summaryrefslogblamecommitdiffstats
path: root/private/crt32/misc/alpha/otsdiv.s
blob: cafb9b87e59278c46a77e569f040725d798a34f1 (plain) (tree)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178

























































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































                                                                                                                                 

 #	Copyright 1992, Digital Equipment Corporation
 #
 # This software is furnished under a license and may be used and  copied
 # only  in  accordance  with  the  terms  of  such  license and with the
 # inclusion of the above copyright notice.  This software or  any  other
 # copies  thereof may not be provided or otherwise made available to any
 # other person.  No title to and ownership of  the  software  is  hereby
 # transferred.
 #
 # The information in this software is subject to change  without  notice
 # and  should  not  be  construed  as  a commitment by Digital Equipment
 # Corporation.
 #
 # Digital assumes no responsibility for the use or  reliability  of  its
 # software on equipment which is not supplied by Digital.
 #
 #   008	  17 Jun 1992  KDG/wbn	Most of initial tailored version.  (See
 #				commentary below.)
 #
 #   009	   4 Jul 1992	KDG	Continue work on initial tailored version,
 #				including bugfixes and mod entry points
 #
 #   010	  15 Jul 1992	KDG	- Final touches for V1 (other than any bugfixes)
 #				- .aligns commented out to allow older assembler versions
 #
 #   011	  16 Jul 1992	KDG	- Bugfix for ots_div_l for -maxint dividend
 #				- OSF-only source changes for BL7
 #
 #   012	  10 Aug 1992	KDG	Fix overflow division entry points
 #
 #   013	  23 Sep 1992	KDG	Add case-sensitive entry names
 #
 #   014	   4 Jan 1993	KDG	Tweak for OSF assembler
 #
 #   015	  26 Jan 1993	KDG	Add underscore prefix, OSF uses CS names
 #
 #   016    5 Apr 1993	WBN	Speed up core 64-bit, shrink table entry to 2 QWs

 #++
 #   Entry points defined in this module:
 #
 #   -- 32 bit division/remainder support
 #	unsigned ots_rem_ui(unsigned dividend, unsigned divisor)
 #	unsigned ots_div_ui(unsigned dividend, unsigned divisor)
 #	int ots_mod_i(int dividend, int modulus)
 #	int ots_rem_i(int dividend, int divisor)
 #	int ots_div_i_o(int dividend, int divisor)
 #	int ots_div_i(int dividend, int divisor)    | "hot spot"
 #	{core routine - div32}			    |
 #
 #   -- 64 bit division support
 #	{core routine - div64}			    | (uses div32 for 32b cases)
 #	long ots_div_l_o(long dividend, long divisor)
 #	long ots_div_l(long dividend, long divisor) | "hot spot"
 #	long ots_rem_l(long dividend, long divisor)
 #	long ots_mod_l(long dividend, long modulus)
 #	unsigned long ots_div_ul(unsigned long dividend, unsigned long divisor)
 #	unsigned long ots_rem_ul(unsigned long dividend, unsigned long divisor)
 # 
 #	Special conventions: No stack space, r0-r1, r16-r19 and r26-r28 ONLY.
 #	(Warning: The auto-loader potentially takes some regs across
 #	the call if this is being used in a shared lib. environment.)
 #
 #	    NOTE: This set of routines may start using stack space at some
 #	    future point in time.
 #
 #   -- Possible future entry points include:
 #	(These all return results in r0/r1)
 #	{int quotient, int remainder} ots_div_mod_i(int dividend, int divisor)
 #	{int quotient, int remainder} ots_div_mod_i_o(int dividend, int divisor)
 #	{int quotient, int remainder} ots_div_rem_i(int dividend, int divisor)
 #	{int quotient, int remainder} ots_div_rem_i_o(int dividend, int divisor)
 #	{unsigned quotient, unsigned remainder} ots_div_rem_ui(unsigned dividend, unsigned divisor)
 #
 #	{long quotient, long remainder} ots_div_mod_i(long dividend, long divisor)
 #	{long quotient, long remainder} ots_div_mod_i_o(long dividend, long divisor)
 #	{long quotient, long remainder} ots_div_rem_i(long dividend, long divisor)
 #	{long quotient, long remainder} ots_div_rem_i_o(long dividend, long divisor)
 #	{unsigned long quotient, unsigned long remainder}
 #		ots_div_rem_ui(unsigned long dividend, unsigned long divisor)
 #
 #
 # General commentary:
 #
 #   This is an attempt at a fairly high performance version using relatively
 #   straightforward algorithms.  Note that the code is intended to be scheduled
 #   well for EV4, but still reasonably for LCA/EV5.
 #
 #   Also, note that there was only so much time available for this, so it
 #   is far from "perfect".  "Better is the enemy of done"...
 #
 #   Possible future areas of improvement (and unfinished business):
 #
 #	- Another possible way of doing things for the "slow" (divnn cases)
 #	  is to use an approximate inverse and convergence.  Given the speed
 #	  of the multiplier on EV4, and given "time to market", this wasn't
 #	  done for V1.)  I have some mail with the algorithm from Bob Gries
 #	  (through Scott Robinson).
 #
 #	- When the divisor is too large for the table, but has n low-order zero
 #	  bits, see if divisor/2^n fits in the table, and use that entry with
 #	  dividend/2^n
 #
 #	- Use UMULH for the 'mod' routines.
 #
 #   This version can do a table lookup division (divisors with <=tablesize)
 #   in roughly 32 cycles on an EV4 (with cache hits for all loads), of which
 #   21 are for the umulh.  There is a strong bias toward the table-lookup case.
 #   Note that for many cases, the umulh is the last thing before the return,
 #   so the multiply can occur in parallel with the procedure return.
 #   (It is interesting that the R3000 hardware divide instruction takes 33
 #   cycles and the R4000 takes 76(!) ...)  Small powers of 2 are retired in
 #   roughly 20 cycles.  Larger divisors take considerably longer at this point.
 #

