#LyX 2.3 created this file. For more info see http://www.lyx.org/
\lyxformat 544
\begin_document
\begin_header
\save_transient_properties true
\origin unavailable
\textclass article
\begin_preamble
\usepackage[dvipsnames]{xcolor}
\usepackage{siunitx}
\usepackage{pgfplots}
\usepackage{listings}
\usepackage{multicol}
\sisetup{output-decimal-marker = {,}, quotient-mode=fraction, output-exponent-marker=\ensuremath{\mathrm{3}}}
\usepackage{tikz}
\end_preamble
\use_default_options true
\maintain_unincluded_children false
\language slovene
\language_package default
\inputencoding utf8
\fontencoding global
\font_roman "default" "default"
\font_sans "default" "default"
\font_typewriter "default" "default"
\font_math "auto" "auto"
\font_default_family default
\use_non_tex_fonts false
\font_sc false
\font_osf false
\font_sf_scale 100 100
\font_tt_scale 100 100
\use_microtype false
\use_dash_ligatures true
\graphics default
\default_output_format default
\output_sync 0
\bibtex_command default
\index_command default
\float_placement H
\paperfontsize default
\spacing single
\use_hyperref false
\papersize default
\use_geometry false
\use_package amsmath 1
\use_package amssymb 1
\use_package cancel 1
\use_package esint 1
\use_package mathdots 1
\use_package mathtools 1
\use_package mhchem 1
\use_package stackrel 1
\use_package stmaryrd 1
\use_package undertilde 1
\cite_engine basic
\cite_engine_type default
\biblio_style plain
\use_bibtopic false
\use_indices false
\paperorientation portrait
\suppress_date false
\justification false
\use_refstyle 1
\use_minted 0
\index Index
\shortcut idx
\color #008000
\end_index
\leftmargin 1cm
\topmargin 0cm
\rightmargin 1cm
\bottommargin 2cm
\headheight 1cm
\headsep 1cm
\footskip 1cm
\secnumdepth 3
\tocdepth 3
\paragraph_separation indent
\paragraph_indentation default
\is_math_indent 0
\math_numbering_side default
\quotes_style german
\dynamic_quotes 0
\papercolumns 1
\papersides 1
\paperpagestyle default
\tracking_changes false
\output_changes false
\html_math_output 0
\html_css_as_file 0
\html_be_strict false
\end_header
\begin_body
\begin_layout Title
Odgovori na ustna vprašanja višje ravni na ustni maturi 2023
\end_layout
\begin_layout Author
\noun on
Anton Luka Šijanec
\end_layout
\begin_layout Date
\begin_inset ERT
status open
\begin_layout Plain Layout
\backslash
today
\end_layout
\end_inset
\end_layout
\begin_layout Standard
\begin_inset ERT
status open
\begin_layout Plain Layout
\backslash
newcommand
\backslash
euler{e}
\end_layout
\end_inset
\end_layout
\begin_layout Standard
\begin_inset CommandInset toc
LatexCommand tableofcontents
\end_inset
\end_layout
\begin_layout Section
Vprašanja in odgovori
\end_layout
\begin_layout Subsection
Izjavni račun
\end_layout
\begin_layout Subsubsection*
Kaj je izjava?
\begin_inset space \hfill{}
\end_inset
(1
\begin_inset space ~
\end_inset
točka)
\end_layout
\begin_layout Quotation
Popoln (z vsemi nujnimi stavčnimi členi in slovnično pravilen) trdilni ali
nikalni stavek je
\series bold
smiseln
\series default
, če se v okviru predmetov in pojmov, o katerih stavek govori (v njegovem
\series bold
kontekstu
\series default
), vsaj načelno lahko lahko odločimo, ali je njegova vsebina
\series bold
resnična
\series default
ali
\series bold
lažna
\series default
.
Vsi smiselni stavki, ki trdijo isto, določajo
\series bold
izjavo
\series default
.
\begin_inset CommandInset citation
LatexCommand cite
key "cedilnik12"
literal "false"
\end_inset
\end_layout
\begin_layout Subsubsection*
Kaj je negacija dane izjave? Kdaj je negacija pravilna (resnična) in kdaj
nepravilna (neresnična)?
\begin_inset space \hfill{}
\end_inset
(1
\begin_inset space ~
\end_inset
točka)
\end_layout
\begin_layout Standard
\series bold
Negacija
\series default
\begin_inset Formula $\neg A$
\end_inset
(ali:
\begin_inset Formula $\overline{A}$
\end_inset
) izjave
\begin_inset Formula $A$
\end_inset
je izjava, ki je resnična natanko tedaj, ko je
\begin_inset Formula $A$
\end_inset
lažna (Tabela
\begin_inset CommandInset ref
LatexCommand ref
reference "tab:Negacija."
plural "false"
caps "false"
noprefix "false"
\end_inset
).
\begin_inset CommandInset citation
LatexCommand cite
key "cedilnik12"
literal "false"
\end_inset
\end_layout
\begin_layout Standard
\begin_inset Float table
wide false
sideways false
status open
\begin_layout Plain Layout
\begin_inset Tabular
\begin_inset Text
\begin_layout Plain Layout
\begin_inset Formula $A$
\end_inset
\end_layout
\end_inset
|
\begin_inset Text
\begin_layout Plain Layout
\begin_inset Formula $\neg A$
\end_inset
\end_layout
\end_inset
|
\begin_inset Text
\begin_layout Plain Layout
1
\end_layout
\end_inset
|
\begin_inset Text
\begin_layout Plain Layout
0
\end_layout
\end_inset
|
\begin_inset Text
\begin_layout Plain Layout
0
\end_layout
\end_inset
|
\begin_inset Text
\begin_layout Plain Layout
1
\end_layout
\end_inset
|
\end_inset
\end_layout
\begin_layout Plain Layout
\align center
\begin_inset Caption Standard
\begin_layout Plain Layout
Negacija.
\begin_inset CommandInset label
LatexCommand label
name "tab:Negacija."
\end_inset
\end_layout
\end_inset
\end_layout
\end_inset
\end_layout
\begin_layout Subsubsection*
Kaj je konjunkcija izjav?
