena barva +\begin_inset Formula $k$ +\end_inset + + je +\begin_inset Formula $\leq\max_{i=1}^{n}\left\{ \min\left\{ d_{i}+1,i\right\} \right\} $ +\end_inset + +. + Torej +\begin_inset Formula $\chi G\leq1+\max_{i=1}^{n}\left(\min\left\{ d_{i},i-1\right\} \right)$ +\end_inset + + (izven +\begin_inset Formula $\max$ +\end_inset + + smo prišteli 1, znotraj +\begin_inset Formula $\min$ +\end_inset + + smo od vseh elementov 1 odšteli). +\begin_inset Note Note +status open + +\begin_layout Plain Layout +TODO XXX FIXME dokaz in trditev za barvanje ravninskega grafa s petimi barvami +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Subsection +Kaj je kromatični indeks +\begin_inset Formula $\chi'\left(G\right)$ +\end_inset + + grafa +\begin_inset Formula $G$ +\end_inset + +? Kaj pravi Vizingov izrek in kako na njegovi osnovi razdelimo vse grafe + v dva razreda? +\end_layout + +\begin_layout Definition* +\begin_inset Formula $k-$ +\end_inset + +barvanje povezav je preslikava +\begin_inset Formula $C:EG\to\left\{ 1..k\right\} \ni:uv,uw\in EG\Rightarrow C\left(uv\right)\not=C\left(uw\right)$ +\end_inset + +. + ZDB povezavi s skupnim krajiščem dobita različni barvi. + Kromatični indeks grafa +\begin_inset Formula $G$ +\end_inset + + (oznaka +\begin_inset Formula $\chi'G$ +\end_inset + +) je najmanjši +\begin_inset Formula $k$ +\end_inset + +, za katerega +\begin_inset Formula $\exists k-$ +\end_inset + +barvanje grafa +\begin_inset Formula $G$ +\end_inset + +. +\end_layout + +\begin_layout Example* +\begin_inset Formula $\chi'C_{n}=\begin{cases} +2 & ;n\text{ sod}\\ +3 & ;n\text{ lih} +\end{cases}$ +\end_inset + + +\end_layout + +\begin_layout Theorem* +Vizing: +\begin_inset Formula $\forall G\in\mathcal{G}:\Delta G\leq\chi'G\leq\Delta G+1$ +\end_inset + +. +\end_layout + +\begin_layout Proof +Prvi neenačaj je očiten, drugega ne bomo dokazali. +\end_layout + +\begin_layout Definition* +Graf +\begin_inset Formula $G$ +\end_inset + + je razreda I, če je +\begin_inset Formula $\chi'G=\Delta G$ +\end_inset + + oziroma razreda II, če je +\begin_inset Formula $\chi'G=\Delta G+1$ +\end_inset + +. +\end_layout + +\begin_layout Example* +\begin_inset Formula $C_{2n}$ +\end_inset + + so razreda +\begin_inset Formula $I$ +\end_inset + +, +\begin_inset Formula $C_{2n+1}$ +\end_inset + + so razreda II, +\begin_inset Formula $K_{3}$ +\end_inset + + je razreda II, +\begin_inset Formula $K_{4}$ +\end_inset + + je razreda +\begin_inset Formula $I$ +\end_inset + + +\begin_inset Note Note +status open + +\begin_layout Plain Layout +TODO XXX FIXME dokaz, da so dvodelni grafi I, K_2k razreda I in K_2k+1 razreda + II. +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Subsection +\begin_inset CommandInset label +LatexCommand label +name "subsec:Kaj-je-neodvisnostno" + +\end_inset + +Kaj je neodvisnostno število grafa? Zanj podajte spodnjo mejo in zgornjo + mejo. + Opišite algoritem za izračun neodvisnostnega števila drevesa. +\end_layout + +\begin_layout Definition* +Če je +\begin_inset Formula $G$ +\end_inset + + graf in +\begin_inset Formula $I\subseteq VG$ +\end_inset + +, je +\begin_inset Formula $I$ +\end_inset + + neodvisna +\begin_inset Formula $\Leftrightarrow\forall u,v\in I:uv\not\in EG$ +\end_inset + + ZDB če nobeni dve vozlišči v I nista sosednji v +\begin_inset Formula $G$ +\end_inset + +. + Moč največje neodvisne množice v +\begin_inset Formula $G$ +\end_inset + + je neodvisnostno število +\begin_inset Formula $G$ +\end_inset + +, označeno z +\begin_inset Formula $\alpha G$ +\end_inset + +. +\end_layout + +\begin_layout Example* +\begin_inset Formula $\alpha K_{n}=1$ +\end_inset + +, +\begin_inset Formula $\alpha C_{n}=\lfloor\frac{n}{2}\rfloor$ +\end_inset + +, +\begin_inset Formula $\alpha P_{5,2}=4$ +\end_inset + + +\end_layout + +\begin_layout Claim* +\begin_inset Formula $\forall G\in\mathcal{G}:\alpha G\cdot\chi G\geq\left|VG\right|$ +\end_inset + + +\end_layout + +\begin_layout Proof +Naj bo +\begin_inset Formula $\chi G=k$ +\end_inset + + in +\begin_inset Formula $V_{1},\dots,V_{k}$ +\end_inset + + barvni razredi nekega fiksnega barvanja s k barvami. + Slednji so neodvisne množice. + +\begin_inset Formula $\forall i\in\left\{ 1..k\right\} :\left|V_{i}\right|\leq\alpha G\Rightarrow\left|VG\right|=\sum_{i=1}^{k}\left|V_{i}\right|\leq\sum_{i=1}^{k}\alpha G=\alpha G\cdot k=\alpha G\chi G$ +\end_inset + + +\end_layout + +\begin_layout Corollary* +Spodnja meja za neodvisnostno število +\begin_inset Formula $\alpha G\geq\frac{\left|VG\right|}{\chi G}$ +\end_inset + +. +\end_layout + +\begin_layout Claim* +Zgornja meja za neodvisnostno število: +\begin_inset Formula $\alpha G\leq\left|VG\right|-\frac{\left|EG\right|}{\Delta G}$ +\end_inset + +. +\end_layout + +\begin_layout Proof +Naj bo +\begin_inset Formula $I$ +\end_inset + + poljubna največja neodvisna množica v +\begin_inset Formula $G$ +\end_inset + +, torej +\begin_inset Formula $\left|I\right|=\alpha G$ +\end_inset + +. + V +\begin_inset Formula $VG\setminus I$ +\end_inset + + je vozlišč +\begin_inset Formula $\left|VG\right|-\alpha G$ +\end_inset + +. + Ker vozlišča v +\begin_inset Formula $I$ +\end_inset + + medsebojno niso povezana, +\begin_inset Formula $\left|EG\right|\leq\left(\left|VG\right|-\alpha G\right)\cdot\Delta G\Rightarrow\left|EG\right|\leq\left|VG\right|\Delta G-\alpha G\Delta G\Rightarrow\alpha G\Delta G\leq\left|VG\right|\Delta G-\left|EG\right|\Rightarrow\alpha G\leq\left|VG\right|-\frac{\left|EG\right|}{\Delta G}$ +\end_inset + +. +\end_layout + +\begin_layout Example* +\begin_inset Formula $Q_{d},d\geq1$ +\end_inset + +: Zgornja meja: +\begin_inset Formula $\alpha Q_{d}\leq\left|VQ_{d}\right|-\frac{\left|EQ_{d}\right|}{\Delta Q_{d}}=2^{d}-\frac{d2^{d-1}}{d}=2^{d}-2^{d-1}=2^{d-1}$ +\end_inset + +, Spodnja meja: +\begin_inset Formula $\alpha Q_{d}\geq\frac{\left|VQ_{d}\right|}{\chi Q_{d}}=\frac{2^{d}}{2}=2^{d-1}$ +\end_inset + +, torej +\begin_inset Formula $\alpha Q_{d}=2^{d-1}$ +\end_inset + +. +\end_layout + +\begin_layout Paragraph* +Neodvisnostno število dreves +\end_layout + +\begin_layout Standard +Naj bo +\begin_inset Formula $T$ +\end_inset + + drevo s poljubnim korenom +\begin_inset Formula $r\in VT$ +\end_inset + +. + Odslej na drevo glejmo +\begin_inset Formula $T$ +\end_inset + + kot na drevo s korenom +\begin_inset Formula $r$ +\end_inset + +. + Za neodvisno množico +\begin_inset Formula $S$ +\end_inset + + drevesa +\begin_inset Formula $T$ +\end_inset + + in poljubno vozlišče +\begin_inset