#include	"ots_defs.hs"

#ifdef	OSF
	# to get the PAL_gentrap literal
#include	<alpha/pal.h>
#endif

 # Data area description
 #
 #	The data area "ots_div_data" is an array of structures, indexed
 #	by the divisor value, with each array entry being 16 bytes in size
 #	formatted as follows:
 #
 #	 6
 #	 3                                                       6     0 
 #	+-------+-------+-------+-------+-------+-------+-------+-------+
 #	|               32 bit reciprocal (58 bits)               |shift|
 #	+-------+-------+-------+-------+-------+-------+-------+-------+
 #	|                       64 bit reciprocal                       |
 #	+---------------------------------------------------------------+
 #
 #	The 64-bit reciprocal has the leading '1' bit omitted, so it provides
 #	65 bits of precision -- enough to handle unsigned 64-bit values.
 #
 #	The first longword contains the 6-bit shift amount needed to handle
 #	64-bit cases and powers of two.
 #
 #	The 32-bit reciprocal has the shift count built in, so a UMULH gives
 #	the correct quotient without shifting.  The reciprocal needs 33 bits
 #	of precision.  The 6-bit shift amount is noise in the reciprocal that
 #	can be ignored.
 #
 #	(Oh, you want proof?)  For divisors up to 2^k, we store k-1 leading
 #	zero bits, 33 bits of fraction, (25-k) more bits of fraction, and
 #	6 bits of noise.  The standard method would round at the 33rd fraction
 #	bit.  We need to ensure that the value actually stored is geq the
 #	infinite reciprocal, but leq the standard value.  For divisors up to
 #	2^k, there will be a zero bit somewhere in the k bits below the 33rd,
 #	so as long as we round below the (33+k)th bit, the rounded value
 #	plus any noise is still less than the standard value.  This requires
 #	k < 12.
 #
 #   The actual data is declared in ots_div_data_alpha.
 #
 # Offsets to the various fields in the data structure
 #
#define shift_o 0
#define recip64_o 8
#define recip32_o 0
 #
 # Note that the shift/add ops used to compute the table entries
 # "know" that the table size is 16.  (i.e. addq -> s8addq -> ldq)
 # By changing the first instruction, it's fairly easy to change the
 # table entry size to 24, 32, or 40 bytes (using s4add/sub), or
 # 56/64/72 bytes using s8add/sub, should that be desirable.