\begin_inset space \hfill{}
\end_inset
(1
\begin_inset space ~
\end_inset
točka)
\end_layout
\begin_layout Quotation
Če izjavi
\begin_inset Formula $A$
\end_inset
in
\begin_inset Formula $B$
\end_inset
povežemo z veznikom
\begin_inset Quotes gld
\end_inset
in
\begin_inset Quotes grd
\end_inset
, dobimo
\series bold
konjunkcijo
\series default
\begin_inset Formula $A\wedge B$
\end_inset
(ali tudi
\begin_inset Formula $A\&B$
\end_inset
).
Konjunkcija je resnična le tedaj, kadar sta oba člena resnični izjavi (Tabela
\begin_inset CommandInset ref
LatexCommand ref
reference "tab:Osnovne-logične-povezave."
plural "false"
caps "false"
noprefix "false"
\end_inset
).
\begin_inset CommandInset citation
LatexCommand cite
key "cedilnik12"
literal "false"
\end_inset
\end_layout
\begin_layout Quotation
\begin_inset Float table
wide false
sideways false
status open
\begin_layout Plain Layout
\align center
\begin_inset Tabular
\begin_inset Text
\begin_layout Plain Layout
\begin_inset Formula $A$
\end_inset
\end_layout
\end_inset
|
\begin_inset Text
\begin_layout Plain Layout
\begin_inset Formula $B$
\end_inset
\end_layout
\end_inset
|
\begin_inset Text
\begin_layout Plain Layout
\begin_inset Formula $A\Leftrightarrow B$
\end_inset
\end_layout
\end_inset
|
\begin_inset Text
\begin_layout Plain Layout
\begin_inset Formula $A\Rightarrow B$
\end_inset
\end_layout
\end_inset
|
\begin_inset Text
\begin_layout Plain Layout
\begin_inset Formula $A\wedge B$
\end_inset
\end_layout
\end_inset
|
\begin_inset Text
\begin_layout Plain Layout
\begin_inset Formula $A\vee B$
\end_inset
\end_layout
\end_inset
|
\begin_inset Text
\begin_layout Plain Layout
\begin_inset Formula $A\veebar B$
\end_inset
\end_layout
\end_inset
|
\begin_inset Text
\begin_layout Plain Layout
1
\end_layout
\end_inset
|
\begin_inset Text
\begin_layout Plain Layout
1
\end_layout
\end_inset
|
\begin_inset Text
\begin_layout Plain Layout
1
\end_layout
\end_inset
|
\begin_inset Text
\begin_layout Plain Layout
1
\end_layout
\end_inset
|
\begin_inset Text
\begin_layout Plain Layout
1
\end_layout
\end_inset
|
\begin_inset Text
\begin_layout Plain Layout
1
\end_layout
\end_inset
|
\begin_inset Text
\begin_layout Plain Layout
0
\end_layout
\end_inset
|
\begin_inset Text
\begin_layout Plain Layout
1
\end_layout
\end_inset
|
\begin_inset Text
\begin_layout Plain Layout
0
\end_layout
\end_inset
|
\begin_inset Text
\begin_layout Plain Layout
0
\end_layout
\end_inset
|
\begin_inset Text
\begin_layout Plain Layout
0
\end_layout
\end_inset
|
\begin_inset Text
\begin_layout Plain Layout
0
\end_layout
\end_inset
|
\begin_inset Text
\begin_layout Plain Layout
1
\end_layout
\end_inset
|
\begin_inset Text
\begin_layout Plain Layout
1
\end_layout
\end_inset
|
\begin_inset Text
\begin_layout Plain Layout
0
\end_layout
\end_inset
|
\begin_inset Text
\begin_layout Plain Layout
1
\end_layout
\end_inset
|
\begin_inset Text
\begin_layout Plain Layout
0
\end_layout
\end_inset
|
\begin_inset Text
\begin_layout Plain Layout
1
\end_layout
\end_inset
|
\begin_inset Text
\begin_layout Plain Layout
0
\end_layout
\end_inset
|
\begin_inset Text
\begin_layout Plain Layout
1
\end_layout
\end_inset
|
\begin_inset Text
\begin_layout Plain Layout
1
\end_layout
\end_inset
|
\begin_inset Text
\begin_layout Plain Layout
0
\end_layout
\end_inset
|
\begin_inset Text
\begin_layout Plain Layout
0
\end_layout
\end_inset
|
\begin_inset Text
\begin_layout Plain Layout
1
\end_layout
\end_inset
|
\begin_inset Text
\begin_layout Plain Layout
1
\end_layout
\end_inset
|
\begin_inset Text
\begin_layout Plain Layout
0
\end_layout
\end_inset
|
\begin_inset Text
\begin_layout Plain Layout
0
\end_layout
\end_inset
|
\begin_inset Text
\begin_layout Plain Layout
0
\end_layout
\end_inset
|
\end_inset
\end_layout
\begin_layout Plain Layout
\begin_inset Caption Standard
\begin_layout Plain Layout
Osnovne logične povezave.
\begin_inset CommandInset label
LatexCommand label
name "tab:Osnovne-logične-povezave."
\end_inset
\end_layout
\end_inset
\end_layout
\end_inset
\end_layout
\begin_layout Subsubsection*
Kaj je disjunkcija izjav? Dokažite, da je izjava
\begin_inset Formula $\neg\left(A\wedge B\right)$
\end_inset
enakovredna izjavi
\begin_inset Formula $\neg\left(A\right)\vee\neg\left(B\right)$
\end_inset
za poljubni izjavi
\begin_inset Formula $A$
\end_inset
in
\begin_inset Formula $B$
\end_inset
.
\begin_inset space \hfill{}
\end_inset
(3
\begin_inset space ~
\end_inset
točke)
\end_layout
\begin_layout Standard
De Morganovi
\begin_inset CommandInset citation
LatexCommand cite
key "cedilnik12"
literal "false"
\end_inset
pravili
\begin_inset Formula $\neg\left(A\wedge B\right)\sim\neg A\vee\neg B$
\end_inset
in
\begin_inset Formula $\neg\left(A\vee B\right)\sim\neg A\wedge\neg B$
\end_inset
najlažje dokažemo z logično tabelo (Tabela
\begin_inset CommandInset ref
LatexCommand ref
reference "tab:Logična-tabela-za"
plural "false"
caps "false"
noprefix "false"
\end_inset
).
