From 2d52f3013988535890981ad0dbd95a41810137e0 Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Anton=20Luka=20=C5=A0ijanec?= Date: Tue, 6 Aug 2024 01:35:27 +0200 Subject: =?UTF-8?q?ana1=20u=C4=8Denje=20vrsar=20lahko=20no=C4=8D?= MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8 Content-Transfer-Encoding: 8bit --- "\305\241ola/ana1/teor.lyx" | 4300 +++++++++++++++++++++++++++++++++++++++++++ 1 file changed, 4300 insertions(+) create mode 100644 "\305\241ola/ana1/teor.lyx" (limited to 'šola/ana1/teor.lyx') diff --git "a/\305\241ola/ana1/teor.lyx" "b/\305\241ola/ana1/teor.lyx" new file mode 100644 index 0000000..6ff52cd --- /dev/null +++ "b/\305\241ola/ana1/teor.lyx" @@ -0,0 +1,4300 @@ +#LyX 2.4 created this file. For more info see https://www.lyx.org/ +\lyxformat 620 +\begin_document +\begin_header +\save_transient_properties true +\origin unavailable +\textclass article +\begin_preamble +\usepackage{hyperref} +\usepackage{siunitx} +\usepackage{pgfplots} +\usepackage{listings} +\usepackage{multicol} +\sisetup{output-decimal-marker = {,}, quotient-mode=fraction, output-exponent-marker=\ensuremath{\mathrm{3}}} +\usepackage{amsmath} +\usepackage{tikz} +\newcommand{\udensdash}[1]{% + \tikz[baseline=(todotted.base)]{ + \node[inner sep=1pt,outer sep=0pt] (todotted) {#1}; + \draw[densely dashed] (todotted.south west) -- (todotted.south east); + }% +}% +\DeclareMathOperator{\Lin}{\mathcal Lin} +\DeclareMathOperator{\rang}{rang} +\DeclareMathOperator{\sled}{sled} +\DeclareMathOperator{\Aut}{Aut} +\DeclareMathOperator{\red}{red} +\DeclareMathOperator{\karakteristika}{char} +\DeclareMathOperator{\Ker}{Ker} +\DeclareMathOperator{\Slika}{Ker} +\DeclareMathOperator{\sgn}{sgn} +\DeclareMathOperator{\End}{End} +\DeclareMathOperator{\n}{n} +\DeclareMathOperator{\Col}{Col} +\usepackage{algorithm,algpseudocode} +\providecommand{\corollaryname}{Posledica} +\usepackage[slovenian=quotes]{csquotes} +\end_preamble +\use_default_options true +\begin_modules +enumitem +theorems-ams +theorems-ams-extended +\end_modules +\maintain_unincluded_children no +\language slovene +\language_package default +\inputencoding auto-legacy +\fontencoding auto +\font_roman "default" "default" +\font_sans "default" "default" +\font_typewriter "default" "default" +\font_math "auto" "auto" +\font_default_family default +\use_non_tex_fonts false +\font_sc false +\font_roman_osf false +\font_sans_osf false +\font_typewriter_osf false +\font_sf_scale 100 100 +\font_tt_scale 100 100 +\use_microtype false +\use_dash_ligatures true +\graphics default +\default_output_format default +\output_sync 0 +\bibtex_command default +\index_command default +\float_placement class +\float_alignment class +\paperfontsize default +\spacing single +\use_hyperref false +\papersize default +\use_geometry true +\use_package amsmath 1 +\use_package amssymb 1 +\use_package cancel 1 +\use_package esint 1 +\use_package mathdots 1 +\use_package mathtools 1 +\use_package mhchem 1 +\use_package stackrel 1 +\use_package stmaryrd 1 +\use_package undertilde 1 +\cite_engine basic +\cite_engine_type default +\biblio_style plain +\use_bibtopic false +\use_indices false +\paperorientation portrait +\suppress_date false +\justification false +\use_refstyle 1 +\use_formatted_ref 0 +\use_minted 0 +\use_lineno 0 +\index Index +\shortcut idx +\color #008000 +\end_index +\leftmargin 2cm +\topmargin 2cm +\rightmargin 2cm +\bottommargin 2cm +\headheight 2cm +\headsep 2cm +\footskip 1cm +\secnumdepth 3 +\tocdepth 3 +\paragraph_separation indent +\paragraph_indentation default +\is_math_indent 0 +\math_numbering_side default +\quotes_style german +\dynamic_quotes 0 +\papercolumns 1 +\papersides 1 +\paperpagestyle default +\tablestyle default +\tracking_changes false +\output_changes false +\change_bars false +\postpone_fragile_content false +\html_math_output 0 +\html_css_as_file 0 +\html_be_strict false +\docbook_table_output 0 +\docbook_mathml_prefix 1 +\end_header + +\begin_body + +\begin_layout Title +Teorija Analize 1 — + IŠRM 2023/24 +\end_layout + +\begin_layout Author + +\noun on +Anton Luka Šijanec +\end_layout + +\begin_layout Date +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +today +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Abstract +Povzeto po zapiskih s predavanj profesorja Oliverja Dragičevića. +\end_layout + +\begin_layout Standard +\begin_inset CommandInset toc +LatexCommand tableofcontents + +\end_inset + + +\end_layout + +\begin_layout Section +Števila +\end_layout + +\begin_layout Definition* +Množica je matematični objekt, + ki predstavlja skupino elementov. + Če element +\begin_inset Formula $a$ +\end_inset + + pripada množici +\begin_inset Formula $A$ +\end_inset + +, + pišemo +\begin_inset Formula $a\in A$ +\end_inset + +, + sicer pa +\begin_inset Formula $a\not\in A$ +\end_inset + +. + Množica +\begin_inset Formula $B$ +\end_inset + + je podmnožica množice +\begin_inset Formula $A$ +\end_inset + +, + pišemo +\begin_inset Formula $B\subset A$ +\end_inset + +, + če +\begin_inset Formula $\forall b\in B:b\in A$ +\end_inset + +. + Presek +\begin_inset Formula $B$ +\end_inset + + in +\begin_inset Formula $C$ +\end_inset + + označimo +\begin_inset Formula $B\cap C\coloneqq\left\{ x;x\in B\wedge x\in C\right\} $ +\end_inset + +. + Unijo +\begin_inset Formula $B$ +\end_inset + + in +\begin_inset Formula $C$ +\end_inset + + označimo +\begin_inset Formula $B\cup C\coloneqq\left\{ x;x\in B\vee x\in C\right\} $ +\end_inset + +. + Razliko/komplement +\begin_inset Quotes gld +\end_inset + + +\begin_inset Formula $B$ +\end_inset + + manj/brez +\begin_inset Formula $C$ +\end_inset + + +\begin_inset Quotes grd +\end_inset + + označimo +\begin_inset Formula $B\setminus C\coloneqq\left\{ x;x\in B\wedge x\not\in C\right\} $ +\end_inset + +. +\end_layout + +\begin_layout Subsection +Realna števila +\end_layout + +\begin_layout Standard +Množico realnih števil označimo +\begin_inset Formula $\mathbb{R}$ +\end_inset + +. + V njej obstajata binarni operaciji seštevanje +\begin_inset Formula $a+b$ +\end_inset + + in množenje +\begin_inset Formula $a\cdot b$ +\end_inset + +. +\end_layout + +\begin_layout Subsubsection +Lastnosti seštevanja +\end_layout + +\begin_layout Axiom +Komutativnost: + +\begin_inset Formula $\forall a,b\in\mathbb{R}:a+b=b+a$ +\end_inset + +. +\end_layout + +\begin_layout Standard +\begin_inset Separator plain +\end_inset + + +\end_layout + +\begin_layout Axiom +Asociativnost: + +\begin_inset Formula $\forall a,b,c\in\mathbb{R}:a+\left(b+c\right)=\left(a+b\right)+c$ +\end_inset + +, + torej je +\begin_inset Formula $a+\cdots+z$ +\end_inset + + dobro definiran izraz. +\end_layout + +\begin_layout Standard +\begin_inset Separator plain +\end_inset + + +\end_layout + +\begin_layout Axiom +Obstoj enote: + +\begin_inset Formula $\exists0\in\mathbb{R}\forall a\in\mathbb{R}:a+0=a$ +\end_inset + +. +\end_layout + +\begin_layout Standard +\begin_inset Separator plain +\end_inset + + +\end_layout + +\begin_layout Axiom +Obstoj inverzov: + +\begin_inset Formula $\forall a\in\mathbb{R}\exists b\in\mathbb{R}\ni a+b=0$ +\end_inset + +. +\end_layout + +\begin_deeper +\begin_layout Claim* +Inverz je enoličen. +\end_layout + +\begin_layout Proof +Naj bo +\begin_inset Formula $a,b,c\in\mathbb{R}$ +\end_inset + + in +\begin_inset Formula $a+b=0$ +\end_inset + + in +\begin_inset Formula $a+c=0$ +\end_inset + +. + Tedaj +\begin_inset Formula $b=b+0=b+a+c=0+c=c$ +\end_inset + +. +\end_layout + +\begin_layout Corollary* +Inverz je funkcija in aditivni inverz +\begin_inset Formula $a$ +\end_inset + + označimo z +\begin_inset Formula $-a$ +\end_inset + +. + Pri zapisu +\begin_inset Formula $a+\left(-b\right)$ +\end_inset + + običajno +\begin_inset Formula $+$ +\end_inset + + izpustimo in pišemo +\begin_inset Formula $a-b$ +\end_inset + +, + čemur pravimo odštevanje +\begin_inset Formula $b$ +\end_inset + + od +\begin_inset Formula $a$ +\end_inset + +. +\end_layout + +\begin_layout Claim* +\begin_inset Formula $\forall