 # Maximum divisor present in the table
 #
#define table_max 512

 # Division by zero gentrap code
 #
#define GEN_INTDIV -2

 # Address of division data area (shared by all entry points)
 #
#ifdef	VMS
	.psect	ots_link
ots_div_addr:
	.address ots_div_data
	.psect	ots_code
#endif

 # Dummy entry point for the module
 #
	.globl	_OtsDivide
	.ent	_OtsDivide
_OtsDivide:
	.set noat
	.set noreorder
#ifdef	OSF
	.frame	sp, 0, r26
#endif
#ifdef	WNT
	.frame	sp, 0, r26
#endif


 # unsigned ots_rem_ui(unsigned dividend, unsigned divisor)
 # unsigned 32 bit remainder support
 #
	#.align	4
	.globl	_OtsRemainder32Unsigned
	.aent	_OtsRemainder32Unsigned
_OtsRemainder32Unsigned:
#ifdef	VMS
	ldq	r27, <ots_div_addr-ots_rem_ui>(r27)# start loading address of division data area
#endif
#ifdef	OSF
	ldgp	gp, 0(r27)		# load the global pointer
	.frame	sp, 0, r26
	lda	r27, _OtsDivData	# start loading address of the division data area
#endif
#ifdef	WNT
	.frame	sp, 0, r26
	lda	r27, _OtsDivData	# load the division data table address
#endif
	lda	r28, -table_max(r17)	# test for table lookup
	subl	r17, 1, r1		# first part of power-of-2 check
	blt	r17, rui_big		# big divisors can (must) be handled by a simple comparison
	and	r17, r1, r18		# second part of power-of-2 check
	bgt	r28, rui_lrgdiv		# branch if large divisor
	addq	r17, r17, r0		# compute divisor*2 for table lookup
	beq	r18, rui_pwr2		# if zero, divisor is a power of 2
	s8addq	r0, r27, r27		# finish computing table entry addr (table addr+divisor*16)
	ldq	r1, recip32_o(r27)	# load approximate reciprocal
	cmpult	r16, r17, r18		# is the dividend < divisor?
	zap	r16, 0xF0, r0		# kill the propagated sign bit
	bne	r18, rui_lss		# if dividend < divisor, fast exit
	umulh	r0, r1, r0		# multiplication for division step
	mull	r0, r17, r0		# multiply back to get value to subtract
	subl	r16, r0, r0
	ret	r31, (r26)		# and return

rui_pwr2:
	beq	r17, divzer		# check for 0
	and	r16, r1, r0		# use x-1 to mask
	ret	r31, (r26)

rui_lss:
	mov	r16, r0
	ret	r31, (r26)

rui_lrgdiv:
	zap	r16, 0xf0, r16		# zero-extend the dividend
	bsr	r28, div32		# use the core routine getting the remainder in r1
	sextl	r1, r0
	ret	r31, (r26)

	# divisors with the sign bit set.  two possible results,
	# dividend if dividend < divisor, or dividend-divisor otherwise
rui_big:
	cmpult	r16, r17, r1
	subl	r16, r17, r0
	cmovne	r1, r16, r0
	ret	r31, (r26)


 # unsigned ots_div_ui(unsigned dividend, unsigned divisor)
 # unsigned 32 bit division support
 #

	#.align	4
	.globl	_OtsDivide32Unsigned
	.aent	_OtsDivide32Unsigned
_OtsDivide32Unsigned:
#ifdef	VMS
	ldq	r27, <ots_div_addr-ots_div_ui>(r27)# start loading address of division data area
#endif
#ifdef	OSF
	ldgp	gp, 0(r27)		# load the global pointer
	.frame	sp, 0, r26
	lda	r27, _OtsDivData	# start loading address of the division data area
#endif
#ifdef	WNT
	.frame	sp, 0, r26
	lda	r27, _OtsDivData	# load the division data table address
#endif
	lda	r28, -table_max(r17)	# test for table lookup
	blt	r17, dui_big		# big divisors can (must) be handled by a simple comparison
	addq	r17, r17, r18		# compute divisor*2
	cmpule	r17, r16, r0		# is the dividend < divisor?
	beq	r17, divzer		# check for 0
	s8addq	r18, r27, r27		# finish computing table entry addr (table addr+divisor*16)
	beq	r0, dui_end		# fast out for divisor > dividend
	bgt	r28, dui_lrgdiv		# branch if large divisor
	ldq	r1, recip32_o(r27)	# load approximate reciprocal
	zap	r16, 0xF0, r16		# kill the propagated sign bit
	blt	r1, dui_smpwr2		# go handle powers of 2 specially
	umulh	r16, r1, r0		# start multiplication for division step
dui_end:ret	r31, (r26)		# and return
	nop
dui_smpwr2:
	srl	r16, r1, r0		# shift the result into place
	sextl	r0, r0			# reinsert sign if dividing by 1
	ret	r31, (r26)		#
dui_lrgdiv:
	zap	r16, 0xf0, r16		# zero-extend the dividend
	bsr	r28, div32		# use the core routine getting the remainder in r1
	sextl	r0, r0			# make sure the result is in normal form for uint32
	ret	r31, (r26)