\end_layout
\begin_layout Standard
\begin_inset Float table
wide false
sideways false
status open
\begin_layout Plain Layout
\align center
\begin_inset Tabular
\begin_inset Text
\begin_layout Plain Layout
\begin_inset Formula $A$
\end_inset
\end_layout
\end_inset
|
\begin_inset Text
\begin_layout Plain Layout
\begin_inset Formula $B$
\end_inset
\end_layout
\end_inset
|
\begin_inset Text
\begin_layout Plain Layout
\begin_inset Formula $\neg\left(A\wedge B\right)$
\end_inset
\end_layout
\end_inset
|
\begin_inset Text
\begin_layout Plain Layout
\begin_inset Formula $\neg A\vee\neg B$
\end_inset
\end_layout
\end_inset
|
\begin_inset Text
\begin_layout Plain Layout
\begin_inset Formula $\neg\left(A\vee B\right)$
\end_inset
\end_layout
\end_inset
|
\begin_inset Text
\begin_layout Plain Layout
\begin_inset Formula $\neg A\wedge\neg B$
\end_inset
\end_layout
\end_inset
|
\begin_inset Text
\begin_layout Plain Layout
1
\end_layout
\end_inset
|
\begin_inset Text
\begin_layout Plain Layout
1
\end_layout
\end_inset
|
\begin_inset Text
\begin_layout Plain Layout
0
\end_layout
\end_inset
|
\begin_inset Text
\begin_layout Plain Layout
0
\end_layout
\end_inset
|
\begin_inset Text
\begin_layout Plain Layout
0
\end_layout
\end_inset
|
\begin_inset Text
\begin_layout Plain Layout
0
\end_layout
\end_inset
|
\begin_inset Text
\begin_layout Plain Layout
1
\end_layout
\end_inset
|
\begin_inset Text
\begin_layout Plain Layout
0
\end_layout
\end_inset
|
\begin_inset Text
\begin_layout Plain Layout
1
\end_layout
\end_inset
|
\begin_inset Text
\begin_layout Plain Layout
1
\end_layout
\end_inset
|
\begin_inset Text
\begin_layout Plain Layout
0
\end_layout
\end_inset
|
\begin_inset Text
\begin_layout Plain Layout
0
\end_layout
\end_inset
|
\begin_inset Text
\begin_layout Plain Layout
0
\end_layout
\end_inset
|
\begin_inset Text
\begin_layout Plain Layout
1
\end_layout
\end_inset
|
\begin_inset Text
\begin_layout Plain Layout
1
\end_layout
\end_inset
|
\begin_inset Text
\begin_layout Plain Layout
1
\end_layout
\end_inset
|
\begin_inset Text
\begin_layout Plain Layout
0
\end_layout
\end_inset
|
\begin_inset Text
\begin_layout Plain Layout
0
\end_layout
\end_inset
|
\begin_inset Text
\begin_layout Plain Layout
0
\end_layout
\end_inset
|
\begin_inset Text
\begin_layout Plain Layout
0
\end_layout
\end_inset
|
\begin_inset Text
\begin_layout Plain Layout
1
\end_layout
\end_inset
|
\begin_inset Text
\begin_layout Plain Layout
1
\end_layout
\end_inset
|
\begin_inset Text
\begin_layout Plain Layout
1
\end_layout
\end_inset
|
\begin_inset Text
\begin_layout Plain Layout
1
\end_layout
\end_inset
|
\end_inset
\end_layout
\begin_layout Plain Layout
\begin_inset Caption Standard
\begin_layout Plain Layout
Logična tabela za dokaz De Morganovih pravil.
\begin_inset CommandInset label
LatexCommand label
name "tab:Logična-tabela-za"
\end_inset
\end_layout
\end_inset
\end_layout
\end_inset
\end_layout
\begin_layout Subsection
Izjavni račun
\end_layout
\begin_layout Subsubsection*
Kaj je tavtologija?
\begin_inset space \hfill{}
\end_inset
(1
\begin_inset space ~
\end_inset
točka)
\end_layout
\begin_layout Quotation
Izjavi, ki je vedno resnična ne glede na naravo delnih izjav, rečemo
\series bold
istorečje
\series default
ali
\series bold
tavtologija
\series default
; da je izjava
\begin_inset Formula $A$
\end_inset
tavtologija, zapišemo takole:
\begin_inset Formula $\vDash A$
\end_inset
.
\begin_inset CommandInset citation
LatexCommand cite
key "cedilnik12"
literal "false"
\end_inset
\end_layout
\begin_layout Subsubsection*
Kaj je implikacija? Dokažite, da je izjava
\begin_inset Formula $A\Rightarrow B$
\end_inset
enakovredna izjavi
\begin_inset Formula $(\neg B)\Rightarrow(\neg A)$
\end_inset
za poljubni izjavi
\begin_inset Formula $A$
\end_inset
in
\begin_inset Formula $B$
\end_inset
.
\begin_inset space \hfill{}
\end_inset
(3
\begin_inset space ~
\end_inset
točke)
\end_layout
\begin_layout Quotation
Iz izjave
\begin_inset Formula $A$
\end_inset
sledi izjava
\begin_inset Formula $B$
\end_inset
(ali:
\begin_inset Quotes gld
\end_inset
Če
\begin_inset Formula $A$
\end_inset
, potem
\begin_inset Formula $B$
\end_inset
.
\begin_inset Quotes grd
\end_inset
):
\begin_inset Formula $A\Rightarrow B$
\end_inset
, če lahko iz resničnosti
\begin_inset Formula $A$
\end_inset
sklepamo na resničnost
\begin_inset Formula $B$
\end_inset
.
Izjava
\begin_inset Formula $A\Rightarrow B$
\end_inset
se imenuje
\begin_inset Formula $implikacija$
\end_inset
.