Formula $x\in VT$ +\end_inset + + velja: +\begin_inset Formula $x\in S\Rightarrow$ +\end_inset + + potomci (otroci) +\begin_inset Formula $x\not\in S$ +\end_inset + +. + Če pa +\begin_inset Formula $x\not\in S$ +\end_inset + +, pa +\begin_inset Formula $S$ +\end_inset + + sme vsebovati potomce +\begin_inset Formula $x$ +\end_inset + +. + Z +\begin_inset Formula $Iv$ +\end_inset + + označimo velikost največje neodvisne množice s korenom v +\begin_inset Formula $v\in VT$ +\end_inset + +. +\end_layout + +\begin_layout Standard +Očitno velja +\begin_inset Formula $\alpha T=Ir$ +\end_inset + +. + Z rekurzivnim postopkom določimo +\begin_inset Formula $\text{\ensuremath{\alpha T}}$ +\end_inset + + na tak način: +\begin_inset Formula +\[ +\alpha T=Ir=\text{\ensuremath{\max}\left\{ 1+\sum_{v\in\text{vnuki/drugi potomci \ensuremath{r}}}Iv,\sum_{v\in\text{otroci/potomci }r}Iv\right\} } +\] + +\end_inset + +Formula je očitna. + Na vsakem rekurzivnem koraku lahko bodisi v množico izberemo +\begin_inset Formula $v$ +\end_inset + + in ne izberemo njegovih potomcev, bodisi izberemo potomce, njega pa ne. + Z rekurzivnim algoritmom preverimo vse možnosti. +\end_layout + +\begin_layout Example* +\begin_inset Formula $\alpha T_{n}$ +\end_inset + +, kjer je +\begin_inset Formula $T_{n}$ +\end_inset + + polno dvojiško drevo globine +\begin_inset Formula $n\in\mathbb{N}_{0}$ +\end_inset + +: Vpeljimo zaporedje +\begin_inset Formula $a_{n}=\alpha T_{n}$ +\end_inset + + in velja: +\begin_inset Formula $\left(a_{n}\right)_{n\in\mathbb{N}_{0}}=\left[1,2,5,10,21,42,\dots\right]$ +\end_inset + +. +\end_layout + +\begin_layout Theorem* +\begin_inset Formula $a_{0}=1$ +\end_inset + +, +\begin_inset Formula $a_{1}=2$ +\end_inset + +, za +\begin_inset Formula $n\geq2$ +\end_inset + +: +\begin_inset Formula $a_{n}=\begin{cases} +2_{n-1}+1 & ;n\text{ sod}\\ +2_{n-1} & ;n\text{ lih} +\end{cases}$ +\end_inset + +. +\end_layout + +\begin_layout Proof +Z indukcijo. + Baza sta +\begin_inset Formula $a_{0}$ +\end_inset + + in +\begin_inset Formula $a_{1}$ +\end_inset + +. + Indukcijska predpostavka je dana v izreku. + ITD DOPIŠI DOKAZ. + +\begin_inset Quotes gld +\end_inset + +DS2P FMF 2024-04-18 +\begin_inset Quotes grd +\end_inset + + stran 5. +\end_layout + +\begin_layout Subsection +\begin_inset CommandInset label +LatexCommand label +name "subsec:Kaj-je-dominacijsko" + +\end_inset + +Kaj je dominacijsko število grafa? Zanj podajte spodnjo mejo in zgornjo + mejo. + Kakšna je zveza med dominacijskim številom grafa in njegovega vpetega podgrafa? +\end_layout + +\begin_layout Standard +Naj bo +\begin_inset Formula $G$ +\end_inset + + graf. +\end_layout + +\begin_layout Standard +\begin_inset Separator plain +\end_inset + + +\end_layout + +\begin_layout Definition* +Neodvisna množica +\begin_inset Formula $G$ +\end_inset + + je maksimalna, če ni prava podmnožica kakšne neodvisne množice v +\begin_inset Formula $G$ +\end_inset + +. +\end_layout + +\begin_layout Standard +\begin_inset Separator plain +\end_inset + + +\end_layout + +\begin_layout Definition* +\begin_inset Formula $N_{G}\left(u\right)\coloneqq\left\{ v;uv\in EG\right\} $ +\end_inset + + je soseščina vozlišča +\begin_inset Formula $u$ +\end_inset + + (sosedje +\begin_inset Formula $u$ +\end_inset + + v +\begin_inset Formula $G$ +\end_inset + +). + +\begin_inset Formula $N_{G}\left[u\right]\coloneqq N_{G}\left(u\right)\cup\left\{ u\right\} $ +\end_inset + + je zaprta soseščina vozlišča +\begin_inset Formula $u$ +\end_inset + +. + +\begin_inset Formula $N_{G}\left[D\right]=\bigcup_{u\in D}N_{G}\left[u\right]$ +\end_inset + + je zaprta soseščina množice vozlišč +\begin_inset Formula $D.$ +\end_inset + + +\begin_inset Formula $D\subseteq VG$ +\end_inset + + dominira +\begin_inset Formula $X\subseteq VG\Leftrightarrow X\subseteq N_{G}\left[D\right]$ +\end_inset + +. + Če +\begin_inset Formula $D$ +\end_inset + + dominira +\begin_inset Formula $VG$ +\end_inset + +, pravimo, da je +\begin_inset Formula $D$ +\end_inset + + dominantna množica grafa +\begin_inset Formula $G$ +\end_inset + +. + ZDB +\begin_inset Formula $D$ +\end_inset + + dominantna množica +\begin_inset Formula $G\Leftrightarrow\forall u\in VG:u\in D\vee\exists x\in D\ni:xu\in EG$ +\end_inset + + ZDB vsako vozlišče je v +\begin_inset Formula $D$ +\end_inset + + ali pa ima soseda iz +\begin_inset Formula $D$ +\end_inset + +. + Moč najmanjše dominacijske množice za +\begin_inset Formula $G$ +\end_inset + + je dominacijsko število grafa +\begin_inset Formula $G$ +\end_inset + +, označeno z +\begin_inset Formula $\gamma G$ +\end_inset + +. +\end_layout + +\begin_layout Standard +\begin_inset Separator plain +\end_inset + + +\end_layout + +\begin_layout Remark* +Vsaka maksimalna neodvisna množica grafa je njegova dominantna množica. +\end_layout + +\begin_layout Example* +\begin_inset Formula $\gamma K_{n}=1$ +\end_inset + +, +\begin_inset Formula $\gamma C_{n}=\lceil\frac{n}{3}\rceil$ +\end_inset + +, +\begin_inset Formula $\gamma P_{5,2}=3$ +\end_inset + +. +\end_layout + +\begin_layout Theorem* +Za vsak graf brez izoliranih vozlišč velja, da je +\begin_inset Formula $\lceil\frac{\left|VG\right|}{\Delta G+1}\rceil\leq\gamma G\leq\lfloor\frac{\left|VG\right|}{2}\rfloor$ +\end_inset + +. +\end_layout + +\begin_layout Proof +Spodnja meja: Če je +\begin_inset Formula $G$ +\end_inset + + dominantna množica in +\begin_inset Formula $u\in D$ +\end_inset + +, potem +\begin_inset Formula $u$ +\end_inset + + dominira +\begin_inset Formula $\leq\deg_{G}u+1$ +\end_inset + + vozlišč, torej vsako vozlišče iz +\begin_inset Formula $D$ +\end_inset + + dominira kvečjemu +\begin_inset Formula $\Delta G+1$ +\end_inset + + vozlišč. + Ker +\begin_inset Formula $VG\subseteq N_{G}\left[D\right]$ +\end_inset + + (unija zaprtih okolic vozlišč iz dominantne množice prekrije cel graf), + je +\begin_inset Formula $\left|D\right|\geq\frac{\left|VG\right|}{\Delta G+1}$ +\end_inset + +, kajti +\begin_inset Formula $\left|VG\right|=\left|N_{G}\left[D\right]\right|=\left|\bigcup_{u\in D}N_{G}\left[u\right]\right|\leq\sum_{u\in D}N\left(u\right)\leq\sum_{u\in D}$ +\end_inset + + +\begin_inset Formula $\left(\Delta G+1\right)=\gamma G\left(\Delta G+1\right)$ +\end_inset + +. +\end_layout + +\begin_layout Proof +Zgornja meja: Naj bo +\begin_inset Formula $I$ +\end_inset + + poljubna maksimalna neodvisna množica. + Vemo, da je +\begin_inset Formula $I$ +\end_inset + + tedaj dominantna. + Če je +\begin_inset Formula $\left|I\right|\leq\frac{\left|VG\right|}{2}$ +\end_inset + + smo dokazali, sicer vzemimo njen komplement +\begin_inset Formula $I'\coloneqq VG\setminus I$ +\end_inset + +. + Trdimo, da je +\begin_inset Formula $I'$ +\end_inset + + dominantna. + Vzemimo poljubno +\begin_inset Formula $u\in G$ +\end_inset + +. + Če +\begin_inset Formula $u\in I'$ +\end_inset + +, dominira samega sebe, sicer, ker je +\begin_inset Formula $G$ +\end_inset + + brez izoliranih vozlišč, ima +\begin_inset Formula $u$ +\end_inset + + vsaj enega soseda, ker pa je +\begin_inset Formula $I$ +\end_inset + + neodvisna, je ta sosed v +\begin_inset Formula $I'$ +\end_inset + +, torej je +\begin_inset Formula $I'$ +\end_inset + + dominantna in ima +\begin_inset Formula $\leq\frac{\left|VG\right|}{2}$ +\end_inset + + vozlišč in velja +\begin_inset Formula $\gamma G\leq\min\left\{ \left|I\right|,\left|I'\right|\right\} \leq\frac{\left|VG\right|}{2}$ +\end_inset + +, kajti +\begin_inset Formula $I\cup I'=VG$ +\end_inset + +. +\end_layout + +\begin_layout Example* +Enakost spodnje meje velja v +\begin_inset Formula $K_{n}$ +\end_inset + +, +\begin_inset Formula $C_{n}$ +\end_inset + +. + Enakost zgornje meje velja pri glavnikih +\begin_inset Formula $T_{n}$ +\end_inset + +. +\end_layout + +\begin_layout Standard +\begin_inset Note Note +status open + +\begin_layout Plain Layout +dodaj 2-pakiranje in 2-pakirno število +\begin_inset Formula $\rho$ +\end_inset + +! +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Theorem* +Če je +\begin_inset Formula $H$ +\end_inset + + vpet podgraf +\begin_inset Formula $G$ +\end_inset + +, je +\begin_inset Formula $\gamma G\leq\gamma H$ +\end_inset + +. +\end_layout + +\begin_layout Proof +Naj bo +\begin_inset Formula $D$ +\end_inset + + minimalna dominantna množica za +\begin_inset Formula $H$ +\end_inset + +. + +\begin_inset Formula $\left|D\right|=\gamma H$ +\end_inset + +. + Tedaj je +\begin_inset Formula $D$ +\end_inset + + očitno tudi dominantna množica za +\begin_inset Formula $G$ +\end_inset + +. + Toda seveda se lahko zgodi, da je v +\begin_inset Formula $G$ +\end_inset + + moč najti manjšo dominantno množico kot v +\begin_inset Formula $H$ +\end_inset + +, ker ima +\begin_inset Formula $G$ +\end_inset + + lahko dodatne povezave. +\end_layout + +\begin_layout Standard +\begin_inset Note Note +status open + +\begin_layout Plain Layout +TODO XXX FIXME vpeto drevo in +\begin_inset Formula $\gamma$ +\end_inset + + +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Subsection +Kaj je dominacijsko število grafa in kaj je celotno dominacijsko število + grafa? Kakšna je zveza med njima? Kakšna je povezava med dominacijskim + številom grafa in kromatičnim številom komplementa? +\end_layout + +\begin_layout Standard +Dominacijsko število grafa je definirano v vprašanju +\begin_inset CommandInset ref +LatexCommand ref +reference "subsec:Kaj-je-dominacijsko" +plural "false" +caps "false" +noprefix "false" + +\end_inset + +. +\end_layout + +\begin_layout Definition* +Dominantna množica +\begin_inset Formula $D$ +\end_inset + + grafa +\begin_inset Formula $G$ +\end_inset + + je povezana, če inducira povezan podgraf, neodvisna, če inducira podgraf + brez povezav in +\series bold +celotna +\series default +, če ima vsako vozlišče iz +\begin_inset Formula $VG$ +\end_inset + + soseda v +\begin_inset Formula $D$ +\end_inset + + (tudi vozlišča iz +\begin_inset Formula $D$ +\end_inset + +). + Velikost najmanjše povezane dominantne množice označimo z +\begin_inset Formula $\gamma_{c}G$ +\end_inset + +, neodvisne z +\begin_inset Formula $\gamma_{i}G$ +\end_inset + + in +\series bold +celotne +\series default + z +\begin_inset Formula $\gamma_{t}G$ +\end_inset + + (connected, independent in total). +\end_layout + +\begin_layout Example* +\begin_inset Formula $\gamma_{t}K_{n}=2$ +\end_inset + +, +\begin_inset Formula $\gamma_{t}P_{n}=\lfloor\frac{n}{2}\rfloor+\lceil\frac{n}{2}\rceil-\lfloor\frac{n}{4}\rfloor$ +\end_inset + + (gledamo parčke, ki se dominirajo). +\end_layout + +\begin_layout Theorem* +Za vsak graf brez izoliranih vozlišč velja +\begin_inset Formula $\gamma G\leq\gamma_{t}G\leq2\gamma G$ +\end_inset + +. +\end_layout + +\begin_layout Proof +Spodnja meja je očitna, kajti biti celotna dominantna množica je strožji + pogoj kot biti dominantna množica. + Dokažimo +\begin_inset Formula $\gamma_{t}G\leq2\gamma G$ +\end_inset + +: Naj bo +\begin_inset Formula $D$ +\end_inset + + poljubna dominantna množica +\begin_inset Formula $G$ +\end_inset + +. + Vsakemu +\begin_inset Formula $x\in D$ +\end_inset + + priredimo nekega soseda od +\begin_inset Formula $x$ +\end_inset + +, recimo +\begin_inset Formula $x'$ +\end_inset + + in ga dodajmo v +\begin_inset Formula $\hat{D}$ +\end_inset + +, torej +\begin_inset Formula $\hat{D}=D\cup\left\{ x';x\in D\right\} $ +\end_inset + +, s čimer dominantno množico spremenimo v celotno tako, da ji kvečjemu podvojimo + število vozlišč. +\end_layout + +\begin_layout Example* +Enakost spodnje meje se pojavi pri +\begin_inset Formula $\gamma C_{4}=\gamma_{t}C_{4}=2$ +\end_inset + +, neenakost pa pri recimo +\begin_inset Formula $\gamma G_{3}=2\not=4=\gamma_{t}Q_{3}$ +\end_inset + +. +\end_layout + +\begin_layout Subsection +Kaj je grupoid, polgrupa, monoid, grupa? Kako v monoidu izračunamo inverz + produkta obrnljivih elementov? Kako definiramo potence v monoidu in kateri + računski zakoni veljajo zanje? +\end_layout + +\begin_layout Definition* +Če uvedemo binarno operacijo +\begin_inset Formula $f$ +\end_inset + + na množici +\begin_inset Formula $A$ +\end_inset + + takole: +\begin_inset Formula $f:A\times A\to A,f$ +\end_inset + + preslikava, je par +\begin_inset Formula $\left(A,f\right)$ +\end_inset + + +\series bold +grupoid +\series default +. + ZDB zahtevamo, da je operacija preslikava (domena je enaka definicijskemu + območju) in s tem zaprtost operacije. + Dvojiški operator +\begin_inset Formula $f\left(a,b\right)$ +\end_inset + + pišimo kot +\begin_inset Formula $a\cdot b$ +\end_inset + +. + +\end_layout + +\begin_layout Definition* +Če +\begin_inset Formula $\forall a,b,c\in A:\left(a\cdot b\right)\cdot c=a\cdot\left(b\cdot c\right)$ +\end_inset + + (asociativnost), pravimo, da je +\begin_inset Formula $\left(A,\cdot\right)$ +\end_inset + + +\series bold +podgrupa +\series default + ZDB asocietiven grupoid. +\end_layout + +\begin_layout Definition* +Enota je element +\begin_inset Formula $e\in A\ni:\forall a\in A:a\cdot e=e\cdot a=a$ +\end_inset + +. + Polgrupi