	# divisor with the sign bit set.  two possible results,
	# 1 if divisor <= dividend, or 0 otherwise
dui_big:
	cmpule	r17, r16, r0
	ret	r31, (r26)


 # int ots_mod_i(int dividend, int modulus)
 # signed 32 bit modulus support
 #
 # This entry could be MUCH more optimized.  It doesn't even try to use
 # UMULH division currently...  (A casualty of time-to-market.)
 # Note that mod is only used by Ada and PL/I.
 #
	#.align	4
	.globl	_OtsModulus32
	.aent	_OtsModulus32
_OtsModulus32:
	negq	r17, r18		# first part of abs(divisor)
	cmovge	r17, r17, r18		# second part of abs(divisor)
	subq	r18, 1, r1		# start checking for power of 2
	beq	r17, divzer		# check for 0
	and	r18, r1, r0		# second part of power-of-2 check
	beq	r0, mi_p2		# for powers of two, simply do a mask
					# (note that the power-of-2 case MUST be used to handle
					# the -maxint case due to the way the fix-up info is
					# saved across the core routine call)
	xor	r16, r17, r28		# get xor of signs
	clr	r19			# don't need a bias if dividend and divisor have same sign
	cmovlt	r28, r17, r19		# bias is original divisor for different sign case
	and	r16, r17, r27		# if both dividend & divisor were neg. need to negate result
	mov	r18, r17		# move abs(divisor) into r17
	negq	r16, r18		# first part of abs(dividend)
	cmovlt	r16, r18, r16		# second part of abs(dividend)
	cmplt	r27, r31, r0		# get 1 if both operands were <0
	sll	r0, 63, r0		# get bit as the high bit
	bis	r0, r19, r19		# and MERGE with bias (0 -> no fixup, -maxint -> negate result,
					# divisor > 0 - subtract remainder if non-zero, divisor < 0 -
					# add remainder if non-zero)
	bsr	r28, div32		# use the core routine getting the remainder in r1
	cmoveq	r1, r31, r19		# don't do any fix-up if the remainder was zero
	addq	r19, r19, r18		# check to see if this is the negative/negative case, which just gets a negated remainder
	subq	r19, 1, r28		# wrap -maxint to positive
	negl	r1, r0			# move negated value, may abort later
	cmovlt	r28, r1, r0		# if both positive, or negative divisor, keep positive remainder
	cmoveq	r18, r31, r19		# now that negation is done, treat -maxint case as 0
	addl	r19, r0, r0		# add any bias (original divisor or 0)
	ret	r31, (r26)		# and return

mi_p2:	cmovge	r17, r31, r17		# no bias if divisor was >= 0
	and	r16, r1, r1		# use the divisor-1 mask that's already in r1
	cmoveq	r1, r31, r17		# use zero if result was zero
	addl	r17, r1, r0		# do any biasing, and ensure the result is sign ext
	ret	r31, (r26)		# and return

 # int ots_rem_i(int dividend, int divisor)
 # signed 32 bit remainder support
 #
	#.align	4
	.globl	_OtsRemainder32
	.aent	_OtsRemainder32
_OtsRemainder32:
#ifdef	VMS
	ldq	r27, <ots_div_addr-ots_rem_i>(r27)# start loading address of division data area
#endif
#ifdef	OSF
	ldgp	gp, 0(r27)		# load the global pointer
	.frame	sp, 0, r26
	lda	r27, _OtsDivData	# start loading address of the division data area
#endif
#ifdef	WNT
	.frame	sp, 0, r26
	lda	r27, _OtsDivData	# load the division data table address
#endif
	negq	r17, r18		# first part of abs(divisor)
	cmovlt	r17, r18, r17		# second part of abs(divisor)
	subq	r17, 1, r1		# start checking for power of 2
	and	r17, r1, r0		# finish check for power of 2
	sra	r16, 63, r19		# get -1/0 if dividend was negative
	negq	r16, r18		# first part of abs(dividend)
	cmovlt	r16, r18, r16		# second part of abs(dividend)
	beq	r0, ri_pwr2		# for powers of two, simply do a mask (not power of 2 include 0 and 80000000)
	lda	r28, -table_max(r17)	# test for table lookup
	bgt	r28, ri_lrgdiv		# branch if large divisor
	addq	r17, r17, r0		# compute divisor*2 for table lookup
	s8addq	r0, r27, r27		# finish computing table entry addr (table addr+divisor*16)
	ldq	r1, recip32_o(r27)	# load approximate reciprocal
	umulh	r16, r1, r0		# multiplication for division step
	mull	r0, r17, r0		# multiply back to get value to subtract
	subl	r16, r0, r0		# get abs of final result
	xor	r0, r19, r0		# start compliment if original dividend was <0
	subl	r0, r19, r0		# finish compliement
	ret	r31, (r26)		# and return