Natančna definicija je dana s Tabelo
\begin_inset CommandInset ref
LatexCommand ref
reference "tab:Osnovne-logične-povezave."
plural "false"
caps "false"
noprefix "false"
\end_inset
.
\end_layout
\begin_layout Quotation
Zapis
\begin_inset Formula $B\Leftarrow A$
\end_inset
pomeni isto kot
\begin_inset Formula $A\Rightarrow B$
\end_inset
.
\end_layout
\begin_layout Quotation
\series bold
Primer:
\series default
V mehaniki velja tale implikacija:
\end_layout
\begin_layout Quotation
\begin_inset Quotes gld
\end_inset
Telo miruje
\begin_inset Quotes grd
\end_inset
\begin_inset Formula $\Rightarrow$
\end_inset
\begin_inset Quotes grd
\end_inset
Vsota vseh na telo delujočih sil je nič.
\begin_inset Quotes grd
\end_inset
\end_layout
\begin_layout Quotation
V implikaciji
\begin_inset Formula $A\Rightarrow B$
\end_inset
je
\begin_inset Formula $A$
\end_inset
\series bold
predpostavka
\series default
(ali
\series bold
premisa
\series default
,
\series bold
hipoteza
\series default
,
\series bold
antecedens
\series default
),
\begin_inset Formula $B$
\end_inset
pa
\series bold
posledica
\series default
(ali
\series bold
zaključek
\series default
,
\series bold
konsekvens
\series default
).
\end_layout
\begin_layout Quotation
Rečemo tudi, da je
\begin_inset Formula $A$
\end_inset
\series bold
zadosten pogoj
\series default
za
\begin_inset Formula $B$
\end_inset
in
\begin_inset Formula $B$
\end_inset
\series bold
potreben pogoj
\series default
za
\begin_inset Formula $A$
\end_inset
.
\begin_inset CommandInset citation
LatexCommand cite
key "cedilnik12"
literal "false"
\end_inset
\end_layout
\begin_layout Subsubsection*
Kaj je ekvivalenca? Predstavite primer ekvivalence, ki je pravilna (resnična).
\begin_inset space \hfill{}
\end_inset
(1
\begin_inset space ~
\end_inset
točka)
\end_layout
\begin_layout Standard
Ekvivalenca je enakovrednost izjav.
\end_layout
\begin_layout Quotation
Izjavi
\begin_inset Formula $A$
\end_inset
in
\begin_inset Formula $B$
\end_inset
sta
\series bold
ekvivalentni
\series default
(ali:
\series bold
ekvivalenca
\series default
\begin_inset Formula $A\Leftrightarrow B$
\end_inset
je resnična), če sta
\begin_inset Formula $A$
\end_inset
in
\begin_inset Formula $B$
\end_inset
v kontekstu vselej hkrati resnični ali hkrati lažni.
\end_layout
\begin_layout Quotation
\series bold
Primer:
\series default
Če govorimo o neničelnih realnih številih (kontekst!), sta ekvivalentni
izjavi:
\end_layout
\begin_layout Quotation
\begin_inset Quotes gld
\end_inset
Produkt števil
\begin_inset Formula $x$
\end_inset
in
\begin_inset Formula $y$
\end_inset
je pozitiven.
\begin_inset Quotes grd
\end_inset
\begin_inset Formula $\Longleftrightarrow$
\end_inset
\begin_inset Quotes gld
\end_inset
Števili
\begin_inset Formula $x$
\end_inset
in
\begin_inset Formula $y$
\end_inset
sta enako predznačeni.
\begin_inset Quotes grd
\end_inset
\begin_inset CommandInset citation
LatexCommand cite
key "cedilnik12"
literal "false"
\end_inset
\end_layout
\begin_layout Subsection
Množice
\end_layout
\begin_layout Subsubsection*
Kaj je prazna množica in kaj je univerzalna množica?
\begin_inset space \hfill{}
\end_inset
(1
\begin_inset space ~
\end_inset
točka)
\end_layout
\begin_layout Quotation
\series bold
Prazna množica
\series default
\begin_inset Formula $\cancel{0}$
\end_inset
nima nobenega elementa,
\series bold
osnovna množica
\series default
ali
\series bold
univerzum
\series default
\begin_inset Formula $\mathcal{U}$
\end_inset
pa ima sploh vse elemente, ki nas v neki teoriji zanimajo.
Kaj je univerzum, je seveda stvar dogovora.
\begin_inset CommandInset citation
LatexCommand cite
key "cedilnik12"
literal "false"
\end_inset
\end_layout
\begin_layout Subsubsection*
Kaj je razlika dveh množic? Kako označimo razliko dveh množic in kako jo
grafično predstavimo?
\begin_inset space \hfill{}
\end_inset
(2
\begin_inset space ~
\end_inset
točki)
\end_layout
\begin_layout Standard
\series bold
Razlika
\series default
dveh množic
\begin_inset CommandInset citation
LatexCommand cite
key "cedilnik12"
literal "false"
\end_inset
(Slika
\begin_inset CommandInset ref
LatexCommand ref
reference "fig:Razlika."
plural "false"
caps "false"
noprefix "false"
\end_inset
):
\begin_inset Formula
\[
\mathcal{M}\backslash\mathcal{N}\coloneq\left\{ x\vert x\in\mathcal{M}\wedge x\notin\mathcal{N}\right\} =\mathcal{M}\cap\mathcal{N}^{C}
\]
\end_inset
\end_layout
\begin_layout Standard
\begin_inset Float figure
wide false
sideways false
status open
\begin_layout Plain Layout
\align center
\begin_inset ERT
status open
\begin_layout Plain Layout
\backslash
begin{tikzpicture}[thick, set/.style = {circle, minimum size = 2cm}]
\end_layout
\begin_layout Plain Layout
% Set A
\end_layout
\begin_layout Plain Layout
\backslash
node[set,fill=OliveGreen,label={135:$
\backslash
mathcal{A}$}] (A) at (0,0) {};
\end_layout
\begin_layout Plain Layout
% Set B
\end_layout
\begin_layout Plain Layout
\backslash
node[set,fill=white,label={45:$
\backslash
mathcal{B}$}] (B) at (0:1) {};
\end_layout
\begin_layout Plain Layout
% Circles outline
\end_layout
\begin_layout Plain Layout
\backslash
draw (0,0) circle(1cm);
\end_layout
\begin_layout Plain Layout
\backslash
draw (1,0) circle(1cm);
\end_layout
\begin_layout Plain Layout
% Difference text label
\end_layout
\begin_layout Plain Layout
\backslash
node[left,white] at (A.center){$
\backslash
mathcal{A}
\backslash
backslash
\backslash
mathcal{B}$};
\end_layout
\begin_layout Plain Layout
\backslash
end{tikzpicture}
\end_layout
\end_inset
\end_layout
\begin_layout Plain Layout
\begin_inset Caption Standard
\begin_layout Plain Layout
Razlika.
