From ee9ffff8c5980dae3c77184b69da98aff10be909 Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Anton=20Luka=20=C5=A0ijanec?= Date: Sun, 10 Dec 2023 00:39:05 +0100 Subject: =?UTF-8?q?ds1kolokvij1nedokon=C4=8Dan?= MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8 Content-Transfer-Encoding: 8bit --- "\305\241ola/ds1/kolokvij1.lyx" | 1136 +++++++++++++++++++++++++++++++++++++++ 1 file changed, 1136 insertions(+) create mode 100644 "\305\241ola/ds1/kolokvij1.lyx" diff --git "a/\305\241ola/ds1/kolokvij1.lyx" "b/\305\241ola/ds1/kolokvij1.lyx" new file mode 100644 index 0000000..4cbcea1 --- /dev/null +++ "b/\305\241ola/ds1/kolokvij1.lyx" @@ -0,0 +1,1136 @@ +#LyX 2.3 created this file. For more info see http://www.lyx.org/ +\lyxformat 544 +\begin_document +\begin_header +\save_transient_properties true +\origin unavailable +\textclass article +\begin_preamble +\usepackage{siunitx} +\usepackage{pgfplots} +\usepackage{listings} +\usepackage{multicol} +\sisetup{output-decimal-marker = {,}, quotient-mode=fraction, output-exponent-marker=\ensuremath{\mathrm{3}}} +\end_preamble +\use_default_options true +\begin_modules +enumitem +\end_modules +\maintain_unincluded_children false +\language slovene +\language_package default +\inputencoding auto +\fontencoding global +\font_roman "default" "default" +\font_sans "default" "default" +\font_typewriter "default" "default" +\font_math "auto" "auto" +\font_default_family default +\use_non_tex_fonts false +\font_sc false +\font_osf false +\font_sf_scale 100 100 +\font_tt_scale 100 100 +\use_microtype false +\use_dash_ligatures true +\graphics default +\default_output_format default +\output_sync 0 +\bibtex_command default +\index_command default +\paperfontsize default +\spacing single +\use_hyperref false +\papersize default +\use_geometry true +\use_package amsmath 1 +\use_package amssymb 1 +\use_package cancel 1 +\use_package esint 1 +\use_package mathdots 1 +\use_package mathtools 1 +\use_package mhchem 1 +\use_package stackrel 1 +\use_package stmaryrd 1 +\use_package undertilde 1 +\cite_engine basic +\cite_engine_type default +\biblio_style plain +\use_bibtopic false +\use_indices false +\paperorientation portrait +\suppress_date false +\justification false +\use_refstyle 1 +\use_minted 0 +\index Index +\shortcut idx +\color #008000 +\end_index +\leftmargin 1cm +\topmargin 0cm +\rightmargin 1cm +\bottommargin 2cm +\headheight 1cm +\headsep 1cm +\footskip 1cm +\secnumdepth 3 +\tocdepth 3 +\paragraph_separation indent +\paragraph_indentation default +\is_math_indent 0 +\math_numbering_side default +\quotes_style german +\dynamic_quotes 0 +\papercolumns 1 +\papersides 1 +\paperpagestyle default +\tracking_changes false +\output_changes false +\html_math_output 0 +\html_css_as_file 0 +\html_be_strict false +\end_header + +\begin_body + +\begin_layout Title +List s formulami za 1. + kolokvij Diskretnih struktur 1 +\end_layout + +\begin_layout Author + +\noun on +Anton Luka Šijanec +\end_layout + +\begin_layout Date +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +today +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +newcommand +\backslash +euler{e} +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +setlength{ +\backslash +columnseprule}{0.2pt} +\backslash +begin{multicols}{2} +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Paragraph +Izjavni račun +\end_layout + +\begin_layout Standard +\begin_inset Formula $\forall\exists$ +\end_inset + +, +\begin_inset