z enoto pravimo +\series bold +monoid +\series default +. + +\end_layout + +\begin_layout Definition* +Monoidu, v katerem so vsi elementi obrnljivi, pravimo +\series bold +grupa +\series default + ZDB +\series bold + +\begin_inset Formula $\forall a\in A\exists b\in A\ni:a\cdot b=b\cdot a=e$ +\end_inset + + +\series default +. +\end_layout + +\begin_layout Remark* +Ker so inverzi v monoidu enolični (dokaz pri LA), inverz +\begin_inset Formula $a$ +\end_inset + + označimo z +\begin_inset Formula $a^{-1}$ +\end_inset + +. +\end_layout + +\begin_layout Example* +\begin_inset Formula $\left(\mathcal{G},\square\right)$ +\end_inset + + monoid, +\begin_inset Formula $\left(\mathbb{R}_{0}^{+}=\left\{ x\in\mathbb{R};x\geq0\right\} ,\max\right)$ +\end_inset + + monoid, množica vseh nizov/seznamov s concat operacijo je monoid. +\end_layout + +\begin_layout Theorem* +Če sta +\begin_inset Formula $a$ +\end_inset + + in +\begin_inset Formula $b$ +\end_inset + + v monoidu obrnljiva, je obrnljiv tudi njun produkt in velja +\begin_inset Formula $\left(a\cdot b\right)^{-1}=b^{-1}\cdot a^{-1}$ +\end_inset + +. +\end_layout + +\begin_layout Proof +\begin_inset Formula $\left(a\cdot b\right)\cdot\left(b^{-1}\cdot a^{-1}\right)=a\cdot\left(b\cdot b^{-1}\right)\cdot a^{-1}=a\cdot e\cdot a^{-1}=a\cdot a^{-1}=e$ +\end_inset + + in podobno +\begin_inset Formula $\left(b^{-1}a^{-1}\right)\left(ab\right)=e$ +\end_inset + +, torej +\begin_inset Formula $\left(b^{-1}a^{-1}\right)\left(ab\right)=\left(ab\right)\left(b^{-1}a^{-1}\right)=e\Rightarrow ab=\left(b^{-1}a^{-1}\right)$ +\end_inset + + po definiciji inverza. +\end_layout + +\begin_layout Corollary* +Če so +\begin_inset Formula $a_{1},\dots,a_{k}$ +\end_inset + + obrnljivi elementi monoida, je +\begin_inset Formula $\left(a_{1}\cdots a_{k}\right)$ +\end_inset + + obrnljiv element monoida in velja +\begin_inset Formula $\left(a_{1}\cdots a_{k}\right)^{-1}=a_{k}^{-1}\cdots a_{1}^{-1}$ +\end_inset + +. +\end_layout + +\begin_layout Proof +Dokaz z indukcijo: Baza: +\begin_inset Formula $k=2$ +\end_inset + + velja, Korak: predpostavimo +\begin_inset Formula $\left(a_{1}\cdots a_{k}\right)^{-1}=a_{k}^{-1}\cdots a_{1}^{-1}$ +\end_inset + +. + Množimo z desne z +\begin_inset Formula $a_{k+1}$ +\end_inset + + in smo dokazali. +\end_layout + +\begin_layout Definition* +Naj bo +\begin_inset Formula $\left(A,\cdot\right)$ +\end_inset + + monoid, +\begin_inset Formula $n\in\mathbb{N}_{0}$ +\end_inset + +. + +\begin_inset Formula $a^{0}\coloneqq e$ +\end_inset + +, +\begin_inset Formula $a^{n}=a\cdot a^{n-1}$ +\end_inset + + za +\begin_inset Formula $n\geq1$ +\end_inset + +. +\end_layout + +\begin_layout Corollary* +Velja torej +\begin_inset Formula $a^{n}a^{m}=a^{n+m}$ +\end_inset + +, +\begin_inset Formula $\left(a^{n}\right)^{m}=a^{nm}$ +\end_inset + +, +\begin_inset Formula $\left(a^{-1}\right)^{n}=a^{-1}\cdots n-\text{krat}\cdots a^{-1}=\left(a\cdots n-\text{krat}\cdots a\right)^{-1}=\left(a^{n}\right)^{-1}$ +\end_inset + +. + Torej za obrnljiv +\begin_inset Formula $a$ +\end_inset + + velja +\begin_inset Formula $\left(a^{n}\right)^{-1}=\left(a^{-1}\right)^{n}$ +\end_inset + +. +\begin_inset Note Note +status open + +\begin_layout Plain Layout +dodaj podgrupe etc +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Subsection +Kaj je red elementa v grupi? Kaj je pravilo krajšanja v grupi? Dokažite + ga. + Kako se pravilo krajšanja odraža v Cayleyevi tabeli grupe? +\end_layout + +\begin_layout Definition* +Cayleyeva tabela za grupoid +\begin_inset Formula $\left(A,\cdot\right)$ +\end_inset + + je kvadratna tabela širine +\begin_inset Formula $\left|A\right|$ +\end_inset + +, kjer ima +\begin_inset Formula $i,j-$ +\end_inset + +ta celica vrednost +\begin_inset Formula $a_{i}\cdot a_{j}$ +\end_inset + +, kjer je +\begin_inset Formula $a_{k}$ +\end_inset + + +\begin_inset Formula $k-$ +\end_inset + +ti element množice +\begin_inset Formula $A$ +\end_inset + +. + Pač izberemo si neko linearno urejenost +\begin_inset Formula $A$ +\end_inset + +. +\end_layout + +\begin_layout Standard +\begin_inset Separator plain +\end_inset + + +\end_layout + +\begin_layout Definition* +Naj bo +\begin_inset Formula $\left(G,\cdot\right)$ +\end_inset + + končna grupa in +\begin_inset Formula $a\in G$ +\end_inset + +. + Tedaj je red elementa +\begin_inset Formula $a$ +\end_inset + + najmanjši +\begin_inset Formula $n\in\mathbb{N}\ni:a^{n}=e$ +\end_inset + +. +\end_layout + +\begin_layout Theorem* +Dirichletovo načelo: +\begin_inset Formula $\exists n,m\in\left[k+1\right],n\not=m:a^{n}=a^{m}$ +\end_inset + + +\end_layout + +\begin_layout Proof +BSŠ +\begin_inset Formula $n<m$ +\end_inset + +. + +\begin_inset Formula $a^{n}=a^{m}\Rightarrow a^{n}\left(a^{m}\right)^{-1}=a^{m}\left(a^{m}\right)^{-1}\Rightarrow a^{n-m}=e$ +\end_inset + + +\end_layout + +\begin_layout Standard +\begin_inset Separator plain +\end_inset + + +\end_layout + +\begin_layout Theorem* +Pravilo krajšanja: Če je +\begin_inset Formula $G$ +\end_inset + + +\begin_inset Foot +status open + +\begin_layout Plain Layout +Ko omenimo algebrajsko strukturo, občasno omenimo le množico, ko je iz konteksta + operacija implicitno znana. +\end_layout + +\end_inset + + grupa, +\begin_inset Formula $a,b,c\in G$ +\end_inset + +, velja +\begin_inset Formula $ab=ac\Rightarrow b=c$ +\end_inset + + in +\begin_inset Formula $ba=ca\Rightarrow b=c$ +\end_inset + +. +\end_layout + +\begin_layout Proof +Množimo obe strani z leve ali desne z inverzom +\begin_inset Formula $a$ +\end_inset + +. +\end_layout + +\begin_layout Corollary* +V Cayleyevi tabeli grupe se v vsaki vrstici in v vsakem stolpcu pojavijo + vsi elementi grupe. +\end_layout + +\begin_layout Subsection +Kaj je permutacijska grupa? Kaj je simetrična grupa +\begin_inset Formula $S_{n}$ +\end_inset + + in kaj je alternirajoča grupa +\begin_inset Formula $A_{n}$ +\end_inset + +? Kaj pravi Cayleyev izrek (o univerzalnosti permutacijskih grup) in kakšna + je ideja njegovega dokaza? +\end_layout + +\begin_layout Definition* +Naj bo +\begin_inset Formula $A$ +\end_inset + + množica. + Permutacija +\begin_inset Formula $A$ +\end_inset + + je bijekcija +\begin_inset Formula $A\to A$ +\end_inset + +. + Permutacijska grupa je množica nekaj permutacij +\begin_inset Formula $A$ +\end_inset + +, ki ga komponiranje tvorijo grupo. +\end_layout + +\begin_layout Standard +\begin_inset Separator plain +\end_inset + + +\end_layout + +\begin_layout Definition* +Simetrična grupa: +\begin_inset Formula $S_{n}\coloneqq\left\{ \pi;\pi:\left\{ 1..n\right\} \to\left\{ 1..n\right\} \text{ bijekcija}\right\} $ +\end_inset + +. + Alternirajoča grupa: +\begin_inset Formula $A_{n}\coloneqq\left\{ \pi\in S_{n};\pi\text{ soda}\right\} $ +\end_inset + +. + Permutacija je soda, če je v zapisu z disjunktnimi cikli vsota dolžin ciklov, + ki ji odštejemo število ciklov, soda. +\end_layout + +\begin_layout Theorem* +\begin_inset Formula $\left|A_{n}\right|=\frac{n!