\begin_inset CommandInset label
LatexCommand label
name "fig:Razlika."
\end_inset
\end_layout
\end_inset
\end_layout
\end_inset
\end_layout
\begin_layout Standard
\begin_inset Formula
\[
\mathcal{A}\cap\mathcal{B}=\cancel{0}\Longleftrightarrow\mathcal{A}\backslash\mathcal{B}=\mathcal{A}
\]
\end_inset
\end_layout
\begin_layout Standard
\begin_inset Formula
\[
\mathcal{U\backslash A}=\mathcal{A}^{C}
\]
\end_inset
\end_layout
\begin_layout Subsubsection*
Kaj je komplement množice?
\begin_inset space \hfill{}
\end_inset
(1
\begin_inset space ~
\end_inset
točka)
\end_layout
\begin_layout Quotation
\series bold
Komplement
\series default
:
\series bold
\begin_inset Formula $\mathcal{M}^{C}\coloneqq\left\{ x\vert x\notin\mathcal{M}\right\} $
\end_inset
\end_layout
\begin_layout Quotation
Komplement vsebuje vse tiste elemente iz univerzuma
\begin_inset Formula $\mathcal{U},$
\end_inset
ki niso v
\begin_inset Formula $\mathcal{M}$
\end_inset
(Slika TODO).
Pozor! O komplementu je torej mogoče govoriti le, če je domenjeno, kaj
je
\begin_inset Formula $\mathcal{U}$
\end_inset
.
\end_layout
\begin_layout Quotation
\series bold
Primer:
\series default
V okviru realnih števil (univerzum!) je komplement množice števil
\begin_inset Formula $\mathbb{R}^{+}$
\end_inset
množica nepozitivnih števil:
\begin_inset Formula $\left(\mathbb{R}^{+}\right)^{C}=\mathbb{R}^{-}\cup\left\{ 0\right\} $
\end_inset
.
\begin_inset CommandInset citation
LatexCommand cite
key "cedilnik12"
literal "false"
\end_inset
\end_layout
\begin_layout Subsubsection*
Dokažite, da je
\begin_inset Formula $\left(\mathcal{A}\cup\mathcal{B}\right)^{C}=\mathcal{A^{C}\cap\mathcal{B}^{C}}$
\end_inset
za poljubni množici
\begin_inset Formula $\mathcal{A}$
\end_inset
in
\begin_inset Formula $\mathcal{B}$
\end_inset
.
\begin_inset space \hfill{}
\end_inset
(2
\begin_inset space ~
\end_inset
točki)
\end_layout
\begin_layout Standard
Pokaži grafično z Vennovim diagramom in reci, da je očitno in trivialno.
Ocenjevalca boš tako dodobra zmedel.
\end_layout
\begin_layout Subsection
Množice
\end_layout
\begin_layout Subsubsection*
Kdaj je množica
\begin_inset Formula $\mathcal{A}$
\end_inset
podmnožica množice
\begin_inset Formula $\mathcal{B}$
\end_inset
?
\begin_inset space \hfill{}
\end_inset
(1
\begin_inset space ~
\end_inset
točka)
\end_layout
\begin_layout Quotation
\series bold
Inkluzija
\series default
:
\begin_inset Formula $\mathcal{M\subset\mathcal{N}\Leftrightarrow}$
\end_inset
\begin_inset Quotes grd
\end_inset
vsak element iz
\begin_inset Formula $\mathcal{M}$
\end_inset
je tudi v
\begin_inset Formula $\mathcal{N}$
\end_inset
\begin_inset Quotes grd
\end_inset
\begin_inset Formula $\Longleftrightarrow\forall x\left(x\in\mathcal{M}\Rightarrow x\in\mathcal{N}\right)$
\end_inset
\end_layout
\begin_layout Quotation
Za vsako množico
\begin_inset Formula $\mathcal{M}$
\end_inset
velja
\begin_inset Formula $\cancel{0}\mathcal{\mathcal{\subset M\subset M\subset U}}$
\end_inset
.
Če
\begin_inset Formula $\mathcal{M}$
\end_inset
ni podmnožica
\begin_inset Formula $\mathcal{N}$
\end_inset
, pišemo
\begin_inset Formula $\mathcal{M\not\subset N}$
\end_inset
.
\end_layout
\begin_layout Quotation
Družina podmnožic
\begin_inset Formula $\mathscr{P}\mathcal{M}$
\end_inset
množice
\begin_inset Formula $\mathcal{M}$
\end_inset
je
\series bold
potenčna množica
\series default
od
\begin_inset Formula $\mathcal{M}$
\end_inset
:
\begin_inset Formula $\mathscr{P}\mathcal{M}=\left\{ \mathcal{A\vert A\subset M}\right\} $
\end_inset
.
\end_layout
\begin_layout Quotation
\series bold
Primer
\series default
:
\begin_inset Formula $\mathcal{M}=\left\{ a,b,c\right\} $
\end_inset
;
\begin_inset Formula $\mathscr{P}\mathcal{M}=\left\{ \cancel{0},\left\{ a\right\} ,\left\{ b\right\} ,\left\{ c\right\} ,\left\{ a,b\right\} ,\left\{ a,c\right\} ,\left\{ b,c\right\} ,\mathcal{M}\right\} $
\end_inset
.