Formula $\neg$ +\end_inset + +, +\begin_inset Formula $\wedge\uparrow\downarrow$ +\end_inset + +, +\begin_inset Formula $\vee\oplus$ +\end_inset + +, +\begin_inset Formula $\Rightarrow$ +\end_inset + + (left to right), +\begin_inset Formula $\Leftrightarrow$ +\end_inset + + +\end_layout + +\begin_layout Standard +absorbcija: +\begin_inset Formula $a\wedge\left(b\vee a\right)\sim a,\quad a\vee\left(b\wedge a\right)\sim a$ +\end_inset + + +\end_layout + +\begin_layout Standard +kontrapozicija: +\begin_inset Formula $a\Rightarrow b\quad\sim\quad\neg a\vee b$ +\end_inset + + +\end_layout + +\begin_layout Standard +osnovna konjunkcija +\begin_inset Formula $\coloneqq$ +\end_inset + + minterm +\end_layout + +\begin_layout Standard +globina +\begin_inset Formula $\coloneqq$ +\end_inset + + +\begin_inset Formula $\begin{cases} +1 & \text{izraz nima veznikov}\\ +1+\max\left\{ A_{1}\dots A_{n}\right\} & A_{i}\text{ param. zun. vezn.} +\end{cases}$ +\end_inset + + +\end_layout + +\begin_layout Standard +\begin_inset Formula $A_{1},\dots,A_{n},B$ +\end_inset + + je pravilen sklep, če +\begin_inset Formula $\vDash\bigwedge_{k=1}^{n}A_{k}\Rightarrow B$ +\end_inset + +. + +\begin_inset Note Note +status open + +\begin_layout Plain Layout +zaključek +\begin_inset Formula $B$ +\end_inset + + drži pri vseh tistih naborih vrednostih spremenljivk, pri katerih hkrati + držijo vse predpostavke +\begin_inset Formula $A_{i}$ +\end_inset + +. +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Paragraph + +\series bold +Pravila sklepanja +\end_layout + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +begin{align*} +\end_layout + +\begin_layout Plain Layout + +&& A, A +\backslash +Rightarrow B & +\backslash +vDash B && +\backslash +text{ +\backslash +emph{modus ponens}} && +\backslash +text{M. + P.} +\backslash + +\backslash + +\end_layout + +\begin_layout Plain Layout + +&& A +\backslash +Rightarrow B, +\backslash +neg B & +\backslash +vDash +\backslash +neg A && +\backslash +text{ +\backslash +emph{modus tollens}} && +\backslash +text{M. + T.} +\backslash + +\backslash + +\end_layout + +\begin_layout Plain Layout + +&& A +\backslash +wedge B, +\backslash +neg B & +\backslash +vDash A && +\backslash +text{ +\backslash +emph{disjunktivni silogizem}} && +\backslash +text{D. + S.} +\backslash + +\backslash + +\end_layout + +\begin_layout Plain Layout + +&& A +\backslash +Rightarrow B, B +\backslash +Rightarrow C & +\backslash +vDash A +\backslash +Rightarrow B && +\backslash +text{ +\backslash +emph{hipotetični silogizem}} && +\backslash +text{H. + S} +\backslash + +\backslash + +\end_layout + +\begin_layout Plain Layout + +&& A, B & +\backslash +vDash A +\backslash +wedge B && +\backslash +text{ +\backslash +emph{združitev}} && +\backslash +text{Zd.} +\backslash + +\backslash + +\end_layout + +\begin_layout Plain Layout + +&& A +\backslash +wedge B & +\backslash +vDash A && +\backslash +text{ +\backslash +emph{poenostavitev}} && +\backslash +text{Po.