	# Handle powers of 2, including 0 and 80000000
ri_pwr2:
	and	r16, r1, r0		# use the divisor-1 mask in r1
	beq	r17, divzer		# division by zero
	xor	r0, r19, r0		# start compliment if original dividend was <0
	subl	r0, r19, r0		# finish compliement
	ret	r31, (r26)

	nop
ri_lrgdiv:
	bsr	r28, div32		# use the core routine getting the remainder in r1
	xor	r1, r19, r0		# start compliment if original dividend was <0
	subl	r0, r19, r0		# finish compliement
	ret	r31, (r26)


 # int ots_div_i_o(int dividend, int divisor)
 # signed 32 bit division support, overflow detection
 #
	#.align	4
	.globl	_OtsDivide32Overflow
	.aent	_OtsDivide32Overflow
_OtsDivide32Overflow:
#ifdef	VMS
	ldq	r27, <ots_div_addr-ots_div_i_o>(r27)# start loading address of division data area
#endif
#ifdef	OSF
	ldgp	gp, 0(r27)		# load the global pointer
	.frame	sp, 0, r26
	lda	r27, _OtsDivData	# start loading address of the division data area
#endif
#ifdef	WNT
	.frame	sp, 0, r26
	lda	r27, _OtsDivData	# load the division data table address
#endif
	not	r17, r1			# is the divisor -1?
	bne	r1, di_skip		# continue if not
	neglv	r16, r0			# quotient = -dividend, overflow on ^x800000000
	ret	r31, (r26)

 # int ots_div_i(int dividend, int divisor)
 # signed 32 bit division support, no overflow detection
 #
	nop	#.align	4
	.globl	_OtsDivide32
	.aent	_OtsDivide32
_OtsDivide32:
#ifdef	VMS
	ldq	r27, <ots_div_addr-ots_div_i>(r27)# start loading address of division data area
#endif
#ifdef	OSF
	ldgp	gp, 0(r27)		# load the global pointer
	.frame	sp, 0, r26
	lda	r27, _OtsDivData	# start loading address of the division data area
#endif
#ifdef	WNT
	.frame	sp, 0, r26
	lda	r27, _OtsDivData	# load the division data table address
#endif
di_skip:
di_retry:
	lda	r28, -table_max(r17)	# test for table lookup
	ble	r17, di_notpos		# not a positive divisor case
	addq	r17, r17, r0		# compute divisor*2
	negq	r16, r18		# part 1 of abs(dividend) -> r18.  (Note 0xffffffff 80000000 => 0x00000000 80000000)
	bgt	r28, di_lrgdiv		# branch if large divisor
	s8addq	r0, r27, r27		# finish computing table entry addr (table addr+divisor*16)
	cmpule	r17, r18, r0		# divisor <= dividend?
	cmovge	r16, r16, r18		# part 2 abs. val of the dividend -> r18
	beq	r0, di_end		# if not, result is zero
	ldq	r1, recip32_o(r27)	# load approximate reciprocal
	blt	r1, di_smpwr2		# go handle powers of 2 specially
	umulh	r18, r1, r0		# start multiplication
	blt	r16, di_negres		# negate result? (done as a branch to allow umulh to "hang out" over end for common case)
di_end:	ret	r31, (r26)		# return for same-sign (common) case
di_negres:
	negl	r0, r0			# different signs - compliment result
	ret	r31, (r26)		# return for different-sign (uncommon) case
di_smpwr2:
	srl	r18, r1, r18		# shift the result into place
	sra	r16, 63, r16		# get 0/-1 based on sign of dividend
	xor	r18, r16, r18		# conditionally compliment
	subl	r18, r16, r0		# and increment for the final value
	ret	r31, (r26)		# (note subl is required for sign ext for %x80000000/1 case)