\end_layout
\begin_layout Quotation
Potenčno množico včasih označujemo s simbolom
\begin_inset Formula $2^{\mathcal{M}}$
\end_inset
.
\begin_inset CommandInset citation
LatexCommand cite
key "cedilnik12"
literal "false"
\end_inset
\end_layout
\begin_layout Subsubsection*
Kdaj sta dve množici enaki?
\begin_inset space \hfill{}
\end_inset
(1
\begin_inset space ~
\end_inset
točka)
\end_layout
\begin_layout Quotation
\series bold
Enakost
\series default
množic:
\begin_inset Formula $\mathcal{M}=\mathcal{N}\Longleftrightarrow$
\end_inset
\begin_inset Quotes gld
\end_inset
množici imata iste elemente
\begin_inset Quotes grd
\end_inset
\begin_inset Formula $\Longleftrightarrow\forall x\left(x\in\mathcal{M}\Longleftrightarrow x\in\mathcal{N}\right)$
\end_inset
\begin_inset CommandInset citation
LatexCommand cite
key "cedilnik12"
literal "false"
\end_inset
\end_layout
\begin_layout Subsubsection*
Kaj je presek dveh množic? Moč množice
\begin_inset Formula $\mathcal{A}$
\end_inset
je
\begin_inset Formula $n$
\end_inset
, moč množice
\begin_inset Formula $\mathcal{B}$
\end_inset
pa
\begin_inset Formula $m$
\end_inset
.
Ocenite, kolikšna je lahko moč množice
\begin_inset Formula $\mathcal{A\cap B}$
\end_inset
.
\begin_inset space \hfill{}
\end_inset
(2
\begin_inset space ~
\end_inset
točki)
\end_layout
\begin_layout Quotation
\series bold
Presek
\series default
:
\begin_inset Formula $\mathcal{M\cap N}\coloneqq\left\{ x\vert x\in\mathcal{M}\wedge x\in\mathcal{N}\right\} $
\end_inset
\end_layout
\begin_layout Quotation
Presek vsebuje tiste elemente, ki so v obeh množicah hkrati (Slika TODO).
\begin_inset CommandInset citation
LatexCommand cite
key "cedilnik12"
literal "false"
\end_inset
\end_layout
\begin_layout Subsubsection*
Kaj je unija dveh množic? Moč množice
\begin_inset Formula $\mathcal{A}$
\end_inset
je
\begin_inset Formula $n$
\end_inset
, moč množice
\begin_inset Formula $\mathcal{B}$
\end_inset
pa
\begin_inset Formula $m$
\end_inset
.
Ocenite, kolikšna je lahko moč množice
\begin_inset Formula $\mathcal{A\cup B}$
\end_inset
.
\begin_inset space \hfill{}
\end_inset
(2
\begin_inset space ~
\end_inset
točki)
\end_layout
\begin_layout Quotation
\series bold
Unija
\series default
:
\begin_inset Formula $\mathcal{M\cup N}\coloneqq\left\{ x\vert x\in\mathcal{M}\vee x\in\mathcal{N}\right\} $
\end_inset
\end_layout
\begin_layout Quotation
Unija združuje vse elemente iz
\begin_inset Formula $\mathcal{M}$
\end_inset
in
\begin_inset Formula $\mathcal{N}$
\end_inset
(Slika
\begin_inset CommandInset ref
LatexCommand ref
reference "fig:Unija."
plural "false"
caps "false"
noprefix "false"
\end_inset
).
\begin_inset CommandInset citation
LatexCommand cite
key "cedilnik12"
literal "false"
\end_inset
\end_layout
\begin_layout Standard
\begin_inset Float figure
wide false
sideways false
status open
\begin_layout Plain Layout
\align center
\begin_inset ERT
status open
\begin_layout Plain Layout
\backslash
begin{tikzpicture}[thick, set/.style = {circle, minimum size = 2cm}]
\end_layout
\begin_layout Plain Layout
% Set A
\end_layout
\begin_layout Plain Layout
\backslash
node[set,fill=OliveGreen,label={135:$
\backslash
mathcal{A}$}] (A) at (0,0) {};
\end_layout
\begin_layout Plain Layout
% Set B
\end_layout
\begin_layout Plain Layout
\backslash
node[set,fill=OliveGreen,label={45:$
\backslash
mathcal{B}$}] (B) at (0:1) {};
\end_layout
\begin_layout Plain Layout
% Circles outline
\end_layout
\begin_layout Plain Layout
\backslash
draw (0,0) circle(1cm);
\end_layout
\begin_layout Plain Layout
\backslash
draw (1,0) circle(1cm);
\end_layout
\begin_layout Plain Layout
% Difference text label
\end_layout
\begin_layout Plain Layout
\backslash
node[left,white] at (0:0.1){$
\backslash
mathcal{A}
\backslash
cup
\backslash
mathcal{B}$};
\end_layout
\begin_layout Plain Layout
\backslash
end{tikzpicture}
\end_layout
\end_inset
\end_layout
\begin_layout Plain Layout
\begin_inset Caption Standard
\begin_layout Plain Layout
Unija.
\begin_inset CommandInset label
LatexCommand label
name "fig:Unija."
\end_inset
\end_layout
\end_inset
\end_layout
\end_inset
\end_layout
\begin_layout Subsection
Naravna in cela števila
\end_layout
\begin_layout Standard
TODO: naša šola je ta listič izločila
\end_layout
\begin_layout Subsection
Liha in soda števila
\end_layout
\begin_layout Subsubsection*
Definirajte soda in liha števila.
\begin_inset space \hfill{}
\end_inset
(1
\begin_inset space ~
\end_inset
točka)
\end_layout
\begin_layout Quotation
Števila, ki so deljiva z 2, so
\series bold
soda
\series default
, ostala pa
\series bold
liha
\series default
.