} +\backslash + +\backslash + +\end_layout + +\begin_layout Plain Layout + + +\backslash +end{align*} +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Standard +Protiprimer +\begin_inset Formula $1,\dots,1\vDash0$ +\end_inset + + dokaže nepravilnost sklepa. +\end_layout + +\begin_layout Paragraph + +\series bold +Pomožni sklepi +\series default +: +\end_layout + +\begin_layout Itemize +Pogojni sklep (P.S.): +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +newline +\end_layout + +\end_inset + + +\begin_inset Formula $A_{1},\dots,A_{n}\vDash B\Rightarrow C\quad\sim\quad A_{1},\dots,A_{n},B\vDash C$ +\end_inset + + +\end_layout + +\begin_layout Itemize +S protislovjem (R.A. + – +\emph on +reduction ad absurdum +\emph default +): +\begin_inset Formula $A_{1},\dots,A_{n}\vDash B\quad\sim\quad A_{1},\dots,A_{n},\neg B\vDash0$ +\end_inset + + +\end_layout + +\begin_layout Itemize +Analiza primerov (A. + P.): +\begin_inset Formula $A_{1},\dots,A_{n},B_{1}\vee B_{2}\vDash C\sim\left(A_{1},\dots,A_{n},B_{1}\vDash C\right)\wedge\left(A_{1},\dots,A_{n},B_{2}\vDash C\right)$ +\end_inset + + +\end_layout + +\begin_layout Itemize +\begin_inset Formula $A_{1},\dots,A_{n},B_{1}\wedge B_{2}\vDash C\quad\sim\quad A_{1},\dots,A_{n},B_{1},B_{2}\vDash C$ +\end_inset + + +\end_layout + +\begin_layout Paragraph +Predikatni račun +\end_layout + +\begin_layout Standard +\begin_inset Formula $P:D^{n}\longrightarrow\left\{ 0,1\right\} $ +\end_inset + + +\end_layout + +\begin_layout Standard +De Morganov zakon negacije: +\end_layout + +\begin_layout Itemize +\begin_inset Formula $\forall x:\neg P\left(x\right)\quad\sim\quad\neg\exists x:P\left(x\right)$ +\end_inset + + +\end_layout + +\begin_layout Itemize +\begin_inset Formula $\exists x:\neg P\left(x\right)\quad\sim\quad\neg\forall x:P\left(x\right)$ +\end_inset + + +\end_layout + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Standard +Izjava je zaprta izjavna formula, torej taka, ki ne vsebuje prostih ( +\begin_inset Formula $=$ +\end_inset + +nevezanih) nastopov spremenljivk. +\end_layout + +\begin_layout Paragraph +Množice +\end_layout + +\begin_layout Standard +\begin_inset Formula $^{\mathcal{C}},\cup\backslash,\cup\oplus$ +\end_inset + + (left to right) +\end_layout + +\begin_layout Standard +\begin_inset Formula $\mathcal{A}\subseteq\mathcal{B}\Leftrightarrow\mathcal{A}\cup\mathcal{B}=\mathcal{B}\Leftrightarrow\mathcal{A}\cup\mathcal{B}=\mathcal{A}\Leftrightarrow\mathcal{A}\backslash\mathcal{B}=\left\{ \right\} \Leftrightarrow\mathcal{B}^{\mathcal{C}}\subseteq\mathcal{A^{\mathcal{C}}}$ +\end_inset + + +\end_layout + +\begin_layout Paragraph + +\series bold +Lastnosti binarnih relacij +\end_layout + +\begin_layout Paragraph +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +begin{align*} +\end_layout + +\begin_layout Plain Layout + +&& +\backslash +forall a +\backslash +in A : & +\backslash +left(a R a +\backslash +right) && +\backslash +text{refleksivnost} +\backslash + +\backslash + +\end_layout + +\begin_layout Plain Layout + +&& +\backslash +forall a,b +\backslash +in A : & +\backslash +left(a R b +\backslash +Rightarrow b R a +\backslash +right)&& +\backslash +text{simetričnost} +\backslash + +\backslash + +\end_layout + +\begin_layout Plain Layout + +&& +\backslash +forall a,b +\backslash +in A : & +\backslash +left(a R b +\backslash +wedge b R a +\backslash +Rightarrow a=b +\backslash +right) && +\backslash +text{antisimetričnost} +\backslash + +\backslash + +\end_layout + +\begin_layout Plain Layout + +&& +\backslash +forall a,b,c +\backslash +in A : & +\backslash +left(a R b +\backslash +wedge b R c +\backslash +Rightarrow a R c +\backslash +right) && +\backslash +text{tranzitivnost} +\backslash + +\backslash + +\end_layout + +\begin_layout Plain Layout + +&& +\backslash +forall a +\backslash +in A : & +\backslash +neg +\backslash +left(a R a +\backslash +right) && +\backslash +text{irefleksivnost} +\backslash + +\backslash + +\end_layout + +\begin_layout Plain Layout + +&& +\backslash +forall a,b +\backslash +in A: & +\backslash +left(a R b +\backslash +Rightarrow +\backslash +neg +\backslash +left(b R a +\backslash +right) +\backslash +right) && +\backslash +text{asimetričnost} +\backslash + +\backslash + +\end_layout + +\begin_layout Plain Layout + +&& +\backslash +forall a,b,c +\backslash +in A:& +\backslash +left(a R b +\backslash +wedge b R c +\backslash +Rightarrow +\backslash +neg +\backslash +left(a R c +\backslash +right) +\backslash +right) && +\backslash +text{itranzitivnost} +\backslash + +\backslash + +\end_layout + +\begin_layout Plain Layout + +&& +\backslash +forall a,b +\backslash +in A:& +\backslash +left(a +\backslash +not=b +\backslash +Rightarrow +\backslash +left(a R b +\backslash +vee b R a +\backslash +right) +\backslash +right) && +\backslash +text{sovisnost} +\backslash + +\backslash + +\end_layout + +\begin_layout Plain Layout + +&& +\backslash +forall a,b +\backslash +in A:& +\backslash +left(a R b +\backslash +vee b R a +\backslash +right)&& +\backslash +text{stroga sovisnost} +\backslash + +\backslash + +\end_layout + +\begin_layout Plain Layout + +&& +\backslash +forall a,b,c +\backslash +in A:& +\backslash +left(aRb +\backslash +wedge aRc +\backslash +Rightarrow b=c +\backslash +right)&& +\backslash +text{enoličnost} +\end_layout + +\begin_layout Plain Layout + + +\backslash +end{align*} +\end_layout + +\end_inset + +Sklepanje s kvantifikatorji +\end_layout + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +begin{align*} +\end_layout + +\begin_layout Plain Layout + +&& +\backslash +exists x:P +\backslash +left(x +\backslash +right) +\backslash +longrightarrow& x_0 +\backslash +coloneqq x, P +\backslash +left(x +\backslash +right) && +\backslash +text{eksistenčna specifikacija} +\backslash + +\backslash + +\end_layout + +\begin_layout Plain Layout + +&& P +\backslash +left(x_0 +\backslash +right) +\backslash +longrightarrow& +\backslash +exists x:P +\backslash +left(x +\backslash +right)&& +\backslash +text{eksistenčna generalizacija} +\backslash + +\backslash + +\end_layout + +\begin_layout Plain Layout + +&& +\backslash +forall x:P +\backslash +left(x +\backslash +right) +\backslash +longrightarrow& x_0 +\backslash +coloneqq x, P +\backslash +left(x +\backslash +right)&& +\backslash +text{univerzalna specifikacija} +\backslash + +\backslash + +\end_layout + +\begin_layout Plain Layout + +&& +\backslash +text{poljub. + } x_0, P +\backslash +left(x_0 +\backslash +right) +\backslash +longrightarrow& +\backslash +forall x:P +\backslash +left(x +\backslash +right)&& +\backslash +text{univerzalna generalizacija} +\end_layout + +\begin_layout Plain Layout + + +\backslash +end{align*} +\end_layout + +\end_inset + + +\begin_inset Formula $R\subseteq A\times B:aR\oplus Sb\sim\left(a,b\right)\in R\backslash S\vee\left(a,b\right)\in S\backslash R\sim aRb\oplus aSb$ +\end_inset + + +\begin_inset Newline newline +\end_inset + + +\begin_inset Formula $R^{-1}\coloneqq\left\{ \left(b,a\right);\left(a,b\right)\in R\right\} :\quad aRb\sim bR^{-1}a$ +\end_inset + + +\begin_inset Newline newline +\end_inset + + +\begin_inset Formula $R*S\coloneqq\left\{ \left(a,c\right);\exists b:\left(aRb\wedge bSc\right)\right\} :R^{2}\coloneqq R*R,R^{n+1}\coloneqq R^{n}*R$ +\end_inset + + +\begin_inset Newline newline +\end_inset + + +\begin_inset Formula $\left(R^{-1}\right)^{-1}=R,\left(R\cup S\right)^{-1}=R^{-1}\cup S^{-1},\left(R\cap