	# Zero or negative divisor case.  If just a negative divisor,
	# compliment both dividend and divisor and do things again.
di_notpos:
	beq	r17, divzer		# division by zero
	negl	r17, r17		# |divisor|, note that 0x80000000 still appears negative
	negq	r16, r16		# compliment dividend (negq so that 0xffffffff 80000000 => 0x00000000 80000000
	bgt	r17, di_retry		# dispatch back for normal case (not 0x80000000 or 0)
	sextl	r16, r16		# 
	cmpeq	r16, r17, r0		# -maxint/-maxint = 1, all others 0
	ret	r31, (r26)		# done

	# Large divisor for signed 32/32 case
	#
	nop	#.align	3
di_lrgdiv:
	sra	r16, 63, r19		# get 0/-1 based on sign of dividend
	cmovlt	r16, r18, r16		# 
	bsr	r28, div32		# go use core routine
	xor	r0, r19, r0		# conditionally compliment
	subl	r0, r19, r0		# and increment for the final value (subl ensures normalized result)
	ret	r31, (r26)		# done


 # Large divisor case core routine for 32b
 # (wbn)
 #
 #   r0	- quotient (output)
 #   r1	- remainder (output)
 #   r16	- dividend (range 0..2^32-1, zero extended)
 #   r17 - divisor (range 1..2^31-1 - overwritten)
 #   r18	- scratch
 #   r19	- not used (one temp for 'caller')
 #   r26 - not used (expected to contain main return address)
 #  [r27 - scratch] (not currently written)
 #   r28	- this "subroutine" return address
 #
 # Some tightened up bit-at-a-time code for dividing 32-bit integers.
 # It uses two tricks: keep the running remainder and the quotient in
 # the same 64-bit register (MQ?), and add 1 while subtracting the divisor,
 # so that a single CMOV sets both the new remainder and the new quotient.
 # I start off by trying to skip 8 bits at a time; should this skip a
 # smaller amount, so the main loop iterates less often?  If the divisor
 # is already known to be large enough, the last case in this test is never
 # used...
 #
 # This code expects as input two integers in the range 0 <= x < 2^31
 # (that is, it doesn't work for general unsigned longwords, and doesn't
 # include sign manipulation.)
 #
 # The code here takes about 34n+11 cycles for a quotient occupying n bytes.
 #
 # Inputs: dividend in r16, divisor in r17
 # Outputs: quotient in r0, remainder in r1
 # Destroys: [r16,]r17,r18,[r27]
 #
	# How many quotient bytes will there be: 0, 1, 2, 3, 4?
	#
	#.align	4
div32:	cmpule	r17, r16, r0		# Divisor leq dividend?
	sll	r17, 32, r18		# Position divisor for loop
	sll	r17, 8, r1		# Prepare for next compare
	beq	r0, d32end		# Dividend less, quotient is zero.
ediv32:	mov	8-3, r17		# Hope to skip 3 bytes of loop
	cmpule	r1, r16, r0		# Shifted divisor still leq dividend?
	sll	r1, 8, r1		# Prepare for next compare
	beq	r0, d32ent		# Go loop over just one byte
	mov	8-2, r17		# Hope to skip 2 bytes of loop
	cmpule	r1, r16, r0		# Shifted divisor still leq dividend?
	sll	r1, 8, r1		# Prepare for next compare
	beq	r0, d32ent		# Go loop over just two bytes
	mov	8-1, r17		# Hope to skip 1 byte of loop
	cmpule	r1, r16, r0		# Shifted divisor still leq dividend?
	nop				# stall - align d32ent and d32loop
	cmovne	r0, 8, r17		# If we can't skip any bytes

	# start loop generating quotient bits.  NOTE: The loop setup requires
	# an even number of iterations.
	#
d32ent:	extqh	r16, r17, r0		# Shift dividend left for skipped bytes
	subq	r18, 1, r1		# Divisor in high LW - 1 in low LW
	s8subq	r17, 34, r17		# Convert bytes to bits and adjust

	addq	r0, r0, r0		# Shift left to start first iteration
d32loop:subq	r0, r1, r18		# Can we subtract divisor from it?
	cmovge	r18, r18, r0		# If so, set new remainder & quotient
	# stall
	addq	r0, r0, r0		# Shift remainder and quotient left
	subq	r0, r1, r18		# Can we subtract divisor from it?
	cmovge	r18, r18, r0		# If so, set new remainder & quotient
	subq	r17, 2, r17		# Loop counter
	addq	r0, r0, r0		# Shift remainder and quotient left
	bgt	r17, d32loop		# Repeat
	subq	r0, r1, r18		# Can we subtract divisor from it?
	cmovge	r18, r18, r0		# If so, set new remainder & quotient
	# stall
	addq	r0, r0, r0		# Shift remainder and quotient left
	subq	r0, r1, r18		# Finish last iteration
	cmovge	r18, r18, r0
	# stall
	srl	r0, 32, r1		# Get remainder in r1
	zap	r0, 0xf0, r0		# Keep only quotient in r0
	nop	# for alignment
d32end:	cmoveq	r0, r16, r1		# Move remainder to r1 for quotient=0 case
	ret	r31, (r28)		# Not a real software procedure return