a\in\mathbb{R}:a=-\left(-a\right)$ +\end_inset + +. +\end_layout + +\begin_layout Proof +Naj bo +\begin_inset Formula $b=-a$ +\end_inset + + in +\begin_inset Formula $c=-b=-\left(-a\right)$ +\end_inset + +. + Tedaj velja +\begin_inset Formula $c-a=c+b=-\left(-a\right)-a=0$ +\end_inset + + in +\begin_inset Formula $a=0+a=c-a+a=c+\left(-a\right)+a=c+0=c=-\left(-a\right)$ +\end_inset + +. +\end_layout + +\begin_layout Claim* +\begin_inset Formula $-\left(b+c\right)=-b-c$ +\end_inset + + +\end_layout + +\begin_layout Proof +Velja +\begin_inset Formula $b+c+\left(-b-c\right)=b+c+\left(\left(-b\right)+\left(-c\right)\right)=b+\left(-b\right)+c+\left(-c\right)=0$ +\end_inset + +, + torej je +\begin_inset Formula $b+c$ +\end_inset + + inverz od +\begin_inset Formula $\left(-b-c\right)$ +\end_inset + +, + torej je +\begin_inset Formula $-\left(b+c\right)=-b-c$ +\end_inset + +. +\end_layout + +\end_deeper +\begin_layout Subsubsection +Lastnosti množenja +\end_layout + +\begin_layout Axiom +Komutativnost: + +\begin_inset Formula $\forall a,b\in\mathbb{R}:ab=ba$ +\end_inset + +. +\end_layout + +\begin_layout Standard +\begin_inset Separator plain +\end_inset + + +\end_layout + +\begin_layout Axiom +Asociativnost: + +\begin_inset Formula $\forall a,b,c\in\mathbb{R}:a\left(bc\right)=\left(ab\right)c$ +\end_inset + +, + torej je +\begin_inset Formula $a\cdots z$ +\end_inset + + dobro definiran izraz. +\end_layout + +\begin_layout Standard +\begin_inset Separator plain +\end_inset + + +\end_layout + +\begin_layout Axiom +Obstoj enote: + +\begin_inset Formula $\exists1\in\mathbb{R}\forall a\in\mathbb{R}:a1=a$ +\end_inset + +. +\end_layout + +\begin_layout Standard +\begin_inset Separator plain +\end_inset + + +\end_layout + +\begin_layout Axiom +Obstoj inverzov: + +\begin_inset Formula $\forall a\in\mathbb{R}\setminus\left\{ 0\right\} \exists b\in\mathbb{R}\setminus\left\{ 0\right\} \ni:ab=1$ +\end_inset + + +\end_layout + +\begin_deeper +\begin_layout Claim* +Inverz je enoličen. +\end_layout + +\begin_layout Proof +Naj bo +\begin_inset Formula $a,b,c\in\mathbb{R}\setminus\left\{ 0\right\} $ +\end_inset + + in +\begin_inset Formula $ab=1$ +\end_inset + + in +\begin_inset Formula $ac=1$ +\end_inset + +. + Tedaj +\begin_inset Formula $b=b1=bac=1c=c$ +\end_inset + +. +\end_layout + +\begin_layout Corollary* +Inverz je funkcija in multiplikativni inverz +\begin_inset Formula $a$ +\end_inset + + označimo z +\begin_inset Formula $a^{-1}$ +\end_inset + +. + Pri zapisu +\begin_inset Formula $a\cdot b^{-1}$ +\end_inset + + lahko +\begin_inset Formula $\cdot$ +\end_inset + + izpustimo in pišemo +\begin_inset Formula $a/b$ +\end_inset + +, + čemur pravimo deljenje +\begin_inset Formula $a$ +\end_inset + + z +\begin_inset Formula $b$ +\end_inset + + za neničeln +\begin_inset Formula $b$ +\end_inset + +. +\end_layout + +\end_deeper +\begin_layout Subsubsection +Skupne lastnosti v +\begin_inset Formula $\mathbb{R}$ +\end_inset + + +\end_layout + +\begin_layout Axiom +\begin_inset Formula $1\not=0$ +\end_inset + + +\end_layout + +\begin_layout Standard +\begin_inset Separator plain +\end_inset + + +\end_layout + +\begin_layout Axiom +Distributivnost: + +\begin_inset Formula $\forall a,b,c\in\mathbb{R}:\left(a+b\right)c=ac+bc$ +\end_inset + + +\end_layout + +\begin_layout Paragraph +Urejenost +\begin_inset Formula $\mathbb{R}$ +\end_inset + + +\end_layout + +\begin_layout Standard +Realna števila delimo na pozitivna +\begin_inset Formula $\mathbb{R}_{+}\coloneqq\left\{ x\in\mathbb{R};x>0\right\} $ +\end_inset + +, + negativna +\begin_inset Formula $\mathbb{R}_{-}\coloneqq\left\{ x\in\mathbb{R};x<0\right\} $ +\end_inset + + in ničlo +\begin_inset Formula $0$ +\end_inset + +. + Če je +\begin_inset Formula $x\in\mathbb{\mathbb{R}}_{+}\cup\left\{ 0\right\} $ +\end_inset + +, + pišemo +\begin_inset Formula $x\geq0$ +\end_inset + +, + če je +\begin_inset Formula $x\in\mathbb{R}_{-}\cup\left\{ 0\right\} $ +\end_inset + +, + pišemo +\begin_inset Formula $x\leq0$ +\end_inset + +. +\end_layout + +\begin_layout Axiom +Če je +\begin_inset Formula $a\not=0$ +\end_inset + +, + je natanko eno izmed +\begin_inset Formula $\left\{ a,-a\right\} $ +\end_inset + + pozitivno, + imenujemo ga absolutna vrednost +\begin_inset Formula $a$ +\end_inset + + (pišemo +\begin_inset Formula $\left|a\right|$ +\end_inset + +), + in natanko eno negativno, + pišemo +\begin_inset Formula $-\left|a\right|$ +\end_inset + +. +\end_layout + +\begin_layout Definition* +\begin_inset Formula $\left|0\right|=0$ +\end_inset + +. +\end_layout + +\begin_layout Standard +\begin_inset Separator plain +\end_inset + + +\end_layout + +\begin_layout Definition* +Za +\begin_inset Formula $a,b\in\mathbb{R}$ +\end_inset + + se +\begin_inset Formula $\left|a-b\right|$ +\end_inset + + imenuje razdalja. +\end_layout + +\begin_layout Axiom +\begin_inset Formula $\forall a,b\in\mathbb{R}:a,b>0\Rightarrow\left(a+b>0\right)\wedge\left(ab>0\right)$ +\end_inset + +. +\end_layout + +\begin_layout Definition* +Za +\begin_inset Formula $a,b\in\mathbb{R}$ +\end_inset + +: + +\begin_inset Formula $a$ +\end_inset + + je večje od +\begin_inset Formula $b$ +\end_inset + +, + oznaka +\begin_inset Formula $a>b\Leftrightarrow a-b>0$ +\end_inset + +. + +\begin_inset Formula $a$ +\end_inset + + je manjše od +\begin_inset Formula $b$ +\end_inset + +, + oznaka +\begin_inset Formula $aa\right\} $ +\end_inset + + in podobno +\begin_inset Formula $[a,\infty)$ +\end_inset + +. +\end_layout + +\begin_layout Subsection +Temeljne številske podmnožice +\end_layout + +\begin_layout Subsubsection +Naravna števila +\begin_inset Formula $\mathbb{N}$ +\end_inset + + +\end_layout + +\begin_layout Definition* +\begin_inset Formula $\mathbb{N}\coloneqq\left\{ 1,1+1,1+1+1,1+1+1+1,\dots\right\} $ +\end_inset + + +\end_layout + +\begin_layout Paragraph +Matematična indukcija +\end_layout + +\begin_layout Standard +Če je +\begin_inset Formula $A\subseteq\mathbb{N}$ +\end_inset + + in velja +\begin_inset Formula $1\in A$ +\end_inset + + (baza) in +\begin_inset Formula $a\in A\Rightarrow a+1\in A$ +\end_inset + + (korak), + tedaj +\begin_inset Formula $A=\mathbb{N}$ +\end_inset + +. +\end_layout + +\begin_layout Claim* +\begin_inset Formula $1+2+3+\cdots+n=\frac{n\left(n+1\right)}{2}$ +\end_inset + +. +\end_layout + +\begin_layout Proof +\begin_inset Formula $A\coloneqq\left\{ n\in\mathbb{N};\text{velja trditev za }n\right\} $ +\end_inset + +. + Dokažimo +\begin_inset Formula $A=\mathbb{N}$ +\end_inset + +. +\end_layout + +\begin_deeper +\begin_layout Itemize +Baza: + +\begin_inset Formula $1=\frac{1\cdot2}{2}=1$ +\end_inset + +. +\end_layout + +\begin_layout Itemize +Korak: + Predpostavimo +\begin_inset Formula $1+2+3+\cdots+n=\frac{n\left(n+1\right)}{2}$ +\end_inset + +. + Prištejmo +\begin_inset Formula $n+1$ +\end_inset + +: + +\begin_inset Formula +\[ +1+2+3+\cdots+n+\left(n+1\right)=\frac{n\left(n+1\right)}{2}+\left(n+1\right)=\frac{n\left(n+1\right)}{2}+\frac{2\left(n+1\right)}{2}=\frac{\left(n+2\right)\left(n+1\right)}{2} +\] + +\end_inset + + +\end_layout + +\end_deeper +\begin_layout Subsubsection +Cela števila +\begin_inset Formula $\mathbb{Z}$ +\end_inset + + +\end_layout + +\begin_layout Standard +Množica +\begin_inset Formula $\mathbb{N}$ +\end_inset + + je zaprta za seštevanje in množenje, + torej +\begin_inset Formula $\forall a,b\in\mathbb{N}:a+b\in\mathbb{N}\wedge ab\in\mathbb{N}$ +\end_inset + +, + ni pa zaprta za odštevanje, + ker recimo +\begin_inset Formula $5-3\not\in\mathbb{N}$ +\end_inset + +. + Zapremo jo za odštevanje in dobimo množico +\begin_inset Formula $\mathbb{Z}$ +\end_inset + +. +\end_layout + +\begin_layout Definition* +\begin_inset Formula $\mathbb{Z}\coloneqq\left\{ a-b;b,a\in\mathbb{N}\right\} $ +\end_inset + + +\end_layout + +\begin_layout Subsubsection +Racionalna števila +\begin_inset Formula $\mathbb{Q}$ +\end_inset + + +\end_layout + +\begin_layout Standard +Najmanjša podmnožica +\begin_inset Formula $\mathbb{R}$ +\end_inset + +, + ki vsebuje +\begin_inset Formula $\mathbb{Z}$ +\end_inset + + in je zaprta za deljenje, + je +\begin_inset Formula $\mathbb{Q}$ +\end_inset + +. +\end_layout + +\begin_layout Definition* +\begin_inset Formula $\mathbb{Q}\coloneqq\left\{ a/b;a\in\mathbb{Z},b\in\mathbb{Z}\setminus\left\{ 0\right\} \right\} $ +\end_inset + +. +\end_layout + +\begin_layout Standard +Velja +\begin_inset Formula $\mathbb{N}\subset\mathbb{Z}\subset\mathbb{Q}\subset\mathbb{R}$ +\end_inset + +. +\end_layout + +\begin_layout Claim* +Za +\begin_inset Formula $a\in\mathbb{Q}$ +\end_inset + +, + +\begin_inset Formula $b\not\in\mathbb{Q}$ +\end_inset + + velja +\begin_inset Formula $a+b\not\in\mathbb{Q}$ +\end_inset + + in +\begin_inset Formula $a\not=0\Rightarrow ab\not\in\mathbb{Q}$ +\end_inset + +. +\end_layout + +\begin_layout Proof +PDDRAA +\begin_inset Formula $a+b\in\mathbb{Q}$ +\end_inset + +. + Tedaj +\begin_inset Formula $a+b-a\in\mathbb{Q}$ +\end_inset + +, + tedaj +\begin_inset Formula $b\in\mathbb{Q}$ +\end_inset + +, + kar je +\begin_inset Formula $\rightarrow\!