\begin_inset CommandInset citation
LatexCommand cite
key "cedilnik12"
literal "false"
\end_inset
\end_layout
\begin_layout Itemize
Števila, ki imajo v dvojiškem številskem sistemu na koncu (najmanj pomembnem
mestu) ničlo, so liha, ostala, to je tista, ki imajo na koncu enico, pa
liha.
Tu moramo negativna števila pisati klasično matematično.
\end_layout
\begin_layout Itemize
Vsota 1 in sodega števila je liho število.
\end_layout
\begin_layout Subsubsection*
Pokažite, da je vsota dveh lihih števil sodo število.
\begin_inset space \hfill{}
\end_inset
(1
\begin_inset space ~
\end_inset
točka)
\end_layout
\begin_layout Standard
Ker velja, da je vsota dveh sodih števil sodo število, da je zmnožek sodega
in celega števila sodo število in da je množenje distributivna operacija,
lahko dokažemo takole:
\end_layout
\begin_layout Standard
\begin_inset Formula
\[
2\left(2k+1\right)=4k+2\text{; }k\in\mathbb{Z}
\]
\end_inset
\end_layout
\begin_layout Subsubsection*
Pokažite, da je kvadrat lihega števila liho število.
\begin_inset space \hfill{}
\end_inset
(1
\begin_inset space ~
\end_inset
točka)
\end_layout
\begin_layout Standard
\begin_inset Formula
\[
(2k+1)^{2}=4k^{2}+4k+1\text{, }k\in\mathbb{Z}
\]
\end_inset
\end_layout
\begin_layout Subsubsection*
Pokažite, da je vsota dveh zaporednih lihih števil deljiva s 4.
\begin_inset space \hfill{}
\end_inset
(2
\begin_inset space ~
\end_inset
točki)
\end_layout
\begin_layout Standard
\begin_inset Formula
\[
2k\cancel{-1}+2k\cancel{+1}=4k
\]
\end_inset
\end_layout
\begin_layout Subsection
Praštevila
\end_layout
\begin_layout Subsubsection*
Definirajte praštevilo in sestavljeno število.
Naštejte tri praštevila in tri sestavljena števila.
\begin_inset space \hfill{}
\end_inset
(2
\begin_inset space ~
\end_inset
točki)
\end_layout
\begin_layout Quotation
Naravna števila, večja od 1, delimo na
\series bold
praštevila
\series default
, to je tista, ki so deljiva le z 1 in s samim seboj, in
\series bold
sestavljena števila
\series default
.
\begin_inset CommandInset label
LatexCommand label
name "Naravna-števila,-večja"
\end_inset
\begin_inset CommandInset citation
LatexCommand cite
key "cedilnik12"
literal "false"
\end_inset
\end_layout
\begin_layout Itemize
Tri praštevila: 2, 3, 5
\end_layout
\begin_layout Itemize
Tri sestavljena števila: 4, 6, 8
\end_layout
\begin_layout Subsubsection*
Kaj je razcep naravnega števila na prafaktorje? Ali je razcep na prafaktorje
enoličen?
\begin_inset space \hfill{}
\end_inset
(2
\begin_inset space ~
\end_inset
točki)
\end_layout
\begin_layout Quotation
Vsako sestavljeno število lahko zapišemo kot produkt praštevil,
\series bold
prafaktorjev
\series default
tega števila.
Tak zapis je enoličen (če ne upoštevamo vrstnega reda faktorjev).
\begin_inset CommandInset citation
LatexCommand cite
key "cedilnik12"
literal "false"
\end_inset
\end_layout
\begin_layout Quotation
\series bold
Primer:
\series default
\begin_inset Formula $15228=2^{3}\cdot3\cdot7^{2}\cdot13$
\end_inset
\end_layout
\begin_layout Subsubsection*
Dokažite, da je praštevil neskončno mnogo.
\begin_inset space \hfill{}
\end_inset
(2
\begin_inset space ~
\end_inset
točki)
\end_layout
\begin_layout Standard
Dokažimo s protislovjem.
Denimo, da je praštevil končno mnogo.
Naj bo
\begin_inset Formula $n-1$
\end_inset
produkt vseh praštevil.
Glede na zapisano v
\begin_inset CommandInset ref
LatexCommand ref
reference "Naravna-števila,-večja"
plural "false"
caps "false"
noprefix "false"
\end_inset
je
\begin_inset Formula $n$
\end_inset
lahko
\end_layout
\begin_layout Itemize
bodisi praštevilo, tedaj je
\begin_inset Formula $n$
\end_inset
novo praštevilo, kar je v protislovju z zadano izjavo,
\end_layout
\begin_layout Itemize
bodisi sestavljeno število, tedaj ga deli vsaj neko praštevilo
\begin_inset Formula $p$
\end_inset
.
\begin_inset Formula $p$
\end_inset
ne more biti hkrati tudi prafaktor
\begin_inset Formula $n-1$
\end_inset
, torej element predpostavljene končne množice praštevil, saj bi potem veljalo
\begin_inset Formula $p\vert1$
\end_inset
, kar je nemogoče.
To vodi v protislovje; tedaj
\begin_inset Formula $p$
\end_inset
je novo praštevilo.
\end_layout
\begin_layout Subsection
Deljivost
\end_layout
\begin_layout Subsubsection*
Kdaj je naravno število
\begin_inset Formula $a$
\end_inset
večkratnik naravnega števila
\series medium
\begin_inset Formula $b$
\end_inset
?
\series default
\begin_inset space \hfill{}
\end_inset
(1
\begin_inset space ~
\end_inset
točka)
\end_layout
\begin_layout Standard
Kadar velja izjava
\begin_inset Formula
\[
\frac{b}{a}\in\mathbb{N}.
\]
\end_inset
\end_layout
\begin_layout Subsubsection*
Definirajte relacijo deljivosti v množici
\begin_inset Formula $\mathbb{N}$
\end_inset
.