 # Large divisor case core routine for 64b
 #
 #   r0	- quotient (output)
 #   r1	- remainder (output)
 #   r16	- dividend (range 0..2^64-1 - overwritten)
 #   r17 - divisor (range 1..2^63-1 - overwritten)
 #   r18	- scratch
 #   r19 - not used (one temp for 'caller')
 #   r26 - not used (expected to contain main return address)
 #   r27	- points to table of inverses (overwritten)
 #   r28	- this "subroutine" return address
 #
 # Inputs: dividend in r16, divisor in r17
 # Outputs: quotient in r0, remainder in r1
 # Destroys: r16,r17,r18,r27
 #
 # Note- this routine could save a few cycles if we could use
 # another scratch register -- perhaps by pushing one on the stack?
 #
	#.align	4
div64:	sll	r17, 32, r18		# Position for ediv32
	cmpule	r17, r16, r0		# Is divisor leq dividend?
	srl	r17, 31, r1		# Is divisor geq 2^31?
	 beq	r0, d64end		# If divisor > dividend, quotient=0
	cmpule	r18, r16, r0		# Is divisor*2^32 leq dividend?
	sll	r17, 8, r1		# Position for ediv32 checking
	or	r1, r0, r0		# 0 if divisor & quotient fit in 32 bits
	 beq	r0, ediv32		# Use 32-bit routine if OK

 # Full 64-bit divide needed.  Use the table of shift amounts to compute
 # the number of leading zero bits in the divisor.  Find the leftmost
 # nonzero byte, then the leftmost nonzero bit in that byte.  Table entry
 # #n+1 contains the number of bits needed to hold n (1..8).  We know the
 # divisor is nonzero here.
 #
	cmpbge	r31, r17, r0		# Get a zero bit for each nonzero byte
	#stall
	sll	r0, 4, r0		# *16 bytes per table entry
	#stall
	subq	r27, r0, r0		# table base plus complement...
	#stall
	ldq	r1, 256*16(r0)		# get position of first nonzero
	#2 stalls
	subq	r1, 1, r1		# byte number of first nonzero
	extbl	r17, r1, r0		# get first nonzero byte
	#stall
	addq	r0, r0, r0		# *2
	s8addq	r0, r27, r0		# *16 bytes per table entry
	#stall
	ldq	r0, 16(r0)		# bit number of first nonzero
	negq	r1, r1			# 1 + #leading zero bytes (mod 8)
	#stall
	s8subq	r1, r0, r0		# number of leading zero bits
	and	r0, 0x3F, r0		# discard other junk

 # The following code does a similar normalize calculation without the table.
 #===
 #	extll	r17, #4, r18		; Normalize the divisor and
 #	mov	#63, r0			; count leading zeros
 #	cmovne	r18, #31, r0
 #	cmoveq	r18, r17, r18
 #	;stall
 #	extwl	r18, #2, r1
 #	;stall
 #	cmovne	r1, r1, r18
 #	cmovne	r1, #16, r1
 #	;stall
 #	subq	r0, r1, r0
 #	extbl	r18, #1, r1
 #	;stall
 #	cmovne	r1, r1, r18
 #	cmovne	r1, #8, r1
 #	;stall
 #	subq	r0, r1, r0
 #	andnot	r18, #^x0f, r1
 #	cmovne	r1, r1, r18
 #	cmovne	r1, #4, r1
 #	;stall
 #	subq	r0, r1, r0
 #	andnot	r18, #^x33, r1
 #	cmovne	r1, r1, r18
 #	cmovne	r1, #2, r1
 #	;stall
 #	subq	r0, r1, r0
 #	andnot	r18, #^x55, r1
 #	cmovne	r1, #1, r1
 #	;stall
 #	subq	r0, r1, r0
 #===

 # R0 contains number of leading zero bits in the divisor.

	sll	r17, r0, r17		# Normalize: MSB is set.