\leftarrow$ +\end_inset + +. + PDDRAA +\begin_inset Formula $ab\in\mathbb{Q}$ +\end_inset + +. + Tedaj +\begin_inset Formula $\frac{ab}{a}\in\mathbb{Q}$ +\end_inset + +, + tedaj +\begin_inset Formula $b\in\mathbb{Q}$ +\end_inset + +, + kar je +\begin_inset Formula $\rightarrow\!\leftarrow$ +\end_inset + +. +\end_layout + +\begin_layout Subsection +\begin_inset CommandInset label +LatexCommand label +name "subsec:Omejenost-množic" + +\end_inset + +Omejenost množic +\end_layout + +\begin_layout Definition* +Naj bo +\begin_inset Formula $A\subset\mathbb{R}$ +\end_inset + +. + +\begin_inset Formula $A$ +\end_inset + + je navzgor omejena +\begin_inset Formula $\Leftrightarrow\exists m\in\mathbb{R}\forall a\in A:a\leq m$ +\end_inset + +. + Takemu +\begin_inset Formula $m$ +\end_inset + + pravimo zgornja meja. + Najmanjši zgornji meji +\begin_inset Formula $A$ +\end_inset + + pravimo supremum ali natančna zgornja meja množice +\begin_inset Formula $A$ +\end_inset + +, + označimo +\begin_inset Formula $\sup A$ +\end_inset + +. + Če je zgornja meja +\begin_inset Formula $A$ +\end_inset + + ( +\begin_inset Formula $m$ +\end_inset + +) element +\begin_inset Formula $A$ +\end_inset + +, + je maksimum množice +\begin_inset Formula $A$ +\end_inset + +, + označimo +\begin_inset Formula $m=\max A$ +\end_inset + +. + Če množica ni navzgor omejena, + pišemo +\begin_inset Formula $\sup A=\infty$ +\end_inset + +. +\end_layout + +\begin_layout Standard +Če +\begin_inset Formula $s=\sup A\in\mathbb{R}$ +\end_inset + +, + mora veljati +\begin_inset Formula $\forall a\in A:a\leq s$ +\end_inset + + in +\begin_inset Formula $\forall\varepsilon>0\exists b\in A\ni:b>s-\varepsilon$ +\end_inset + +, + torej za vsak neničeln +\begin_inset Formula $\varepsilon$ +\end_inset + + +\begin_inset Formula $s-\varepsilon$ +\end_inset + + ni več natančna zgornja meja za +\begin_inset Formula $A$ +\end_inset + +. +\end_layout + +\begin_layout Definition* +Naj bo +\begin_inset Formula $A\subset\mathbb{R}$ +\end_inset + +. + +\begin_inset Formula $A$ +\end_inset + + je navzdol omejena +\begin_inset Formula $\Leftrightarrow\exists m\in\mathbb{R}\forall a\in A:a\geq m$ +\end_inset + +. + Takemu +\begin_inset Formula $m$ +\end_inset + + pravimo spodnja meja. + Največji spodnji meji +\begin_inset Formula $A$ +\end_inset + + pravimo infimum ali natančna spodnja meja množice +\begin_inset Formula $A$ +\end_inset + +, + označimo +\begin_inset Formula $\inf A$ +\end_inset + +. + Če je spodnja meja +\begin_inset Formula $A$ +\end_inset + + ( +\begin_inset Formula $m$ +\end_inset + +) element +\begin_inset Formula $A$ +\end_inset + +, + je minimum množice +\begin_inset Formula $A$ +\end_inset + +, + označimo +\begin_inset Formula $m=\min A$ +\end_inset + +. + Če množica ni navzdol omejena, + pišemo +\begin_inset Formula $\inf A=-\infty$ +\end_inset + +. +\end_layout + +\begin_layout Standard +\begin_inset Separator plain +\end_inset + + +\end_layout + +\begin_layout Definition* +Množica +\begin_inset Formula $A\subset\mathbb{R}$ +\end_inset + + je omejena, + če je hkrati navzgor in navzdol omejena. +\end_layout + +\begin_layout Axiom +\begin_inset CommandInset label +LatexCommand label +name "axm:Dedekind.-Vsaka-navzgor" + +\end_inset + +Dedekind. + Vsaka navzgor omejena množica v +\begin_inset Formula $\mathbb{R}$ +\end_inset + + ima natančno zgornjo mejo v +\begin_inset Formula $\mathbb{R}$ +\end_inset + +. +\end_layout + +\begin_layout Remark* +Za +\begin_inset Formula $\mathbb{Q}$ +\end_inset + + aksiom +\begin_inset CommandInset ref +LatexCommand ref +reference "axm:Dedekind.-Vsaka-navzgor" +plural "false" +caps "false" +noprefix "false" +nolink "false" + +\end_inset + + ne velja. + Če +\begin_inset Formula $B\subset\mathbb{Q}$ +\end_inset + +, + se lahko zgodi, + da +\begin_inset Formula $\sup B\not\in\mathbb{Q}$ +\end_inset + +. + Primer: + +\begin_inset Formula $B\coloneqq\left\{ q\in\mathbb{Q};q^{2}\leq2\right\} $ +\end_inset + +. + +\begin_inset Formula $\sup B=\sqrt{2}\not\in\mathbb{Q}$ +\end_inset + +. +\end_layout + +\begin_layout Example* + +\end_layout + +\begin_layout Subsection +Decimalni zapis +\end_layout + +\begin_layout Definition* +\begin_inset Formula $\forall x\in\mathbb{R}^{+}\exists!m\in\mathbb{N}\cup\left\{ 0\right\} ,d_{1},d_{2},\dots\in\left\{ 0..9\right\} $ +\end_inset + +, + ki število natančno določajo. + Pišemo +\begin_inset Formula $x=m,d_{1}d_{2}\dots$ +\end_inset + +. + Natančno določitev mislimo v smislu: +\end_layout + +\begin_deeper +\begin_layout Itemize +\begin_inset Formula $m\leq xa_{n}$ +\end_inset + +, + strogo padajoče podobno, + monotono, + če je naraščajoče ali padajoče in strogo monotono, + če je strogo naraščajoče ali strogo padajoče. +\end_layout + +\begin_layout Subsection +Limita zaporedja +\end_layout + +\begin_layout Definition* +Množica +\begin_inset Formula $U\subseteq\mathbb{R}$ +\end_inset + + je odprta, + če +\begin_inset Formula $\forall u\in U\exists r>0\ni:\left(u-r,u+r\right)\subseteq U$ +\end_inset + +. +\end_layout + +\begin_layout Standard +\begin_inset Separator plain +\end_inset + + +\end_layout + +\begin_layout Definition* +Množica +\begin_inset Formula $U\subseteq\mathbb{R}$ +\end_inset + + je zaprta, + če je +\begin_inset Formula $U^{\mathcal{C}}\coloneqq\mathbb{R}\setminus U$ +\end_inset + + odprta. +\end_layout + +\begin_layout Claim* +Odprt interval je odprta množica. +\end_layout + +\begin_layout Proof +Za poljubna +\begin_inset Formula $a,b\in\mathbb{R}$ +\end_inset + +, + +\begin_inset Formula $b>a$ +\end_inset + +, + naj bo +\begin_inset Formula $u\in\left(a,b\right)$ +\end_inset + + poljuben. + Ustrezen +\begin_inset Formula $r$ +\end_inset + + je +\begin_inset Formula $\min\left\{ \left|r-a\right|,\left|r-b\right|\right\} $ +\end_inset + +, + da je +\begin_inset Formula $\left(u-r,u+r\right)\subseteq U$ +\end_inset + +. +\end_layout + +\begin_layout Claim* +Zaprt interval je zaprt. +\end_layout + +\begin_layout Proof +Naj bosta +\begin_inset Formula $a,b\in\mathbb{R}$ +\end_inset + + poljubna in +\begin_inset Formula $b>a$ +\end_inset + +. + Dokazujemo, + da je +\begin_inset Formula $\left[a,b\right]$ +\end_inset + + zaprt, + torej da je +\begin_inset Formula $\left[a,b\right]^{\mathcal{C}}=\left(-\infty,a\right)\cup\left(b,\infty\right)$ +\end_inset + + odprta množica. + Za poljuben +\begin_inset Formula $u\in\left[a,b\right]^{\mathcal{C}}$ +\end_inset + + velja, + da je bodisi +\begin_inset Formula $\in\left(-\infty,a\right)$ +\end_inset + + bodisi +\begin_inset Formula $\left(b,\infty\right)$ +\end_inset + +, + kajti +\begin_inset Formula $\left(-\infty,a\right)\cap\left(b,\infty\right)=\emptyset$ +\end_inset + +. + Po prejšnji trditvi v obeh primerih velja +\begin_inset Formula $\exists r>0\ni:\left(u-r,u+r\right)\subseteq U$ +\end_inset + +, + torej je +\begin_inset Formula $\left[a,b\right]^{\mathcal{C}}$ +\end_inset + + res odprta, + torej je +\begin_inset Formula $\left[a,b\right]$ +\end_inset + + res zaprta. +\end_layout + +\begin_layout Definition* +Množica +\begin_inset Formula $B$ +\end_inset + + je okolica točke +\begin_inset Formula $t\in\mathbb{R}$ +\end_inset + +, + če vsebuje kakšno odprto množico +\begin_inset Formula $U$ +\end_inset + +, + ki vsebuje +\begin_inset Formula $t$ +\end_inset + +, + torej +\begin_inset Formula $t\in U^{\text{odp.