S\right)^{-1}=R^{-1}\cap S^{-1}$ +\end_inset + + +\begin_inset Newline newline +\end_inset + + +\begin_inset Formula $\left(R*S\right)=R^{-1}*S^{-1}$ +\end_inset + +. + +\begin_inset Formula $*\cup$ +\end_inset + + in +\begin_inset Formula $\cup*$ +\end_inset + + sta distributivni. +\end_layout + +\begin_layout Standard +\begin_inset Formula $R^{+}=R\cup R^{2}\cup R^{3}\cup\dots,\quad R^{*}=I\cup R^{+}$ +\end_inset + + +\begin_inset Newline newline +\end_inset + +Ovojnica +\begin_inset Formula $R^{L}\supseteq R$ +\end_inset + + je najmanjša razširitev +\begin_inset Formula $R$ +\end_inset + +, ki ima lastnost +\begin_inset Formula $L$ +\end_inset + +. +\end_layout + +\begin_layout Standard +\begin_inset Formula $R^{\text{ref}}\coloneqq I\cup R,R^{\text{sim}}\coloneqq R\cup R^{-1},R^{\text{tranz}}=R^{+},R^{\text{tranz+ref}}=R^{*}$ +\end_inset + + +\end_layout + +\begin_layout Standard +Ekvivalenčna rel. + je simetreična, tranzitivna in refleksivna. +\end_layout + +\begin_layout Standard +Ekvivalenčni razred: +\begin_inset Formula $R\left[x\right]\coloneqq\left\{ y;xRy\right\} $ +\end_inset + + +\end_layout + +\begin_layout Standard +Faktorska množica: +\begin_inset Formula $A/R\coloneqq\left\{ R\left[x\right];x\in A\right\} $ +\end_inset + + +\end_layout + +\begin_layout Standard +\begin_inset Formula $\vec{\mathcal{B}}\text{ razbitje}A\Longleftrightarrow\bigcup_{i}\mathcal{B}_{i}=A\wedge\forall i\mathcal{B}_{i}\not=\left\{ \right\} \wedge\mathcal{B}_{i}\cap\mathcal{B}_{j}=\left\{ \right\} ,i\not=j$ +\end_inset + + +\end_layout + +\begin_layout Paragraph +Urejenosti +\end_layout + +\begin_layout Standard +\begin_inset Formula $\left(M,\preccurlyeq\right)$ +\end_inset + + +\end_layout + +\begin_layout Standard +Delna: refl., antisim. + in tranz. + Linearna: delna, sovisna +\end_layout + +\begin_layout Standard +def.: +\begin_inset Formula $x\prec y\Longleftrightarrow x\preccurlyeq y\wedge x\not=y$ +\end_inset + + +\end_layout + +\begin_layout Standard +\begin_inset Formula $x\text{ je nepo. predh. }y\Longleftrightarrow x\prec y\wedge\neg\exists z\in M:\left(x\prec z\wedge z\prec y\right)$ +\end_inset + + +\end_layout + +\begin_layout Standard +\begin_inset Formula $a\in M\text{ je minimalen}\Longleftrightarrow\forall x\in M\left(x\preccurlyeq a\Rightarrow x=a\right)$ +\end_inset + + +\end_layout + +\begin_layout Standard +\begin_inset Formula $a\in M\text{ je maksimalen}\Longleftrightarrow\forall x\in M\left(a\preccurlyeq x\Rightarrow x=a\right)$ +\end_inset + + +\end_layout + +\begin_layout Standard +\begin_inset Formula $a\in M\text{ je prvi}\Longleftrightarrow\forall x\in M:\left(a\preccurlyeq x\right)$ +\end_inset + + +\end_layout + +\begin_layout Standard +\begin_inset Formula $a\in M\text{ je zadnji}\Longleftrightarrow\forall x\in M:\left(x\preccurlyeq a\right)$ +\end_inset + + +\end_layout + +\begin_layout Standard +\begin_inset Formula $M_{1}\times M_{2}$ +\end_inset + +: +\begin_inset Formula $\left(a_{1},b_{1}\right)\preccurlyeq\left(a_{2},b_{2}\right)\coloneqq a_{1}\preccurlyeq a_{2}\wedge b_{1}\preccurlyeq b_{2}$ +\end_inset + + +\end_layout + +\begin_layout Standard +Srečno! +\end_layout + +\begin_layout Paragraph +TODO +\end_layout + +\begin_layout Standard +Postovi teoremi za funkcijsko polnost, preglej še zapiske s pisalnega stroja. +\end_layout + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +end{multicols} +\end_layout + +\end_inset + + +\end_layout + +\end_body +\end_document -- cgit v1.2.3