\begin_inset space \hfill{}
\end_inset
(1
\begin_inset space ~
\end_inset
točka)
\end_layout
\begin_layout Standard
Izjavo
\begin_inset Quotes gld
\end_inset
\begin_inset Formula $a$
\end_inset
deli
\begin_inset Formula $b$
\end_inset
\begin_inset Quotes grd
\end_inset
oziroma
\begin_inset Quotes gld
\end_inset
\series bold
\begin_inset Formula $b$
\end_inset
\series default
je deljiv z
\begin_inset Formula $a$
\end_inset
\begin_inset Quotes grd
\end_inset
napišemo takole:
\begin_inset Formula $a\vert b$
\end_inset
.
Bolj natančno,
\begin_inset Formula $a\vert b\Longleftrightarrow\exists c:b=ac$
\end_inset
, kjer
\begin_inset Formula $\left\{ a,b,c\right\} \subset\mathbb{Z}$
\end_inset
V smislu te definicije je zapis
\begin_inset Formula $0\vert0$
\end_inset
pravilen.
\begin_inset CommandInset citation
LatexCommand cite
key "cedilnik12"
literal "false"
\end_inset
\end_layout
\begin_layout Subsubsection*
Opišite vsaj tri lastnosti relacije deljivosti.
\begin_inset space \hfill{}
\end_inset
(3
\begin_inset space ~
\end_inset
točke)
\end_layout
\begin_layout Standard
Relacija deljivost je refleksivna:
\begin_inset Formula $a\vert a$
\end_inset
, antisimetrična:
\begin_inset Formula $a\vert b\wedge b\vert a\Longleftrightarrow a=b$
\end_inset
, tranzitivna:
\begin_inset Formula $a\vert b\wedge b\vert c\Rightarrow a\vert c$
\end_inset
.
\begin_inset CommandInset citation
LatexCommand cite
key "cedilnik12"
literal "false"
\end_inset
\end_layout
\begin_layout Subsubsection*
Dokažite, da je relacija deljivosti tranzitivna.
\begin_inset space \hfill{}
\end_inset
(1
\begin_inset space ~
\end_inset
točka)
\end_layout
\begin_layout Standard
Če velja
\begin_inset Formula $a\vert b$
\end_inset
, tedaj obstaja tak
\series bold
\begin_inset Formula $d$
\end_inset
\series default
, da je
\begin_inset Formula $b=ad$
\end_inset
.
Če velja tudi
\begin_inset Formula $b\vert c$
\end_inset
, tedaj
\begin_inset Formula $\exists e:c=eb$
\end_inset
.
Zamenjamo
\begin_inset Formula $b$
\end_inset
v slednji enačbi, dobimo
\begin_inset Formula $c=ead$
\end_inset
, torej
\begin_inset Formula $a|c$
\end_inset
.
\begin_inset Formula $\square$
\end_inset
\end_layout
\begin_layout Subsection
Večkratniki in delitelji
\end_layout
\begin_layout Subsubsection*
Definirajte največji skupni delitelj in najmanjši skupni večkratnik dveh
naravnih števil.
Razločite vsaj eno metodo za izračun najmanjšega skupnega večkratnika dveh
naravnih števil.
\begin_inset space \hfill{}
\end_inset
(2
\begin_inset space ~
\end_inset
točki)
\end_layout
\begin_layout Standard
\begin_inset Formula
\[
\mathcal{D}_{m}=\left\{ x\vert x\in\mathbb{N};x\vert m\right\}
\]
\end_inset
\end_layout
\begin_layout Standard
\begin_inset Formula
\[
\mathcal{V}_{m}=\left\{ x\vert k\in\mathbb{N};x=km\right\}
\]
\end_inset
\end_layout
\begin_layout Standard
\begin_inset Formula
\[
D\left(m,n\right)=\max\left(\mathcal{D}_{m}\cap\mathcal{D}_{n}\right)
\]
\end_inset
\end_layout
\begin_layout Standard
\begin_inset Formula
\[
v\left(m,n\right)=\min\left(\mathcal{V}_{m}\cap\mathcal{V}_{n}\right)
\]
\end_inset
\end_layout
\begin_layout Standard
Za izračun najmanjšega skupnega večkratnika dveh naravnih števil naredimo
prafaktorski razcep za obe števili.
Funkcija
\begin_inset Formula $y\left(p\right)$
\end_inset
, kjer je
\begin_inset Formula $p$
\end_inset
praštevilo, vrne večjo potenco izmed dveh razcepov, na katero je v prafaktorske
m razcepu povzdignjeno praštevilo.
Najmanjši skupni večkratnik je tedaj
\begin_inset Formula $\prod p^{y\left(p\right)}$
\end_inset
preko vseh praštevil.
Tako dobljeni najmanjši skupni večkratnik je očitno deljiv z obema številoma,
dokaza, da je res najmanjši, pa ne bom napisal.
\end_layout
\begin_layout Subsubsection*
Povejte zvezo med
\begin_inset Formula $m,n,v\left(m,n\right)$
\end_inset
in
\begin_inset Formula $D\left(m,n\right)$
\end_inset
.
\begin_inset space \hfill{}
\end_inset
(1
\begin_inset space ~
\end_inset
točka)
\end_layout
\begin_layout Subsubsection*
\begin_inset Formula
\[
D\left(m,n\right)\leq m\leq n\leq v\left(m,n\right)
\]
\end_inset
\end_layout
\begin_layout Standard
\begin_inset Formula
\[
v\left(m,n\right)D\left(m,n\right)=mn
\]
\end_inset
\end_layout
\begin_layout Subsubsection*
Kdaj sta si dve naravni števili tuji?
\begin_inset space \hfill{}
\end_inset
(1
\begin_inset space ~
\end_inset
točka)
\end_layout
\begin_layout Standard
Kadar drži izjava
\begin_inset Formula $D\left(m,n\right)=1$
\end_inset
.
\end_layout
\begin_layout Subsubsection*
Na primeru razložite Evklidov algoritem.
\begin_inset space \hfill{}
\end_inset
(2
\begin_inset space ~
\end_inset
točki)
\end_layout
\begin_layout Standard
Osnovni izrek o deljenju:
\begin_inset Formula $a=kb+r$
\end_inset
.
Drži
\begin_inset Formula $D\left(a,b\right)=D\left(k,r\right)$
\end_inset
.
Zamenjamo operanda, tako da je
\begin_inset Formula $a