}}\subseteq B\subseteq\mathbb{R}$ +\end_inset + +. +\end_layout + +\begin_layout Standard +\begin_inset Separator plain +\end_inset + + +\end_layout + +\begin_layout Definition* +\begin_inset Formula $L\in\mathbb{R}$ +\end_inset + + je limita zaporedja +\begin_inset Formula $\left(a_{n}\right)_{n\in\mathbb{R}}$ +\end_inset + + +\begin_inset Formula $\Leftrightarrow\forall\varepsilon>0\exists n_{0}\in\mathbb{N}\forall n\in\mathbb{N}:n\geq n_{0}\Rightarrow\left|a_{n}-L\right|<\varepsilon$ +\end_inset + +. + ZDB +\begin_inset Formula $\forall V$ +\end_inset + + okolica +\begin_inset Formula $L\in\mathbb{R}\exists n_{0}\in\mathbb{N}\forall n\in\mathbb{N}:n\geq n_{0}\Rightarrow a_{n}\in V$ +\end_inset + +, + pravimo, + da +\begin_inset Formula $\left(a_{n}\right)_{n\in\mathbb{N}}$ +\end_inset + + konvergira k +\begin_inset Formula $L$ +\end_inset + + in pišemo +\begin_inset Formula $L\coloneqq\lim_{n\to\infty}a_{n}$ +\end_inset + + ali drugače +\begin_inset Formula $a_{n}\underset{n\to\infty}{\longrightarrow}L$ +\end_inset + +. + Če zaporedje ima limito, + pravimo, + da je konvergentno, + sicer je divergentno. +\end_layout + +\begin_layout Claim* +Konvergentno zaporedje v +\begin_inset Formula $\mathbb{R}$ +\end_inset + + ima natanko eno limito. +\end_layout + +\begin_layout Proof +Naj bosta +\begin_inset Formula $J$ +\end_inset + + in +\begin_inset Formula $L$ +\end_inset + + limiti zaporedja +\begin_inset Formula $\left(a_{n}\right)_{n\to\infty}$ +\end_inset + +. + Torej +\begin_inset Foot +status open + +\begin_layout Plain Layout +Ko trdimo, + da obstaja +\begin_inset Formula $n_{0}$ +\end_inset + +, + še ne vemo, + ali sta za +\begin_inset Formula $L$ +\end_inset + + in +\begin_inset Formula $J$ +\end_inset + + ta +\begin_inset Formula $n_{0}$ +\end_inset + + ista. + Ampak trditev še vedno velja, + ker lahko vzamemo večjega izmed njiju, + ako bi bila drugačna. +\end_layout + +\end_inset + + po definiciji +\begin_inset Formula $\forall\varepsilon>0\exists n_{0}\in\mathbb{N}\forall n\in\mathbb{N}:n\geq n_{0}\Rightarrow\left|a_{n}-L\right|<\varepsilon\wedge\left|a_{n}-J\right|<\varepsilon$ +\end_inset + +. + Velja torej +\begin_inset Formula $\forall\varepsilon>0:\left|J-L\right|<\varepsilon$ +\end_inset + +. + PDDRAA +\begin_inset Formula $J\not=L$ +\end_inset + +. + Tedaj +\begin_inset Formula $\left|J-L\right|\not=0$ +\end_inset + +, + naj bo +\begin_inset Formula $\left|J-L\right|=k$ +\end_inset + +. + Tedaj +\begin_inset Formula $\exists\varepsilon>0:\left|J-L\right|\not<\varepsilon$ +\end_inset + +, + ustrezen +\begin_inset Formula $\varepsilon$ +\end_inset + + je na primer +\begin_inset Formula $\frac{\left|J-L\right|}{2}$ +\end_inset + +. +\end_layout + +\begin_layout Claim* +\begin_inset CommandInset label +LatexCommand label +name "Konvergentno-zaporedje-v-R-je-omejeno" + +\end_inset + +Konvergentno zaporedje v +\begin_inset Formula $\mathbb{R}$ +\end_inset + + je omejeno. +\end_layout + +\begin_layout Proof +Naj bo +\begin_inset Formula $L=\lim_{n\to\infty}a_{n}$ +\end_inset + +. + Znotraj intervala +\begin_inset Formula $\left(L-1,L+1\right)$ +\end_inset + + so vsi členi zaporedja razen končno mnogo ( +\begin_inset Formula $\left\{ a_{1},\dots,a_{n_{0}}\right\} $ +\end_inset + +). + +\begin_inset Formula $\left\{ a_{n}\right\} _{n\in\mathbb{N}}$ +\end_inset + + je unija dveh omejenih množic; + +\begin_inset Formula $\left(L-1,L+1\right)$ +\end_inset + + in +\begin_inset Formula $\left\{ a_{1},\dots,a_{n_{0}}\right\} $ +\end_inset + +, + zato je tudi sama omejena. +\end_layout + +\begin_layout Claim* +Naj bosta +\begin_inset Formula $\left(a_{n}\right)_{n\in\mathbb{N}}$ +\end_inset + + in +\begin_inset Formula $\left(b_{n}\right)_{n\in\mathbb{N}}$ +\end_inset + + konvergentni zaporedji v +\begin_inset Formula $\mathbb{R}$ +\end_inset + +. + Tedaj so tudi +\begin_inset Formula $\left(a_{n}*b_{n}\right)_{n\in\mathbb{N}}$ +\end_inset + + konvergentna in velja +\begin_inset Formula $\lim_{n\to\infty}a_{n}*b_{n}=\lim_{n\to\infty}a_{n}*\lim_{n\to\infty}b_{n}$ +\end_inset + + za +\begin_inset Formula $*\in\left\{ +,-,\cdot\right\} $ +\end_inset + +. + Če je +\begin_inset Formula $\lim_{n\to\infty}b_{n}\not=0$ +\end_inset + +, + isto velja tudi za deljenje. +\end_layout + +\begin_layout Proof +Naj bo +\begin_inset Formula $a_{n}\to A$ +\end_inset + + in +\begin_inset Formula $b_{n}\to B$ +\end_inset + + oziroma +\begin_inset Formula $\forall\varepsilon>0\exists n_{1},n_{2}\ni:\left(n>n_{1}\Rightarrow\left|a_{n}-A\right|<\varepsilon\right)\wedge\left(n>n_{2}\Rightarrow\left|b_{n}-B\right|<\varepsilon\right)$ +\end_inset + +, + torej +\begin_inset Formula $\forall\varepsilon>0\exists n_{0}=\max\left\{ n_{1},n_{2}\right\} \ni:n>n_{0}\Rightarrow\left|a_{n}-A\right|<\varepsilon\wedge\left|b_{n}-B\right|<\varepsilon$ +\end_inset + +. + Dokažimo za vse operacije: +\end_layout + +\begin_deeper +\begin_layout Labeling +\labelwidthstring 00.00.0000 +\begin_inset Formula $+$ +\end_inset + + Po predpostavki velja +\begin_inset Formula $\forall\varepsilon>0\exists n_{0}\ni:n>n_{0}\Rightarrow\left|a_{n}-A\right|+\left|a_{n}-B\right|<2\varepsilon$ +\end_inset + +. + Oglejmo si sedaj +\begin_inset Formula +\[ +\left|\left(a_{n}+b_{n}\right)-\left(A+B\right)\right|=\left|\left(a_{n}-A\right)+\left(b_{n}-B\right)\right|\leq\left|a_{n}-A\right|+\left|b_{n}-B\right| +\] + +\end_inset + +in uporabimo še prejšnjo trditev, + torej +\begin_inset Formula $\forall2\varepsilon\exists n_{0}\ni:\left|\left(a_{n}+b_{n}\right)-\left(A+B\right)\right|\leq2\varepsilon$ +\end_inset + +, + s čimer dokažemo +\begin_inset Formula $\left(a_{n}+b_{n}\right)\to A+B$ +\end_inset + +. +\end_layout + +\begin_layout Labeling +\labelwidthstring 00.00.0000 +\begin_inset Formula $-$ +\end_inset + + Oglejmo si +\begin_inset Formula +\[ +\left|\left(a_{n}-b_{n}\right)-\left(A-B\right)\right|=\left|a_{n}-b_{n}-A+B\right|=\left|\left(a_{n}-A\right)+\left(-\left(b_{n}-B\right)\right)\right|\leq\left|a_{n}-A\right|+\left|b_{n}-B\right| +\] + +\end_inset + +in nato kot zgoraj. +\end_layout + +\begin_layout Labeling +\labelwidthstring 00.00.0000 +\begin_inset Formula $\cdot$ +\end_inset + + Oglejmo si +\begin_inset Formula +\[ +\left|a_{n}b_{n}-AB\right|=\left|a_{n}b_{n}-Ab_{n}+Ab_{n}-AB\right|=\left|\left(a_{n}-A\right)b_{n}+A\left(b_{n}-B\right)\right|\leq\left|a_{n}-A\right|\left|b_{n}\right|+\left|A\right|\left|b_{n}-B\right|. +\] + +\end_inset + +Od prej vemo, + da sta zaporedji omejeni, + ker sta konvergentni, + zato +\begin_inset Formula $\exists M>0\forall n\in\mathbb{N}:\left|b_{n}\right|\leq M$ +\end_inset + +. + Naj bo +\begin_inset Formula $\varepsilon>0$ +\end_inset + + poljuben +\begin_inset Formula $n_{1},n_{2}\in\mathbb{N}$ +\end_inset + + taka, + da +\begin_inset Formula $n\geq n_{1}\Rightarrow\left|a_{n}-A\right|<\frac{\varepsilon}{2M}$ +\end_inset + + in +\begin_inset Formula $n\geq n_{2}\Rightarrow\left|b_{n}-B\right|<\frac{\varepsilon}{2\left|A\right|}$ +\end_inset + +. + Tedaj za +\begin_inset Formula $n_{0}\coloneqq\max\left\{ n_{1},n_{2}\right\} $ +\end_inset + + velja +\begin_inset Formula $\left|a_{n}b_{n}-AB\right|\leq\left|a_{n}-A\right|\left|b_{n}\right|+\left|A\right|\left|b_{n}-B\right|<\frac{\varepsilon}{2M}M+\left|A\right|\frac{\varepsilon}{2\left|A\right|}=\varepsilon$ +\end_inset + +, + skratka +\begin_inset Formula $\left|a_{n}b_{n}-AB\right|<\varepsilon$ +\end_inset + +, + s čimer dokažemo +\begin_inset Formula $\left(a_{n}+b_{n}\right)\to A+B$ +\end_inset + +. +\end_layout + +\begin_layout Labeling +\labelwidthstring 00.00.0000 +\begin_inset Formula $/$ +\end_inset + + Ker je +\begin_inset Formula $B\not=0$ +\end_inset + +, + +\begin_inset Formula $\exists n_{0}\in\mathbb{N}\forall n\geq n_{0}:\left|b_{n}\right|\geq\frac{\left|B\right|}{2}>0$ +\end_inset + +. + ZDB vsi členi zaporedja razen končno mnogo so v poljubno majhni okolici +\begin_inset Formula $\left|B\right|$ +\end_inset + +. + Če torej vzamemo točko na polovici med 0 in +\begin_inset Formula $\left|B\right|$ +\end_inset + +, + to je +\begin_inset Formula $\frac{\left|B\right|}{2}$ +\end_inset + +, + bo neskončno mnogo absolutnih vrednosti členov večjih od +\begin_inset Formula $\frac{\left|B\right|}{2}$ +\end_inset + +. + Pri razumevanju pomaga številska premica. + Nadalje uporabimo predpostavko z +\begin_inset Formula $\varepsilon=\frac{\left|B\right|}{2}$ +\end_inset + +, + torej je za +\begin_inset Formula $n>n_{0}:$ +\end_inset + + +\begin_inset Formula $\left|B-b_{n}\right|<\frac{\left|B\right|}{2}$ +\end_inset + + in velja +\begin_inset Formula +\[ +\left|b_{n}\right|=\left|B-\left(B-b_{n}\right)\right|=\left|B+\left(-\left(B-b_{n}\right)\right)\right|\overset{\text{trik. neen.