}{2}$ +\end_inset + +. + +\begin_inset Note Note +status open + +\begin_layout Plain Layout +DOKAŽI TODO XXX FIXME +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Definition* +Naj bosta +\begin_inset Formula $\left(G,\circ\right)$ +\end_inset + + in +\begin_inset Formula $\left(H,*\right)$ +\end_inset + + grupi. + +\begin_inset Formula $f:G\to H$ +\end_inset + + je hm +\begin_inset Formula $\varphi\Leftrightarrow\forall x,y\in G:f\left(x\circ y\right)=fx*fy$ +\end_inset + +. + Če je +\begin_inset Formula $f$ +\end_inset + + tudi bijekcija, je +\begin_inset Formula $f:G\to H$ +\end_inset + + izomorfizem. + Grupi sta izomorfni, če obstaja izomorfizem med njima. + Tedaj pišemo +\begin_inset Formula $G\approx H$ +\end_inset + +. +\end_layout + +\begin_layout Standard +\begin_inset Separator plain +\end_inset + + +\end_layout + +\begin_layout Theorem* +Cayley: Vsaka grupa je izomorfna neki permutacijski grupi. +\end_layout + +\begin_layout Proof +(skica dokaza) Naj bo +\begin_inset Formula $\left(G,\cdot\right)$ +\end_inset + + grupa. + Vsakemu elementu grupe priredimo preslikavo +\begin_inset Formula $g\in G\mapsto\alpha_{g}:G\to G$ +\end_inset + +, ki slika takole: +\begin_inset Formula $\forall x\in G:\alpha_{k}x=g\cdot x$ +\end_inset + +. + +\begin_inset Formula $\alpha_{g}$ +\end_inset + + je permutacija +\begin_inset Formula $G$ +\end_inset + +, saj je bijektivna, ker velja pravilo krajšanja: +\begin_inset Formula $x\not=y\Rightarrow\alpha_{g}x\overset{\text{pravilo krajšanja}}{=}gx\not=gy=\alpha_{g}y$ +\end_inset + +. + +\begin_inset Formula $\left\{ \alpha_{g};\forall g\in G\right\} $ +\end_inset + + tvori permutacijsko grupo, ki je izomorfna izvorni grupi: +\begin_inset Formula $\left(\left\{ \alpha_{g};\forall g\in G\right\} ,\circ\right)\approx\left(G,\cdot\right)$ +\end_inset + +. +\end_layout + +\begin_layout Subsection +Kaj so odseki grupe +\begin_inset Formula $G$ +\end_inset + + po podgrupi +\begin_inset Formula $H$ +\end_inset + +? Kdaj je +\begin_inset Formula $aH=H$ +\end_inset + + in kdaj je +\begin_inset Formula $aH=Ha$ +\end_inset + +? Kaj je vsebina Lagrangeovega izreka o moči podgrup in končnih grup? +\end_layout + +\begin_layout Definition* +Naj bo +\begin_inset Formula $\left(G,\cdot\right)$ +\end_inset + + grupa in +\begin_inset Formula $H$ +\end_inset + + podgrupa +\begin_inset Note Note +status open + +\begin_layout Plain Layout +prosim definiraj podgrupo +\end_layout + +\end_inset + + +\begin_inset Formula $G$ +\end_inset + +. + Če je +\begin_inset Formula $a\in G$ +\end_inset + +, definiramo +\begin_inset Formula $aH=\left\{ ah,h\in H\right\} $ +\end_inset + + (desni odsek podgrupe +\begin_inset Formula $H$ +\end_inset + +) in +\begin_inset Formula $Ha=\left\{ ha,h\in H\right\} $ +\end_inset + + (levi odsek podgrupe +\begin_inset Formula $H$ +\end_inset + +). +\end_layout + +\begin_layout Theorem* +Naj bo +\begin_inset Formula $G$ +\end_inset + + grupa in +\begin_inset Formula $a,b\in G$ +\end_inset + + in +\begin_inset Formula $H$ +\end_inset + + podgrupa +\begin_inset Formula $G$ +\end_inset + +. + Tedaj veljajo naslednje lastnosti: +\end_layout + +\begin_deeper +\begin_layout Enumerate +\begin_inset CommandInset label +LatexCommand label +name "enu:" + +\end_inset + + +\begin_inset Formula $a\in aH$ +\end_inset + + +\end_layout + +\begin_layout Enumerate +\begin_inset CommandInset label +LatexCommand label +name "enu:-1" + +\end_inset + + +\begin_inset Formula $aH=H\Leftrightarrow a\in H$ +\end_inset + + +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $aH=bH\nabla aH\cap bH=\emptyset$ +\end_inset + + +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $aH=bH\Leftrightarrow a^{-1}b\in H$ +\end_inset + + +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $\left|aH\right|=\left|bH\right|$ +\end_inset + + +\end_layout + +\begin_layout Enumerate +\begin_inset CommandInset label +LatexCommand label +name "enu:-2" + +\end_inset + + +\begin_inset Formula $aH=Ha\Leftrightarrow H=aHa^{-1}$ +\end_inset + + +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $aH$ +\end_inset + + podgrupa +\begin_inset Formula $G\Leftrightarrow a\in H$ +\end_inset + + +\end_layout + +\end_deeper +\begin_layout Proof +Dokažimo trditve: +\end_layout + +\begin_deeper +\begin_layout Enumerate +\begin_inset Formula $e\in H\Rightarrow a\cdot e=a\in aH$ +\end_inset + + +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $\left(\Rightarrow\right)$ +\end_inset + + +\begin_inset Formula $a\overset{\ref{enu:}}{\in}aH=H\Rightarrow a\in H$ +\end_inset + +, +\begin_inset Formula $\left(\Leftarrow\right)$ +\end_inset + + Najprej ena vsebovanost: +\begin_inset Formula $\forall x\in aH\exists h\in H\ni:x=ah$ +\end_inset + +, ker +\begin_inset Formula $a\in H$ +\end_inset + +, je po zaprtosti podgrupe +\begin_inset Formula $H$ +\end_inset + + +\begin_inset Formula $ah=x\in H\Rightarrow aH\subseteq H$ +\end_inset + +. + Nato še druga vsebovanost: +\begin_inset Formula $\forall x\in H:a^{-1}x\in H\Rightarrow a\left(a^{-1}x\right)=x\in aH\Rightarrow H\subseteq aH$ +\end_inset + +. +\end_layout + +\begin_layout Enumerate +Imejmo +\begin_inset Formula $aH$ +\end_inset + +, +\begin_inset Formula $bH$ +\end_inset + +. + Če je +\begin_inset Formula $aH=bH$ +\end_inset + +, smo dokazali, sicer +\begin_inset Formula $\exists x\in aH\cup bH$ +\end_inset + +. + Ker +\begin_inset Formula $x\in aH\Rightarrow\exists h'\in H\ni:x=ah'$ +\end_inset + +. + Ker +\begin_inset Formula $x\in bH\exists h''\in H\ni:x=bh''$ +\end_inset + +. + Toree velja +\begin_inset Formula $x=ah'=bh''$ +\end_inset + +. + Množimo s +\begin_inset Formula $h'^{-1}\Rightarrow a=bh''h'^{-1}\Rightarrow aH=bh''\left(h'^{-1}H\right)\overset{\ref{enu:-1}}{=}bh''H\overset{\ref{enu:-1}}{=}bH$ +\end_inset + +. +\end_layout + +\begin_layout Enumerate +... +\end_layout + +\begin_layout Enumerate +Očitno (pravilo krajšanja) +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $\left(\Rightarrow\right)$ +\end_inset + + +\begin_inset Formula $aH=Ha\Rightarrow