}}{\geq}\left|\left|B\right|-\left|B-b_{n}\right|\right|=\left|B\right|-\left|B-b_{n}\right|\overset{\text{predp.}}{>}\left|B\right|-\frac{\left|B\right|}{2}=\frac{\left|B\right|}{2}, +\] + +\end_inset + +skratka +\begin_inset Formula $\left|b_{n}\right|>\frac{\left|B\right|}{2}$ +\end_inset + +. + Če spet izpustimo končno začetnih členov, + velja +\begin_inset Formula +\[ +\frac{a_{n}}{b_{n}}-\frac{A}{B}=\frac{a_{n}B-Ab_{n}}{b_{n}B}\overset{\text{prištejemo in odštejemo člen}}{=}\frac{\left(a_{n}-A\right)B+A\left(B-b_{n}\right)}{Bb_{n}}=\frac{1}{b_{n}}\left(a_{n}-A\right)+\frac{A/B}{b_{n}}\left(B-b_{n}\right) +\] + +\end_inset + +sedaj uporabimo na obeh straneh absolutno vrednost: +\begin_inset Formula +\[ +\left|\frac{a_{n}}{b_{n}}-\frac{A}{B}\right|=\left|\frac{1}{b_{n}}\left(a_{n}-A\right)+\frac{A}{Bb_{n}}\left(B-b_{n}\right)\right|\leq\frac{1}{\left|b_{n}\right|}\left|a_{n}-A\right|+\frac{\left|A\right|}{\left|B\right|\left|b_{n}\right|}\left|B-b_{n}\right|<\frac{2}{\left|B\right|}\left|a_{n}-A\right|+\frac{2\left|A\right|}{\left|B\right|^{2}}\left|B-B_{n}\right| +\] + +\end_inset + +skratka +\begin_inset Formula $\left|\frac{a_{n}}{b_{n}}-\frac{A}{B}\right|<\frac{2}{\left|B\right|}\left|a_{n}-A\right|+\frac{2\left|A\right|}{\left|B\right|^{2}}\left|B-B_{n}\right|$ +\end_inset + +. + Opazimo, + da +\begin_inset Formula $\frac{2}{\left|B\right|}$ +\end_inset + + in +\begin_inset Formula $\frac{2\left|A\right|}{\left|B\right|^{2}}$ +\end_inset + + nista odvisna od +\begin_inset Formula $n$ +\end_inset + +. + Sedaj vzemimo poljuben +\begin_inset Formula $\varepsilon>0$ +\end_inset + + in +\begin_inset Formula $n_{1},n_{2}\in\mathbb{N}$ +\end_inset + + takšna, + da velja: +\end_layout + +\begin_deeper +\begin_layout Itemize +\begin_inset Formula $n\geq n_{1}\Rightarrow\left|a_{n}-A\right|<\frac{\varepsilon\left|B\right|}{4}$ +\end_inset + + +\end_layout + +\begin_layout Itemize +\begin_inset Formula $n\geq n_{2}\Rightarrow\left|b_{n}-B\right|<\frac{\varepsilon\left|B\right|^{2}}{4\left|A\right|}$ +\end_inset + + +\end_layout + +\begin_layout Standard +Tedaj iz zgornje ocene sledi za +\begin_inset Formula $n\geq\max\left\{ n_{0},n_{1},n_{2}\right\} $ +\end_inset + +: +\begin_inset Formula +\[ +\left|\frac{a_{n}}{b_{n}}-\frac{A}{B}\right|<\frac{\cancel{2}}{\cancel{\left|B\right|}}\cdot\frac{\varepsilon\cancel{\left|B\right|}}{\cancelto{2}{4}}+\frac{\cancel{2}\cancel{\left|A\right|}}{\cancel{\left|B\right|^{2}}}\cdot\frac{\varepsilon\cancel{\left|B\right|^{2}}}{\cancelto{2}{4}\cancel{\left|A\right|}}=\frac{\varepsilon}{2}+\frac{\varepsilon}{2}=\varepsilon, +\] + +\end_inset + +s čimer dokažemo +\begin_inset Formula $a_{n}/b_{n}\to A/B$ +\end_inset + +. +\end_layout + +\end_deeper +\end_deeper +\begin_layout Example* +Naj bo +\begin_inset Formula $a>0$ +\end_inset + +. + Izračunajmo +\begin_inset Formula +\[ +\sqrt{a+\sqrt{a+\sqrt{a+\sqrt{\cdots}}}}\eqqcolon\alpha. +\] + +\end_inset + + +\end_layout + +\begin_layout Example* +\begin_inset Formula $\alpha$ +\end_inset + + je torej +\begin_inset Formula $\lim_{n\to\infty}x_{n}$ +\end_inset + +, + kjer je +\begin_inset Formula $x_{0}=0,x_{1}=\sqrt{a},x_{2}=\sqrt{a+\sqrt{a}},x_{3}=\sqrt{a+\sqrt{a+\sqrt{a}}},\dots,x_{n+1}=\sqrt{a+x_{n}}$ +\end_inset + +. + Iz zadnjega sledi +\begin_inset Formula $x_{n+1}^{2}=a+x_{n}$ +\end_inset + +. + Če torej limita +\begin_inset Formula $\alpha\coloneqq\lim x_{n}$ +\end_inset + + obstaja, + mora veljati +\begin_inset Formula $\alpha^{2}=a+\alpha$ +\end_inset + + oziroma +\begin_inset Formula $\alpha_{1,2}=\frac{1\pm\sqrt{1+4a}}{2}$ +\end_inset + +. + Opcija z minusom ni mogoča, + ker je zaporedje +\begin_inset Formula $\left(x_{n}\right)_{n\in\mathbb{N}}$ +\end_inset + + očitno pozitivno. + Če torej limita obstaja ( +\series bold +česar še nismo dokazali +\series default +), + je enaka +\begin_inset Formula $\frac{1+\sqrt{1+4a}}{2}$ +\end_inset + +, + za primer +\begin_inset Formula $a=2$ +\end_inset + + je torej +\begin_inset Formula $\sqrt{2+\sqrt{2+\sqrt{2+\sqrt{\cdots}}}}=2$ +\end_inset + +. +\end_layout + +\begin_layout Remark* +Lahko se zgodi, + da limita rekurzivno podanega zaporedja ne obstaja, + čeprav jo znamo izračunati, + če bi obstajala. + Na primer +\begin_inset Formula $y_{1}\coloneqq1$ +\end_inset + +, + +\begin_inset Formula $y_{n+1}=1-2y_{n}$ +\end_inset + + nam da zaporedje +\begin_inset Formula $1,-1,3,-5,11,\dots$ +\end_inset + +, + kar očitno nima limite. + Če bi limita obstajala, + bi zanjo veljalo +\begin_inset Formula $\beta=1-2\beta$ +\end_inset + + oz. + +\begin_inset Formula $3\beta=1$ +\end_inset + +, + +\begin_inset Formula $\beta=\frac{1}{3}$ +\end_inset + +. + Navedimo torej nekaj zadostnih in potrebnih pogojev za konvergenco zaporedij. +\end_layout + +\begin_layout Theorem* +Naj bo +\begin_inset Formula $\left(a_{n}\right)_{n\in\mathbb{N}}$ +\end_inset + + monotono realno zaporedje. + Če narašča, + ima limito +\begin_inset Formula $\lim_{n\to\infty}a_{n}=\sup\left\{ a_{n},n\in\mathbb{N}\right\} $ +\end_inset + +. + Če pada, + ima limito +\begin_inset Formula $\lim_{n\to\infty}a_{n}=\inf\left\{ a_{n},n\in\mathbb{N}\right\} $ +\end_inset + +. + ( +\begin_inset Formula $\sup$ +\end_inset + + in +\begin_inset Formula $\inf$ +\end_inset + + imata lahko tudi vrednost +\begin_inset Formula $\infty$ +\end_inset + + in +\begin_inset Formula $-\infty$ +\end_inset + + — + zaporedje s tako limito ni konvergentno v +\begin_inset Formula $\mathbb{R}$ +\end_inset + +). +\end_layout + +\begin_layout Proof +Denimo, + da +\begin_inset Formula $\left(a_{n}\right)_{n\in\mathbb{N}}$ +\end_inset + + narašča. + Pišimo +\begin_inset Formula $s\coloneqq\sup_{n\in\mathbb{N}}a_{n}$ +\end_inset + +. + Vzemimo poljuben +\begin_inset Formula $\varepsilon>0$ +\end_inset + +. + Tedaj +\begin_inset Formula $s-\varepsilon$ +\end_inset + + ni zgornja meja za +\begin_inset Formula $\left(a_{n}\right)_{n\in\mathbb{N}}$ +\end_inset + +, + zato +\begin_inset Formula $\exists n_{0}\in\mathbb{N}\ni:s-\varepsilons-\varepsilon$ +\end_inset + +. + Hkrati je +\begin_inset Formula $a_{n}\leq s$ +\end_inset + +, + saj je +\begin_inset Formula $s$ +\end_inset + + zgornja meja. + Torej +\begin_inset Formula $\forall n\geq n_{0}:a_{n}\in(s-\varepsilon,s]\subset\left(s-\varepsilon,s+\varepsilon\right)$ +\end_inset + +, + s čimer dokažemo konvergenco. +\end_layout + +\begin_layout Proof +Denimo sedaj, + da +\begin_inset Formula $\left(a_{n}\right)_{n\in\mathbb{N}}$ +\end_inset + + pada. + Dokaz je povsem analogen. + Pišimo +\begin_inset Formula $m\coloneqq\inf_{n\in\mathbb{N}}a_{n}$ +\end_inset + +. + Vzemimo poljuben +\begin_inset Formula $\varepsilon>0$ +\end_inset + +. + Tedaj +\begin_inset Formula $m+\varepsilon$ +\end_inset + + ni spodnja meja za +\begin_inset Formula $\left(a_{n}\right)_{n\in\mathbb{N}}$ +\end_inset + +, + zato +\begin_inset Formula $\exists n_{0}\in\mathbb{N}\ni:m+\varepsilon>a_{n_{0}}$ +\end_inset + +. + Ker pa je +\begin_inset Formula $\left(a_{n}\right)_{n\in\mathbb{N}}$ +\end_inset + + padajoče, + sledi +\begin_inset Formula $\forall n\geq n_{0}:a_{n}\leq a_{n_{0}}0$ +\end_inset + + in +\begin_inset Formula $x_{0}=0,x_{n+1}=\sqrt{a+x_{n}}$ +\end_inset + +. + Dokažimo, + da je +\begin_inset Formula $\left(x_{n}\right)_{n}$ +\end_inset + + konvergentno. + Dovolj je pokazati, + da je naraščajoče in navzgor omejeno. +\end_layout + +\begin_deeper +\begin_layout Itemize +Naraščanje z indukcijo: + Baza: + +\begin_inset Formula $0=x_{0}>x_{1}=\sqrt{a}$ +\end_inset + +. + Dokažimo +\begin_inset Formula $x_{n+1}-x_{n}>0$ +\end_inset + +. +\begin_inset Formula +\[ +\left(x_{n+1}-x_{n}\right)\left(x_{n+1}+x_{n}\right)=x_{n+1}^{2}-x_{n}^{2}=\left(a+x_{n}\right)-\left(a+x_{n-1}\right)=x_{n}-x_{n-1} +\] + +\end_inset + +Ker je zaporedje pozitivno, + je +\begin_inset Formula $x_{n+1}+x_{n}>0$ +\end_inset + +. + Desna stran je po I. + P. + pozitivna, + torej tudi +\begin_inset Formula $x_{n+1}-x_{n}>0$ +\end_inset + +. +\end_layout + +\begin_layout Itemize +Omejenost: + Če je zaporedje res omejeno, + je po zgornjem tudi konvergentno in je +\begin_inset Formula $\sup_{n\in\mathbb{N}}x_{n}=\lim_{n\to\infty}x_{n}=\frac{1+\sqrt{1+4a}}{2}\leq\frac{1+\sqrt{1+4a+4a^{2}}}{2}=\frac{1+\sqrt{\left(2a+1\right)^{2}}}{}=1+a$ +\end_inset + +. + Uganili smo neko zgornjo mejo. + Domnevamo, + da +\begin_inset Formula $\forall n\in\mathbb{N}:x_{n}\leq1+a$ +\end_inset + +. + Dokažimo to z indukcijo: + Baza: + +\begin_inset Formula $0=x_{0}<1+a$ +\end_inset + +. + Po I. + P. + +\begin_inset Formula $x_{n}>1+a$ +\end_inset + +. + Korak: +\begin_inset Formula +\[ +x_{n+1}=\sqrt{x_{n}+a}\leq\sqrt{1+a+a}=\sqrt{1+2a}<\sqrt{1+2a+2a^{2}}=1+a +\] + +\end_inset + + +\end_layout + +\end_deeper +\begin_layout Example* +S tem smo dokazali, + da +\begin_inset Formula $\lim_{n\to\infty}x_{n}=\frac{1+\sqrt{1+4a}}{2}$ +\end_inset + +. +\end_layout + +\begin_layout Example* +To lahko dokažemo tudi na alternativen način. + Vidimo, + da je edini kandidat za limito, + če obstaja +\begin_inset Formula $L=\frac{1+\sqrt{1+4a}}{2}$ +\end_inset + + in da torej velja +\begin_inset Formula $L^{2}=a+L$ +\end_inset + +. + Preverimo, + da je +\begin_inset Formula $L$ +\end_inset + + res limita: + +\begin_inset Formula +\[ +x_{n+1}-L=\sqrt{a+x_{n}}-L=\frac{\left(\sqrt{a+x_{n}}-L\right)\left(\sqrt{a+x_{n}}+L\right)}{\sqrt{a+x_{n}}+L}=\frac{\left(a+x_{n}\right)-L^{2}}{\sqrt{a+x_{n}}+L}=\frac{\left(a+x_{n}\right)-\left(a+L\right)}{\sqrt{a+x_{n}}+L}=\frac{x_{n}-L}{\sqrt{a+x_{n}}+L}. +\] + +\end_inset + +Vpeljimo sedaj +\begin_inset Formula $y_{n}\coloneqq x_{n}-L$ +\end_inset + +. + Sledi +\begin_inset Formula $\left|y_{n+1}\right|\leq\frac{\left|y_{n}\right|}{\sqrt{a+x_{n}}+L}\leq\frac{\left|y_{n}\right|}{L}$ +\end_inset + +. + Ker je +\begin_inset Formula $\left|y_{0}\right|=L$ +\end_inset + +, + dobimo +\begin_inset Foot +status open + +\begin_layout Plain Layout +Za razumevanje si oglej nekaj členov rekurzivnega zaporedje +\begin_inset Formula $y_{0}=L,y_{n}=\frac{\left|y_{n+1}\right|}{L}$ +\end_inset + +. + Začnemo z 1 in nato vsakič delimo z +\begin_inset Formula $L$ +\end_inset + +. +\end_layout + +\end_inset + + oceno +\begin_inset Formula $\left|y_{n}\right|\leq\frac{1}{L^{n-1}}$ +\end_inset + + oziroma +\begin_inset Formula $\left|x_{n}-L\right|\leq\frac{1}{L^{n-1}}$ +\end_inset + +. + Ker iz definicije +\begin_inset Formula $L$ +\end_inset + + sledi +\begin_inset Formula $L>1$ +\end_inset + +, + je +\begin_inset Formula $L^{n}\to\infty$ +\end_inset + + za +\begin_inset Formula $n\to\infty$ +\end_inset + +, + torej smo dokazali, + da +\begin_inset Formula $\left|x_{n}-L\right|$ +\end_inset + + eksponentno pada proti 0 za +\begin_inset Formula $n\to\infty$ +\end_inset + +. + Eksponentno padanje +\begin_inset Formula $\left|x_{n}-L\right|$ +\end_inset + + proti 0 je dovolj, + da rečemo, + da zaporedje konvergira k +\begin_inset Formula $L$ +\end_inset + + +\begin_inset Foot +status open + +\begin_layout Plain Layout +a res, + vprašaj koga. + ne razumem. + zakaj. + TODO. +\end_layout + +\end_inset + +. +\end_layout + +\begin_layout Claim* +\begin_inset Formula $\lim_{n\to\infty}\sin n$ +\end_inset + + in +\begin_inset Formula $\lim_{n\to\infty}\cos n$ +\end_inset + + ne obstajata. +\end_layout + +\begin_layout Proof +Pišimo +\begin_inset Formula $a_{n}=\sin n$ +\end_inset + + in +\begin_inset Formula $b_{n}=\cos n$ +\end_inset + +. + Iz adicijskih izrekov dobimo +\begin_inset Formula $a_{n+1}=\sin\left(n+1\right)=\sin n\cos1+\cos n\sin1=a_{n}\cos1+b_{n}\sin1$ +\end_inset + +. + Torej +\begin_inset Formula $b_{n}=\frac{a_{n+1}-a_{n}\cos1}{\sin1}$ +\end_inset + +. + Torej če +\begin_inset Formula $\exists a\coloneqq\lim_{n\to\infty}a_{n},a\in\mathbb{R}$ +\end_inset + +, + potem tudi +\begin_inset Formula $\exists b\coloneqq\lim_{n\to\infty}b_{n},b\in\mathbb{R}$ +\end_inset + +. + Podobno iz adicijske formule za +\begin_inset Formula $\cos\left(n+1\right)$ +\end_inset + + sledi +\begin_inset Formula $a_{n}=\frac{b_{n}\cos1-b_{n+1}}{\sin1}$ +\end_inset + +, + torej če +\begin_inset Formula $\exists b$ +\end_inset + +, + potem tudi +\begin_inset Formula $\exists a$ +\end_inset + +. + Iz obojega sledi, + da +\begin_inset Formula $\exists a\Leftrightarrow\exists b$ +\end_inset + +. + Posledično, + če +\begin_inset Formula $a$ +\end_inset + + in +\begin_inset Formula $b$ +\end_inset + + obstajata, + iz zgornjih obrazcev za +\begin_inset Formula $a_{n}$ +\end_inset + + in +\begin_inset Formula $b_{n}$ +\end_inset + + sledi, + da za +\begin_inset Formula +\[ +\lambda=\frac{1-\cos1}{\sin1}\in\left(0,1\right) +\] + +\end_inset + +velja +\begin_inset Formula $b=\lambda a$ +\end_inset + + in +\begin_inset Formula $a=-\lambda b$ +\end_inset + + in zato +\begin_inset Formula $b=\lambda\left(-\lambda b\right)$ +\end_inset + + oziroma +\begin_inset Formula $1=-\lambda^{2}$ +\end_inset + +, + torej +\begin_inset Formula $-1=\lambda^{2}$ +\end_inset + +, + torej +\begin_inset Formula $\lambda=i$ +\end_inset + +, + kar je v protislovju z +\begin_inset Formula $\lambda\in\left(0,1\right)$ +\end_inset + +. + Podobno za +\begin_inset Formula $a=-\lambda\left(\lambda a\right)$ +\end_inset + + oziroma +\begin_inset Formula $1=-\lambda^{2}$ +\end_inset + +, + kar je zopet +\begin_inset Formula $\rightarrow\!\leftarrow$ +\end_inset + +. + Edina druga opcija je, + da je +\begin_inset Formula $a=b=0$ +\end_inset + +. + Hkrati pa vemo, + da +\begin_inset Formula $a_{n}^{2}+b_{n}^{2}=1$ +\end_inset + +, + zato +\begin_inset Formula $a+b=1$ +\end_inset + +, + kar ni mogoče za ničelna +\begin_inset Formula $a$ +\end_inset + + in +\begin_inset Formula $b$ +\end_inset + +. + Torej +\begin_inset Formula $a$ +\end_inset + + in +\begin_inset Formula $b$ +\end_inset + + ne obstajata. +\end_layout + +\begin_layout Subsection +Eulerjevo število +\end_layout + +\begin_layout Theorem* +Bernoullijeva neenakost. + +\begin_inset Formula $\forall\alpha\leq1,n\in\mathbb{N}$ +\end_inset + + velja +\begin_inset Formula $\left(1-\alpha\right)^{n}\geq1-n\alpha$ +\end_inset + +. +\end_layout + +\begin_layout Proof +Z indukcijo na +\begin_inset Formula $n$ +\end_inset + + ob fiksnem +\begin_inset Formula $\alpha$ +\end_inset + +. +\end_layout + +\begin_deeper +\begin_layout Itemize +Baza: + +\begin_inset Formula $n=1$ +\end_inset + +: + +\begin_inset Formula $\left(1-\alpha\right)^{1}=1-1\alpha$ +\end_inset + +. + Velja celo enakost. +\end_layout + +\begin_layout Itemize +I. + P.: + Velja +\begin_inset Formula $\left(1-\alpha\right)^{n}\geq1-n\alpha$ +\end_inset + + +\end_layout + +\begin_layout Itemize +Korak: + +\begin_inset Formula $\left(1-\alpha\right)^{n+1}=\left(1-\alpha\right)\left(1-\alpha\right)^{n}\geq\left(1-\alpha\right)$ +\end_inset + + +\begin_inset Formula $\left(1-n\alpha\right)=1-n\alpha-\alpha-n\alpha^{2}=1-\left(n+1\right)\alpha-n\alpha^{2}\geq1-\left(n+1\right)\alpha$ +\end_inset + +, + torej ocena velja tudi za +\begin_inset Formula $n+1$ +\end_inset + +. +\end_layout + +\end_deeper +\begin_layout Definition* +Vpeljimo oznaki: +\end_layout + +\begin_deeper +\begin_layout Itemize +Za +\begin_inset Formula $n\in\mathbb{N}$ +\end_inset + + označimo +\begin_inset Formula $n!=1\cdot2\cdot3\cdot\cdots\cdot n$ +\end_inset + + (pravimo +\begin_inset Formula $n-$ +\end_inset + +faktoriala oziroma +\begin_inset Formula $n-$ +\end_inset + +fakulteta). + Ker velja +\begin_inset Formula $n!=n\cdot\left(n-1\right)!$ +\end_inset + + za +\begin_inset Formula $n\geq2$ +\end_inset + +, + je smiselno definirati še +\begin_inset Formula $0!=1$ +\end_inset + +. +\end_layout + +\begin_layout Itemize +Za +\begin_inset Formula $n,k\in\mathbb{N}$ +\end_inset + + označimo še binomski simbol: + +\begin_inset Formula $\binom{n}{k}\coloneqq\frac{n!}{k!\left(n-k\right)!}$ +\end_inset + + (pravimo +\begin_inset Formula $n$ +\end_inset + + nad +\begin_inset Formula $k$ +\end_inset + +). +\end_layout + +\begin_layout Itemize +Če je +\begin_inset Formula $\left(a_{k}\right)_{k}$ +\end_inset + + neko zaporedje (lahko tudi končno), + lahko pišemo +\begin_inset Formula $\sum_{k=1}^{n}a_{k}\coloneqq a_{1}+a_{2}+\cdots+a_{n}$ +\end_inset + + (pravimo summa) in +\begin_inset Formula $\prod_{k=1}^{n}a_{k}\coloneqq a_{1}\cdot\cdots\cdot a_{n}$ +\end_inset + + (pravimo produkt). +\end_layout + +\end_deeper +\begin_layout Example* +\begin_inset Formula $\sum_{k=1}^{n}\frac{1}{k}=\frac{1}{1}+\frac{1}{2}+\frac{1}{3}+\cdots+\frac{1}{n}$ +\end_inset + + in +\begin_inset Formula $\prod_{k=1}^{n}k=1\cdot2\cdot3\cdot\cdots\cdot n=n!$ +\end_inset + +. +\end_layout + +\begin_layout Theorem* +Binomska formula. + +\begin_inset Formula $\forall a,b\in\mathbb{R},n\in\mathbb{N}:\left(a+b\right)^{n}=\sum_{k=0}^{n}\binom{n}{k}a^{k}b^{n-k}$ +\end_inset + +. +\end_layout + +\begin_layout Proof +Indukcija po +\begin_inset Formula $n$ +\end_inset + +. +\end_layout + +\begin_deeper +\begin_layout Itemize +Baza +\begin_inset Formula $n=1$ +\end_inset + +: + +\begin_inset Formula $\sum_{k=0}^{1}\binom{n}{k}a^{k}b^{n-k}=\binom{1}{0}a^{0}b^{1-0}+\binom{1}{1}a^{1}b^{1-1}=a+b=\left(a+b\right)^{1}$ +\end_inset + + +\end_layout + +\begin_layout Itemize +I. + P. + +\begin_inset Formula $\sum_{k=0}^{n}\binom{n}{k}a^{k}b^{n-k}=\left(a+b\right)^{n}$ +\end_inset + + +\end_layout + +\begin_layout Itemize +Korak: + +\begin_inset Formula +\[ +\left(a+b\right)^{n+1}=\left(a+b\right)\left(a+b\right)^{n}=\left(a+b\right)\sum_{k=0}^{n}\binom{n}{k}a^{k}b^{n-k}=\sum_{k=0}^{n}\binom{n}{k}a^{k+1}b^{n-k}+\sum_{k=0}^{n}\binom{n}{k}a^{k}b^{n-k+1}= +\] + +\end_inset + +sedaj naj bo +\begin_inset Formula $m=k+1$ +\end_inset + + v levem členu: +\begin_inset Formula +\[ +=\sum_{m=1}^{n+1}\binom{n}{m-1}a^{m}b^{n-\left(m-1\right)}+\sum_{k=0}^{n}\binom{n}{k}a^{k}b^{n-k+1}=a^{n+1}+\sum_{k=1}^{n}\left[\binom{n}{k-1}+\binom{n}{k}\right]a^{k}b^{n-k+1}+b^{n+1}= +\] + +\end_inset + +Sedaj obravnavajmo le izraz v oglatih oklepajih: +\begin_inset Formula +\[ +\binom{n}{k-1}+\binom{n}{k}=\frac{n!}{\left(k-1\right)!\left(n-k+1\right)!}+\frac{n!}{k!\left(n-k\right)!}=\frac{kn!}{k!\left(n-k+1\right)!}+\frac{n!\left(n-k+1\right)}{k!\left(n-k+1\right)!}=\frac{kn!+n!\left(n-k+1\right)}{k!\left(n-k+1\right)!}= +\] + +\end_inset + + +\begin_inset Formula +\[ +=\frac{n!\left(\cancel{k+}n\cancel{-k}+1\right)}{k!\left(n+1-k\right)!}=\frac{n!\left(n+1\right)}{k!\left(n+1-k\right)!}=\frac{\left(n+1\right)!}{k!\left(n+1-k\right)}=\binom{n+1}{k} +\] + +\end_inset + +in skratka dobimo +\begin_inset Formula $\binom{n}{k-1}+\binom{n}{k}=\binom{n+1}{k}$ +\end_inset + +. + Vstavimo to zopet v naš zgornji račun: +\begin_inset Formula +\[ +\cdots=a^{n+1}+\sum_{k=1}^{n}\left[\binom{n}{k-1}+\binom{n}{k}\right]a^{k}b^{n-k+1}+b^{n+1}=a^{n+1}+\sum_{k=1}^{n}\binom{n+1}{k}a^{k}b^{n-k+1}+b^{n+1}= +\] + +\end_inset + + +\begin_inset Formula +\[ +=a^{n+1}+\sum_{k=1}^{n}\binom{n+1}{k}a^{k}b^{n-k+1}+b^{n+1}=a^{n+1}+\sum_{k=0}^{n}\binom{n+1}{k}a^{k}b^{n-k+1}=\sum_{k=0}^{n+1}\binom{n+1}{k}a^{k}b^{n-k+1} +\] + +\end_inset + + +\end_layout + +\end_deeper +\begin_layout Theorem* +Bernoulli. + Zaporedje +\begin_inset Formula $a_{n}\coloneqq\left(1+\frac{1}{n}\right)^{n}$ +\end_inset + + je konvergentno. +\end_layout + +\begin_layout Proof +Dokazali bomo, + da je naraščajoče in omejeno. +\end_layout + +\begin_deeper +\begin_layout Itemize +Naraščanje: + Dokazujemo, + da za +\begin_inset Formula $n\geq2$ +\end_inset + + velja +\begin_inset Formula $a_{n}\geq a_{n-1}$ +\end_inset + + oziroma +\begin_inset Formula +\[ +\left(1+\frac{1}{n}\right)^{n}\overset{?}{\geq}\left(1+\frac{1}{n-1}\right)^{n-1}=\left(\frac{n-1}{n-1}+\frac{1}{n-1}\right)^{n-1}=\left(\frac{n}{n-1}\right)^{n-1}=\left(\frac{n-1}{n}\right)^{1-n}=\left(1-\frac{1}{n}\right)^{1-n} +\] + +\end_inset + + +\begin_inset Formula +\[ +\left(1+\frac{1}{n}\right)^{n}\overset{?}{\geq}\left(1-\frac{1}{n}\right)^{1-n} +\] + +\end_inset + + +\begin_inset Formula +\[ +\left(1+\frac{1}{n^{2}}\right)^{n}=\left(\left(1+\frac{1}{n}\right)\left(1-\frac{1}{n}\right)\right)^{n}=\left(1+\frac{1}{n}\right)^{n}\left(1-\frac{1}{n}\right)^{n}\overset{?}{\geq}1-\frac{1}{n} +\] + +\end_inset + + +\begin_inset Formula +\[ +\left(1+\frac{1}{n^{2}}\right)^{n}\overset{?}{\geq}1-\frac{1}{n}, +\] + +\end_inset + +kar je poseben primer Bernoullijeve neenakosti za +\begin_inset Formula $\alpha=\frac{1}{n^{2}}$ +\end_inset + +. +\end_layout + +\begin_layout Itemize +Omejenost: + Po binomski formuli je +\begin_inset Formula +\[ +a_{n}=\left(1+\frac{1}{n}\right)^{n}=\sum_{k=0}^{n}\binom{n}{k}\left(\frac{1}{n}\right)^{k}=\sum_{k=0}^{n}\frac{n!}{k!\left(n-k\right)!n^{k}}=1+1+\sum_{k=2}^{n}\frac{n!}{k!\left(n-k\right)!n^{k}}=2+\sum_{k=2}^{n}\frac{1}{k!}\cdot\frac{n\left(n-1\right)\left(n-2\right)\cdots\left(n-k+1\right)}{n^{k}}= +\] + +\end_inset + + +\begin_inset Formula +\[ +=2+\sum_{k=2}^{n}\frac{1}{k!}\cdot\frac{n}{n}\cdot\frac{n-1}{n}\cdot\frac{n-2}{n}\cdot\cdots\cdot\frac{n-k+1}{n}=2+\sum_{k=2}^{n}\frac{1}{k!}\cdot\cancel{\left(1-0\right)}\cdot\left(1-\frac{1}{n}\right)\cdot\left(1-\frac{2}{n}\right)\cdot\cdots\cdot\left(1-\frac{k-1}{n}\right)= +\] + +\end_inset + + +\begin_inset Formula +\[ +=2+\sum_{k=2}^{n}\frac{1}{k!}\prod_{j=1}^{k-1}\left(1-\frac{j}{n}\right)<2+\sum_{k=2}^{n}\frac{1}{k!}<2+\sum_{k=2}^{n}\frac{1}{2^{k-1}}=\cdots +\] + +\end_inset + +Opomnimo, + da je +\begin_inset Formula $1-\frac{j}{n}<1$ +\end_inset + +, + zato +\begin_inset Formula $\prod_{j=1}^{k-1}\left(1-\frac{j}{n}\right)<1$ +\end_inset + + (prvi neenačaj) ter +\begin_inset Formula $k!=1\cdot2\cdot3\cdot\cdots\cdot k\geq1\cdot2\cdot2\cdot\cdots\cdot2=2^{k-1}$ +\end_inset + + (drugi). + Sedaj si z indukcijo dokažimo +\begin_inset Formula $\sum_{k=2}^{n}\frac{1}{2^{k-1}}=1-\frac{1}{2^{n-1}}$ +\end_inset + +: +\end_layout + +\begin_deeper +\begin_layout Itemize +Baza: + +\begin_inset Formula $n=2$ +\end_inset + +: + +\begin_inset Formula $\frac{1}{2^{2-1}}=1-\frac{1}{2^{2-1}}=1-\frac{1}{2}=\frac{1}{2}$ +\end_inset + +. + Velja! +\end_layout + +\begin_layout Itemize +I. + P.: + +\begin_inset Formula $\sum_{k=2}^{n}\frac{1}{2^{k-1}}=1-\frac{1}{2^{n-1}}$ +\end_inset + + +\end_layout + +\begin_layout Itemize +Korak: + +\begin_inset Formula $\sum_{k=2}^{n+1}\frac{1}{2^{k-1}}=1-\frac{1}{2^{n-1}}+\frac{1}{2^{n+1-1}}=1-2\cdot2^{-n}+2^{-n}=1+2^{-n}\left(1-2\right)=1+2^{-n}$ +\end_inset + + +\end_layout + +\begin_layout Standard +In nadaljujmo z računanjem: +\begin_inset Formula +\[ +\cdots=2+1-\frac{1}{2^{n-1}}=3-\frac{1}{2^{n-1}}, +\] + +\end_inset + +s čimer dobimo zgornjo mejo +\begin_inset Formula $\forall n\in\mathbb{N}:a_{n}<3$ +\end_inset + +. + Ker je očitno +\begin_inset Formula $\forall n\in\mathbb{N}:a_{n}>0$ +\end_inset + +, + je torej zaporedje omejeno in ker je tudi monotono po prejšnjem izreku konvergira. +\end_layout + +\end_deeper +\end_deeper +\begin_layout Definition* +Označimo število +\begin_inset Formula $e\coloneqq\lim_{n\to\infty}\left(1+\frac{1}{n}\right)^{n}$ +\end_inset + + in ga imenujemo Eulerjevo število. + Velja +\begin_inset Formula $e\approx2,71828$ +\end_inset + +. +\end_layout + +\begin_layout Remark* +V dokazu vidimo moč izreka +\begin_inset Quotes gld +\end_inset + +omejenost in monotonost +\begin_inset Formula $\Rightarrow$ +\end_inset + + konvergenca +\begin_inset Quotes grd +\end_inset + +, + saj nam omogoča dokazati konvergentnost zaporedja brez kandidata za limito. + Jasno je, + da ne bi mogli vnaprej uganiti, + da je limita ravno +\shape italic +transcendentno število +\shape default + +\begin_inset Formula $e$ +\end_inset + +. +\end_layout + +\begin_layout Definition* +Podzaporedje zaporedja +\begin_inset Formula $\left(a_{n}\right)_{n\in\mathbb{N}}$ +\end_inset + + je poljubno zaporedje oblike +\begin_inset Formula $\left(a_{\varphi\left(n\right)}\right)_{n\in\mathbb{N}}$ +\end_inset + +, + kjer je +\begin_inset Formula $\varphi:\mathbb{N}\to\mathbb{N}$ +\end_inset + + strogo naraščajoča funkcija. + Definicijsko območje +\begin_inset Formula $\varphi$ +\end_inset + + mora vsebovati števno neskončno elementov. +\end_layout + +\begin_layout Theorem* +Če je +\begin_inset Formula $L=\lim_{n\to\infty}a_{n}$ +\end_inset + +, + tedaj je +\begin_inset Formula $L$ +\end_inset + + tudi limita vsakega podzaporedja. +\end_layout + +\begin_layout Proof +Po predpostavki velja +\begin_inset Formula $\forall\varepsilon>0\exists n_{0}\in\mathbb{N}\forall n\in\mathbb{N}:n\geq n_{0}:\left|a_{n}-L\right|<\varepsilon$ +\end_inset + +. + Vzemimo poljuben +\begin_inset Formula $\varepsilon>0$ +\end_inset + +. + Po predpostavki obstaja +\begin_inset Formula $n_{0}\in\mathbb{N}$ +\end_inset + +, + da bodo vsi členi zaporedja po +\begin_inset Formula $n_{0}-$ +\end_inset + +tem v +\begin_inset Formula $\left(L-\varepsilon,L+\varepsilon\right)$ +\end_inset + +. + Iz definicijskega območja +\begin_inset Formula $\varphi$ +\end_inset + + vzemimo poljuben element +\begin_inset Formula $n_{1}$ +\end_inset + +, + da velja +\begin_inset Formula $n_{1}\geq n_{0}$ +\end_inset + +. + Gotovo obstaja, + ker je definicijsko območje števno neskončne moči in s pogojem +\begin_inset Formula $n_{1}\geq n_{0}$ +\end_inset + + onemogočimo izbiro le končno mnogo elementov. + +\begin_inset Note Note +status open + +\begin_layout Plain Layout +Če slednji ne obstaja, + je v +\begin_inset Formula $D_{\varphi}$ +\end_inset + + končno mnogo elementov, + tedaj vzamemo +\begin_inset Formula $n_{1}\coloneqq\max D_{\varphi}+1$ +\end_inset + + in je pogoj za limito izpolnjen na prazno. + Sicer pa v +\end_layout + +\end_inset + +Velja +\begin_inset Formula $\forall n\in\mathbb{N}:n>n_{1}\Rightarrow\left|a_{\varphi n}-L\right|<\varepsilon$ +\end_inset + +, + ker je +\begin_inset Formula $\varphi$ +\end_inset + + strogo naraščajoča in izbiramo le elemente podzaporedja, + ki so v izvornem zaporedju za +\begin_inset Formula $n_{0}-$ +\end_inset + +tim členom in zato v +\begin_inset Formula $\left(L-\varepsilon,L+\varepsilon\right)$ +\end_inset + +. +\end_layout + +\begin_layout Example* +\begin_inset Formula $\lim_{n\to\infty}\frac{1}{2n+3}=\lim_{n\to\infty}\frac{1}{n}=0$ +\end_inset + + za zaporedje +\begin_inset Formula $a_{n}=\frac{1}{n}$ +\end_inset + + in podzaporedje +\begin_inset Formula $a_{\varphi n}$ +\end_inset + +, + kjer je +\begin_inset Formula $\varphi\left(n\right)=2n+3$ +\end_inset + +. +\end_layout + +\begin_layout Theorem* +Karakterizacija limite s podzaporedji. + Naj bo +\begin_inset Formula $\left(a_{n}\right)_{n\in\mathbb{N}}$ +\end_inset + + realno zaporedje in +\begin_inset Formula $L\in\mathbb{R}$ +\end_inset + +. + Tedaj +\begin_inset Formula $L=\lim_{n\to\infty}a_{n}\Leftrightarrow$ +\end_inset + + za vsako podzaporedje +\begin_inset Formula $\left(a_{n_{k}}\right)_{k\in\mathbb{N}}$ +\end_inset + + zaporedja +\begin_inset Formula $\left(a_{n}\right)_{n}$ +\end_inset + + obstaja njegovo podzaporedje +\begin_inset Formula $\left(a_{n_{k_{l}}}\right)_{l\in\mathbb{N}}$ +\end_inset + +, + ki konvergira k +\begin_inset Formula $L$ +\end_inset + +. +\end_layout + +\begin_layout Proof +Dokazujemo ekvivalenco: +\end_layout + +\begin_deeper +\begin_layout Labeling +\labelwidthstring 00.00.0000 +\begin_inset Formula $\left(\Rightarrow\right)$ +\end_inset + + Dokazano poprej. + Limita se pri prehodu na podzaporedje ohranja. +\end_layout + +\begin_layout Labeling +\labelwidthstring 00.00.0000 +\begin_inset Formula $\left(\Leftarrow\right)$ +\end_inset + + PDDRAA +\begin_inset Formula $a_{n}\not\to L$ +\end_inset + +. + Tedaj +\begin_inset Formula $\exists\varepsilon>0$ +\end_inset + + in podzaporedje +\begin_inset Formula $\left(a_{n_{k}}\right)_{k\in\mathbb{N}}\ni:\forall k\in\mathbb{N}:\left|a_{n_{k}}-K\right|>\varepsilon$ +\end_inset + + (*) +\begin_inset Note Note +status open + +\begin_layout Plain Layout +tu je na +\begin_inset Quotes gld +\end_inset + +Zaporedja 2 +\begin_inset Quotes grd +\end_inset + + napaka, + neenačaj obrne v drugo smer +\end_layout + +\end_inset + +. + Po predpostavki sedaj +\begin_inset Formula $\exists\left(a_{n_{k_{l}}}\right)_{l\in\mathbb{N}}\ni:\lim_{l\to\infty}a_{n_{k_{l}}}=L$ +\end_inset + +. + To pa je v protislovju z (*), + torej je začetna predpostavka +\begin_inset Formula $a_{n}\not\to L$ +\end_inset + + napačna, + torej +\begin_inset Formula $a_{n}\to L$ +\end_inset + +. +\end_layout + +\end_deeper +\begin_layout Subsection +Stekališča +\end_layout + +\begin_layout Definition* +Točka +\begin_inset Formula $s\in\mathbb{R}$ +\end_inset + + je stekališče zaporedje +\begin_inset Formula $\left(a_{n}\right)_{n\in\mathbb{N}}\subset\mathbb{R}$ +\end_inset + +, + če v vsaki okolici te točke leži neskončno členov zaporedja. +\end_layout + +\begin_layout Remark* +Pri limiti zahtevamo več; + da izven vsake okolice limite leži le končno mnogo členov. +\end_layout + +\begin_layout Example* +Primeri stekališč. +\end_layout + +\begin_deeper +\begin_layout Enumerate +\begin_inset Formula $L=\lim_{n\to\infty}a_{n}\Rightarrow L$ +\end_inset + + je stekališče za +\begin_inset Formula $a_{n}$ +\end_inset + + +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $0,1,0,1,\dots$ +\end_inset + + stekališči sta +\begin_inset Formula $\left\{ 0,1\right\} $ +\end_inset + + in zaporedje nima limite (ni konvergentno) +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $1,1,2,1,2,3,1,2,3,4,\dots$ +\end_inset + + ima neskončno stekališč, + +\begin_inset Formula $\mathbb{N}$ +\end_inset + +. +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $b_{n}=n-$ +\end_inset + +to racionalno število +\begin_inset Foot +status open + +\begin_layout Plain Layout +Racionalnih števil je števno mnogo, + zato jih lahko linearno uredimo in oštevilčimo +\end_layout + +\end_inset + + ima neskončno stekališč, + +\begin_inset Formula $\mathbb{R}$ +\end_inset + +. +\end_layout + +\end_deeper +\begin_layout Remark* +Limita je stakališče, + stekališče pa ni nujno limita. + Poleg tega, + če se spomnimo, + velja, + da vsota konvergentnih zaporedij konvergira k vsoti njunih limit, + ni pa nujno res, + da so stekališča vsote dveh zaporedij paroma vsote stekališč teh dveh zaporedij. + Primer: + +\begin_inset Formula $a_{n}=\left(-1\right)^{n}$ +\end_inset + + in +\begin_inset Formula $b_{n}=-\left(-1\right)^{n}$ +\end_inset + +. + Njuni stekališči sta +\begin_inset Formula $\left\{ -1,1\right\} $ +\end_inset + +, + toda +\begin_inset Formula $a_{n}+b_{n}=0$ +\end_inset + + ima le stekališče +\begin_inset Formula $\left\{ 0\right\} $ +\end_inset + +, + ne pa tudi +\begin_inset Formula $\left\{ 1,-1,2,-2\right\} $ +\end_inset + +. +\end_layout + +\begin_layout Corollary* +sssssssssss +\end_layout + +\begin_layout Corollary* +sssssssssss +\end_layout + +\begin_layout Corollary* +sssssssssss +\end_layout + +\begin_layout Corollary* +sssssssssss +\end_layout + +\begin_layout Corollary* +sssssssssss +\end_layout + +\begin_layout Corollary* +sssssssssss +\end_layout + +\begin_layout Corollary* +sssssssssss +\end_layout + +\begin_layout Corollary* +sssssssssss +\end_layout + +\begin_layout Corollary* +sssssssssss +\end_layout + +\end_body +\end_document -- cgit v1.2.3