aHa^{-1}=Haa^{-1}=H$ +\end_inset + +. + +\begin_inset Formula $\left(\Leftarrow\right)$ +\end_inset + + +\begin_inset Formula $H=aHa^{-1}\overset{\cdot a^{-1}}{\Rightarrow}a^{-1}H=Ha$ +\end_inset + +. + Ker je +\begin_inset Formula $a\in aH$ +\end_inset + +, je v +\begin_inset Formula $a^{-1}\in aH$ +\end_inset + + (grupa), ker je +\begin_inset Formula $a^{-1}\in aH\cap a^{-1}H$ +\end_inset + +, je +\begin_inset Formula $aH=a^{-1}H$ +\end_inset + +, torej +\begin_inset Formula $a^{-1}H=Ha\Rightarrow aH=Ha$ +\end_inset + +. +\end_layout + +\end_deeper +\begin_layout Theorem* +Lagrange: Če je +\begin_inset Formula $G$ +\end_inset + + končna grupa in +\begin_inset Formula $H$ +\end_inset + + podgrupa +\begin_inset Formula $G$ +\end_inset + +, potem +\begin_inset Formula $\left|H\right|$ +\end_inset + + deli +\begin_inset Formula $\left|G\right|$ +\end_inset + +. + Nadalje je število levih/desnih odsekov po +\begin_inset Formula $H$ +\end_inset + + enako +\begin_inset Formula $\frac{\left|G\right|}{\left|H\right|}$ +\end_inset + +. +\end_layout + +\begin_layout Proof +Naj bodo +\begin_inset Formula $a_{1}H,a_{2}H,\dots,a_{n}H$ +\end_inset + + različni odseki. + Tedaj +\begin_inset Formula $\left|G\right|\overset{\ref{enu:}}{=}\left|a_{1}H\cup\cdots\cup a_{n}H\right|\overset{\text{disjunktni odseki}}{=}\sum_{i=1}^{k}\left|a_{i}H\right|=k\left|H\right|\Rightarrow k=\frac{\left|G\right|}{\left|H\right|}$ +\end_inset + +. +\end_layout + +\begin_layout Corollary* +Če je +\begin_inset Formula $G$ +\end_inset + + končna grupa in +\begin_inset Formula $a\in G$ +\end_inset + +, potem +\begin_inset Formula $\red a$ +\end_inset + + deli +\begin_inset Formula $\left|G\right|$ +\end_inset + +. +\end_layout + +\begin_layout Proof +\begin_inset Formula $\left\langle a\right\rangle =\left\{ a^{k};k\in\mathbb{Z}\right\} =\left\{ e,a,\dots,a^{n-1}\right\} \overset{\text{Lagrange}}{\Rightarrow}\left\langle a\right\rangle $ +\end_inset + + je gotovo podgrupa +\begin_inset Formula $G\Rightarrow n$ +\end_inset + + deli +\begin_inset Formula $\left|G\right|$ +\end_inset + +. +\end_layout + +\begin_layout Subsection +Kaj je podgrupa edinka? Navedite nekaj primerov podgrup edink. + Kaj je faktorska grupa +\begin_inset Formula $G/H$ +\end_inset + + in kaj pomeni, da je operacija v +\begin_inset Formula $G/H$ +\end_inset + + dobro definirana? +\end_layout + +\begin_layout Definition* +Naj bo +\begin_inset Formula $H$ +\end_inset + + podgrupa grupe +\begin_inset Formula $G$ +\end_inset + +. + Tedaj rečemo, da je +\begin_inset Formula $H$ +\end_inset + + podgrupa edinka, če velja +\begin_inset Formula $\forall a\in G:aH=Ha\overset{\ref{enu:-2}}{\Leftrightarrow}\forall a\in G:aHa^{-1}=H$ +\end_inset + +. + Oznaka: +\begin_inset Formula $H\triangleleft G$ +\end_inset + +. + Če sta +\begin_inset Formula $G$ +\end_inset + + in +\begin_inset Formula $\left\{ e\right\} $ +\end_inset + +, kjer je +\begin_inset Formula $e$ +\end_inset + + enota v +\begin_inset Formula $G$ +\end_inset + +, edini edinki +\begin_inset Formula $G$ +\end_inset + +, je +\begin_inset Formula $G$ +\end_inset + + enostavna. +\end_layout + +\begin_layout Standard +\begin_inset Separator plain +\end_inset + + +\end_layout + +\begin_layout Definition* +Center grupe +\begin_inset Formula $G\sim ZG\coloneqq\left\{ a\in G;\forall x\in G:ax=xa\right\} $ +\end_inset + + ZDB taki elementi +\begin_inset Formula $G$ +\end_inset + +, ki komutirajo z vsemi. +\end_layout + +\begin_layout Example* +V Abelovi grupi je vsaka podgrupa edinka. + +\begin_inset Formula $SL_{2}\mathbb{R}\triangleleft GL_{2}\mathbb{R}$ +\end_inset + + +\begin_inset Note Note +status open + +\begin_layout Plain Layout +NAPIŠI KAJ JE TO SPECIAL LINEAR ITD +\end_layout + +\end_inset + +. + +\begin_inset Formula $ZG\triangleleft G$ +\end_inset + +. +\end_layout + +\begin_layout Definition* +Naj bo +\begin_inset Formula $H\triangleleft G$ +\end_inset + +. + +\begin_inset Formula $G/H\coloneqq\left\{ aH;a\in G\right\} $ +\end_inset + +. + V množico +\begin_inset Formula $G/H$ +\end_inset + + vpeljemo operacijo +\begin_inset Formula $\left(aH\right)\left(bH\right)=\left(ab\right)H$ +\end_inset + + (*). +\end_layout + +\begin_layout Theorem* +Faktorske grupe: Če je +\begin_inset Formula $H\triangleleft G$ +\end_inset + +, je +\begin_inset Formula $G/H$ +\end_inset + + grupa za (*). +\end_layout + +\begin_layout Proof +Dokazati notranjost, enoto, asociativnost in inverze je trivialno. + Treba je še dokazati dobro definiranost, t. + j. + +\begin_inset Formula $a,a'$ +\end_inset + + iz istega odseka in +\begin_inset Formula $b,b'$ +\end_inset + + iz istega odseka +\begin_inset Formula $\Rightarrow\left(aH\right)\left(bH\right)=\left(ab\right)H=\left(a'b'\right)H=\left(a'H\right)\left(b'H\right)$ +\end_inset + +. + Ker +\begin_inset Formula $a'\in aH\Rightarrow\exists h'\in H\ni:ah'=a'$ +\end_inset + +. + Ker +\begin_inset Formula $b'\in bH\Rightarrow\exists h''\in H\ni:bh''=b'$ +\end_inset + +. + Sedaj +\begin_inset Formula $\left(a'H\right)\left(b'H\right)\overset{\text{def.}}{=}\left(a'b'\right)H=\left(ah'bh''\right)H=ah'b\left(h''H\right)\overset{\ref{enu:-1}}{=}ah'bH=ah'\left(bH\right)\overset{H\text{ edinka}}{=}ah'\left(Hb\right)=a\left(h'H\right)b\overset{\ref{enu:-1}}{=}aHb=\left(ab\right)H$ +\end_inset + +. +\end_layout + +\begin_layout Subsection +Kaj je kolobar, kaj je cel kolobar? Kaj je pravilo krajšanja v kolobarjih + in kakšna je povezava tega pravila s celimi kolobarji? Kaj velja za končne + cele kolobarje? +\end_layout + +\begin_layout Definition* +Bigrupoid +\begin_inset Formula $\left(R,+,\cdot\right)$ +\end_inset + + je kolobar, če je +\begin_inset Formula $\left(R,+\right)$ +\end_inset + + abelova grupa, +\begin_inset Formula $\left(R,\cdot\right)$ +\end_inset + + polgrupa in velja +\begin_inset Formula $\forall a,b,c\in R:a\cdot\left(b+c\right)=a\cdot b+a\cdot c\wedge\left(a+b\right)\cdot c=a\cdot c+b\cdot c$ +\end_inset + + (leva in desna distributivnost). + Kolobar je komutativen, če je +\begin_inset Formula $\left(R,\cdot\right)$ +\end_inset + + komutativna polgrupa. + +\begin_inset Formula $\left(R,+,\cdot\right)$ +\end_inset + + je kolobar z enoto, če je +\begin_inset Formula $\left(R,\cdot\right)$ +\end_inset + + monoid. +\end_layout + +\begin_layout Standard +\begin_inset Separator plain +\end_inset + + +\end_layout + +\begin_layout Definition* +Direktna vsota kolobarjev: Naj bosta +\begin_inset Formula $R$ +\end_inset + + in +\begin_inset Formula $S$ +\end_inset + + kolobarja. + +\begin_inset Formula $R\oplus S=R\times S$ +\end_inset + + je direktna vsota . + Definirajmo operaciji +\begin_inset Formula $\left(r,s\right)+'\left(r',s'\right)\coloneqq\left(r+r',s+s'\right)$ +\end_inset + +, +\begin_inset Formula $\left(r,s\right)\cdot'\left(r',s'\right)\coloneqq\left(r\cdot r',s\cdot s'\right)$ +\end_inset + +. +\end_layout + +\begin_layout Standard +\begin_inset Separator plain +\end_inset + + +\end_layout + +\begin_layout Definition* +Center kolobarja +\begin_inset Formula $\sim ZR\coloneqq\left\{ a\in R;\forall x\in R:ax=xa\right\} $ +\end_inset + +, ZDB vsi taki elementi +\begin_inset Formula $R$ +\end_inset + +, ki pri množenju s poljubnim elementom kolobarja komutirajo. +\end_layout + +\begin_layout Claim* +Če sta +\begin_inset Formula $R$ +\end_inset + + in +\begin_inset Formula $S$ +\end_inset + + kolobarja, je +\begin_inset Formula $\left(R\oplus S,+',\cdot'\right)$ +\end_inset + + kolobar. + Nadalje: Če sta +\begin_inset Formula $R$ +\end_inset + + in +\begin_inset Formula $S$ +\end_inset + + komutativna kolobara, je tudi +\begin_inset Formula $\left(R\oplus S,+',\cdot'\right)$ +\end_inset + + komutativen kolobar. + Če sta z enoto, je tudi +\begin_inset Formula $\left(R\oplus S,+',\cdot'\right)$ +\end_inset + +. +\begin_inset Note Note +status open + +\begin_layout Plain Layout +DEFINIRAJ PODKOLOBAR +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Definition* +Če v kolobarju +\begin_inset Formula $R$ +\end_inset + + velja +\begin_inset Formula $a\cdot b=0$ +\end_inset + + +\begin_inset Foot +status open + +\begin_layout Plain Layout +0 je aditivna enota +\end_layout + +\end_inset + + in sta +\begin_inset Formula $a\not=0$ +\end_inset + + in +\begin_inset Formula $b\not=0$ +\end_inset + +, sta +\begin_inset Formula $a$ +\end_inset + + in +\begin_inset Formula $b$ +\end_inset + + delitelja niča. +\end_layout + +\begin_layout Standard +\begin_inset Separator plain +\end_inset + + +\end_layout + +\begin_layout Definition* +V kolobarju +\begin_inset Formula $\left(R,+,\cdot\right)$ +\end_inset + + velja pravilo krajšanja, če velja +\begin_inset Formula $\forall a,b,c\in R,a\not=0:ab=ac\Rightarrow b=c$ +\end_inset + +. +\end_layout + +\begin_layout Standard +\begin_inset Separator plain +\end_inset + + +\end_layout + +\begin_layout Definition* +Komutativen kolobar z enoto +\begin_inset Formula $1\not=0$ +\end_inset + + (ZDB multiplikativna enota ni enaka aditivni) brez deliteljev niča je +\series bold +cel +\series default +. +\end_layout + +\begin_layout Example* +\begin_inset Formula $\left(\mathbb{Z},+,\cdot\right)$ +\end_inset + + je cel, toda +\begin_inset Formula $\left(\mathbb{Z}_{6},+_{6},\cdot_{6}\right)$ +\end_inset + + ni cel, ker premore delitelje niča. +\end_layout + +\begin_layout Theorem* +Naj bo +\begin_inset Formula $\left(R,+,\cdot\right)$ +\end_inset + + komutativen kolobar z enoto +\begin_inset Formula $1\not=0$ +\end_inset + +. + Velja +\begin_inset Formula $R$ +\end_inset + + cel +\begin_inset Formula $\Leftrightarrow$ +\end_inset + + v +\begin_inset Formula $R$ +\end_inset + + velja pravilo krajšanja. +\end_layout + +\begin_layout Proof +Dokazujemo ekvivalenco: +\end_layout + +\begin_deeper +\begin_layout Labeling +\labelwidthstring 00.00.0000 +\begin_inset Formula $\left(\Rightarrow\right)$ +\end_inset + + Predpostavimo, da je +\begin_inset Formula $R$ +\end_inset + + cel. + Predpostavimo +\begin_inset Formula $ab=ac$ +\end_inset + + za poljuben +\begin_inset Formula $a\not=0$ +\end_inset + + in poljubna +\begin_inset Formula $b,c$ +\end_inset + +. + Računamo: +\begin_inset Formula $ab=ac\Leftrightarrow ab-ac=0\Leftrightarrow a\left(b-c\right)=0$ +\end_inset + +. + Ker je +\begin_inset Formula $R$ +\end_inset + + cel in +\begin_inset Formula $a\not=0$ +\end_inset + +, mora biti +\begin_inset Formula $b-c=0$ +\end_inset + +, sicer bi bila +\begin_inset Formula $a$ +\end_inset + + in +\begin_inset Formula $b-c$ +\end_inset + + delitelja niča, kar bi bilo v +\begin_inset Formula $\rightarrow\!\leftarrow$ +\end_inset + + s predpostavko o celosti +\begin_inset Formula $R$ +\end_inset + +. + +\begin_inset Formula $b-c=0\Rightarrow b=c$ +\end_inset + +, torej +\begin_inset Formula $\forall a\not=0,b,c\in R:ab=ac\Rightarrow b=c\sim$ +\end_inset + + velja pravilo krajšanja. +\end_layout + +\begin_layout Labeling +\labelwidthstring 00.00.0000 +\begin_inset Formula $\left(\Leftarrow\right)$ +\end_inset + + Predpostavimo, da v komutativnem kolobarju z enoto +\begin_inset Formula $1\not=0$ +\end_inset + + +\begin_inset Formula $R$ +\end_inset + + velja pravilo krajšanja. + Predpostavimo +\begin_inset Formula $ab=0$ +\end_inset + +, +\begin_inset Formula $a\not=0$ +\end_inset + +. + Dokazati je treba +\begin_inset Formula $b=0$ +\end_inset + +, sicer bi imeli delitelje niča. + Velja +\begin_inset Formula $ab=0=a\cdot0$ +\end_inset + +. + Uporabimo pravilo krajšanja na +\begin_inset Formula $ab=a0$ +\end_inset + + in dobimo +\begin_inset Formula $b=0$ +\end_inset + +. + Kolobar je cel. +\end_layout + +\end_deeper +\begin_layout Definition* +Komutativen kolobar +\begin_inset Formula $R$ +\end_inset + + z enoto +\begin_inset Formula $1\not=0$ +\end_inset + + je +\series bold +obseg +\series default +, če je vsak neničeln element obrnljiv v +\begin_inset Formula $\left(R,\cdot\right)$ +\end_inset + + ZDB +\begin_inset Formula $\left(R\setminus\left\{ 0\right\} ,\cdot\right)$ +\end_inset + + je grupa. + Obseg +\begin_inset Formula $R$ +\end_inset + + je polje, če je +\begin_inset Formula $\left(R\setminus\left\{ 0\right\} ,\cdot\right)$ +\end_inset + + abelova grupa ZDB +\begin_inset Formula $ZR=R$ +\end_inset + +. +\end_layout + +\begin_layout Theorem* +Če je +\begin_inset Formula $\left(R,+,\cdot\right)$ +\end_inset + + končen cel kolobar +\begin_inset Formula $\Rightarrow R$ +\end_inset + + polje. +\end_layout + +\begin_layout Proof +Dokažimo, da +\begin_inset Formula $\forall a\in R,a\not=0\exists a^{-1}\ni:aa^{-1}=1$ +\end_inset + +. + Naj bo +\begin_inset Formula $a\in R$ +\end_inset + + poljuben, z izjemo +\begin_inset Formula $a\not=0$ +\end_inset + +. + Oglejmo si +\begin_inset Formula $\left\{ a^{k};\forall k\geq0\right\} $ +\end_inset + + ZDB množico vseh potenc +\begin_inset Formula $a$ +\end_inset + +. + Ker +\begin_inset Formula $\left|R\right|<\infty\Rightarrow\exists i,j,$ +\end_inset + +BSŠ +\begin_inset Formula $i>j\ni a^{i}=a^{j}$ +\end_inset + + ZDB ker je +\begin_inset Formula $R$ +\end_inset + + končen, se nek element +\begin_inset Quotes gld +\end_inset + +ponovi +\begin_inset Quotes grd +\end_inset + +. + +\begin_inset Formula $a^{j}\cdot a^{i-j}=a^{i}=a^{j}=a^{j}\cdot1$ +\end_inset + + Ker je kolobar cel, +\begin_inset Formula $a^{j}\not=0$ +\end_inset + + in ker velja pravilo krajšanja, +\begin_inset Formula $a^{i-j}=1$ +\end_inset + +, pri čemer vemo, da je +\begin_inset Formula $i-j>0$ +\end_inset + +. + Ločimo dva primera: +\end_layout + +\begin_deeper +\begin_layout Labeling +\labelwidthstring 00.00.0000 +\begin_inset Formula $i-j=1$ +\end_inset + + +\begin_inset Formula $a=1\Rightarrow a$ +\end_inset + + je kot multiplikativna enota multiplikativni inverz sam sebi +\end_layout + +\begin_layout Labeling +\labelwidthstring 00.00.0000 +\begin_inset Formula $i-j>1$ +\end_inset + + +\begin_inset Formula $a=a\cdot a^{i-j-1}=1$ +\end_inset + +, torej +\begin_inset Formula $a^{i-j-1}$ +\end_inset + + je inverz +\begin_inset Formula $a$ +\end_inset + +. +\end_layout + +\end_deeper +\begin_layout Subsection +Kaj je karakteristika kolobarja? Kako lahko določimo karakteristiko kolobarja + z enoto? Kaj lahko povemo o karakteristiki celega kolobarja? +\end_layout + +\begin_layout Definition* +Karakteristika kolobarja +\begin_inset Formula $R\sim\karakteristika R$ +\end_inset + + je najmanjši +\begin_inset Formula $n\in\mathbb{N}\ni:\forall a\in R:a+\cdots_{n-\text{krat}}\cdots+a=0$ +\end_inset + +. + Če tak +\begin_inset Formula $n$ +\end_inset + + ne obstaja, pravimo +\begin_inset Formula $\karakteristika R=0$ +\end_inset + +. +\end_layout + +\begin_layout Theorem* +Naj bo +\begin_inset Formula $\left(R,+,\cdot\right)$ +\end_inset + + kolobar z enoto. + +\begin_inset Formula $\karakteristika R=\red1$ +\end_inset + + v grupi +\begin_inset Formula $\left(R,+\right)$ +\end_inset + + ZDB red enote v aditivni grupi. +\end_layout + +\begin_layout Proof +Po definiciji reda je +\begin_inset Formula $1+\cdots_{\red1-\text{krat}}\cdots+1=0$ +\end_inset + + in za nek +\begin_inset Formula $m<\red1$ +\end_inset + + +\begin_inset Formula $1+\cdots_{m-\text{krat}}\cdots+1\not=0$ +\end_inset + +, torej +\begin_inset Formula $\karakteristika R\geq\red1$ +\end_inset + +. + Sedaj vzemimo poljuben +\begin_inset Formula $a\in R$ +\end_inset + +. + Velja +\begin_inset Formula $a+\cdots_{\red1-\text{krat}}\cdots+a=1\cdot a+\cdots_{\red1-\text{krat}}\cdots+1\cdot a=a\cdot\left(1+\cdots_{\red1-\text{krat}}\cdots+1\right)=a\cdot0=0$ +\end_inset + +, torej +\begin_inset Formula $\karakteristika R\leq\red1$ +\end_inset + +, torej +\begin_inset Formula $\karakteristika R=\red1$ +\end_inset + +. +\end_layout + +\begin_layout Theorem* +Naj bo +\begin_inset Formula $\left(R,+,\cdot\right)$ +\end_inset + + cel kolobar. + Tedaj velja bodisi +\begin_inset Formula $\karakteristika R=0$ +\end_inset + + bodisi +\begin_inset Formula $\karakteristika R=p$ +\end_inset + +, kjer je +\begin_inset Formula $p$ +\end_inset + + praštevilo. +\end_layout + +\begin_layout Proof +Če je +\begin_inset Formula $\karakteristika R=0$ +\end_inset + +, smo dokazali, sicer je +\begin_inset Formula $\karakteristika R=r>0$ +\end_inset + +. + PDDRAA +\begin_inset Formula $n=pq$ +\end_inset + + za +\begin_inset Formula $p,q>1$ +\end_inset + + in +\begin_inset Formula $p,q\in\mathbb{N}$ +\end_inset + +. + Po prejšnjem izreku +\begin_inset Formula $\karakteristika R=\red1=n$ +\end_inset + +. + Tedaj velja +\begin_inset Formula $0=1+\cdots_{n-\text{krat}}\cdots+1=1+\cdots_{pq-\text{krat}}\cdots+1=\left(1+\cdots_{p-\text{krat}}\cdots+1\right)\cdot\left(1+\cdots_{q-\text{krat}}\cdots+1\right)=a\cdot b$ +\end_inset + +. + Ker smo v celem kolobarju, je bodisi +\begin_inset Formula $a=0$ +\end_inset + +, bodisi +\begin_inset Formula $b=0$ +\end_inset + +, toda to je +\begin_inset Formula $\rightarrow\!\leftarrow$ +\end_inset + +, saj bi bil potem +\begin_inset Formula $\red1=q$ +\end_inset + + ali +\begin_inset Formula $\red1=p$ +\end_inset + +, oboje pa je +\begin_inset Formula $<pq$ +\end_inset + +. +\end_layout + +\begin_layout Subsection +Kaj je ideal kolobarja? Kako lahko preverimo, ali je +\begin_inset Formula $I\subseteq R$ +\end_inset + + ideal kolobarja +\begin_inset Formula $R$ +\end_inset + +? Kaj je faktorski kolobar +\begin_inset Formula $R/I$ +\end_inset + + in kako računamo v njem? +\end_layout + +\begin_layout Definition* +Če je +\begin_inset Formula $R$ +\end_inset + + kolobar, je njegov podkolobar +\begin_inset Formula $S$ +\end_inset + + ideal, če velja +\begin_inset Formula $\forall v\in R,s\in S:rs,sr\in S$ +\end_inset + + ZDB to je podkolobar, zaprt za zunanje množenje. +\end_layout + +\begin_layout Example* +\begin_inset Formula $n\cdot\mathbb{Z}$ +\end_inset + + (večkratniki +\begin_inset Formula $n$ +\end_inset + +) za fiksen +\begin_inset Formula $n$ +\end_inset + + so ideal v +\begin_inset Formula $\mathbb{Z}$ +\end_inset + +. + +\begin_inset Formula $\mathbb{Z}$ +\end_inset + + je podkolobar v +\begin_inset Formula $\mathbb{Q}$ +\end_inset + +, toda ni njegov ideal. +\end_layout + +\begin_layout Claim* +\begin_inset Formula $I\subseteq R$ +\end_inset + + je ideal +\begin_inset Formula $\Leftrightarrow0\in I$ +\end_inset + + (vsebuje aditivno enoto) +\begin_inset Formula $\wedge\forall i,j\in I:i-j\in I$ +\end_inset + + (zaprt za odštevanje) +\begin_inset Formula $\wedge\forall i\in I,r\in R:ir\in I,ri\in I$ +\end_inset + + (zaprt za zunanje množenje) +\begin_inset Note Note +status open + +\begin_layout Plain Layout +TODO XXX FIXME vsota in produkt idealov je spet ideal +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Definition* +Naj bo +\begin_inset Formula $R$ +\end_inset + + kolobar in +\begin_inset Formula $I$ +\end_inset + + ideal v +\begin_inset Formula $R$ +\end_inset + +. + Faktorski kolobar: +\begin_inset Formula $R/I=\left\{ a+I,\forall a\in R\right\} =\left\{ \left\{ a+i;\forall i\in I\right\} ;\forall a\in R\right\} $ +\end_inset + + vsebuje aditivne odseke. + V +\begin_inset Formula $R/I$ +\end_inset + + vpeljemo operaciji: +\begin_inset Formula $\left(a+I\right)+'\left(b+I\right)=a+b+I$ +\end_inset + + in +\begin_inset Formula $\left(a+I\right)\cdot$ +\end_inset + +' +\begin_inset Formula $\left(b+I\right)=a\cdot b+I$ +\end_inset + +. +\end_layout + +\begin_layout Theorem* +Če je +\begin_inset Formula $I$ +\end_inset + + ideal v +\begin_inset Formula $R$ +\end_inset + +, je +\begin_inset Formula $\left(R/I,+',\cdot'\right)$ +\end_inset + + kolobar. +\end_layout + +\end_body +\end_document |