	# Now break divisor into pieces a+x, where a is the leading
	# 9 bits, rounded, and x is the rest.  Use a linear
	# approximation for 1/divisor = 1/a - x/a^2 [+ x^2/a^3 -...]
	#
	srl	r17, 64-10, r1		# Keep 10 bits of divisor
	#stall
	addq	r1, 1, r1		# Round to form 'a'
	andnot	r1, 1, r1
	s8addq	r1, r27, r27		# Index table of 1/a and 1/a^2
	sll	r1, 64-10, r1		# shift 'a' to match divisor
	ldq	r18, (r27)		# Load QW containing 1/a^2
	subq	r1, r17, r1		# -x = a - divisor
	beq	r1, d64_easy		# Use table directly if x=0
	inswl	r18, 6, r18		# position 1/a^2
	blt	r1, d64_sub		# correct for sign of -x
	umulh	r1, r18, r1		# -x/a^2
	ldq	r27, 8(r27)		# Load QW containing 1/a - 1
	br	r31, d64_cont

d64_sub:umulh	r1, r18, r1		# -x/a^2
	ldq	r27, 8(r27)		# load QW containing 1/a - 1
	# 2 stalls
	s4addq	r18, 0, r18
	subq	r27, r18, r27		# correct for sign of -x
d64_cont:
	# many stalls
	s4addq	r1, r27, r18		# 1/divisor approx= 1/a - x/a^2

	# Now one or two Newton iterations to get 24 or 56 good bits of the inverse.
	# Each computes  inv = inv * (2 - inv*divisor).  We could skip out early
	# here or above if the dividend and/or quotient is small enough for the
	# amount of precision we've developed...
	#
	# We handle quadwords with the radix point on the left.  The divisor has
	# been normalized to the range 0.5 < divisor < 1.0; the inverses are in
	# the range 1.0 < inverse < 2.0, and are represented without the leading 1.
	#
	umulh	r18, r17, r1		# (inv0 - 1) * divisor
	# many stalls
	addq	r1, r17, r1		# add hidden bit * divisor
	negq	r1, r1			# 2 - inv0*divisor, very near 1.0
	umulh	r18, r1, r27		# (inv0 - 1) * (2 - inv0*divisor)
	cmovlt	r1, 0, r18		# keep inv0 if (2-inv0*divisor) > 1.0
	#stall
	addq	r18, r1, r1		# add it to hidden bit * (2-inv0*divisor)
	# many stalls
	addq	r27, r1, r18		# inv1 = inv0 * (2 - inv0*divisor)

	umulh	r18, r17, r1		# (inv1 - 1) * divisor
	# many stalls
	addq	r1, r17, r1		# add hidden bit * divisor
	negq	r1, r1			# 2 - inv1*divisor, very near 1.0
	umulh	r18, r1, r27		# (inv1 - 1) * (2 - inv1*divisor)
	cmovlt	r1, 0, r18		# keep inv1 if (2-inv1*divisor) > 1.0
	addq	r18, r1, r1		# add it to hidden bit * (2-inv1*divisor)
	# many stalls
	addq	r27, r1, r1		# inverse = inv1 * (2 - inv1*divisor)
	umulh	r1, r16, r18		# dividend * (1/divisor - 1)
	srl	r17, r0, r17		# un-normalize divisor
	negq	r0, r0
	subq	r0, 8, r0		# how far right after first byte
	# many stalls
	addq	r18, r16, r18		# add hidden bit * dividend
	cmpult	r18, r16, r1		# did it carry?
	srl	r18, 8, r18		# start to shift
	sll	r1, 56, r1		# position the carry
	#stall
	addq	r1, r18, r1		# add the carry
	srl	r1, r0, r0		# final shift
	mulq	r17, r0, r1		# try out this quotient
	# many stalls
	subq	r16, r1, r1		# form remainder
	cmpule	r17, r1, r18		# must be less than divisor
	subq	r1, r17, r27
	cmovne	r18, r27, r1		# if not, decrement remainder
	addq	r0, r18, r0		# and increment quotient
	ret	r31, (r28)		# done

d64_easy:
	ldq	r1, 8(r27)		# get 1/divisor, except hidden bit
	srl	r17, r0, r17		# un-normalize divisor again
	blt	r18, d64_pow2		# skip if power of 2
	umulh	r1, r16, r18		# dividend/divisor
	negq	r0, r0			# how far right to shift
	and	r16, 0x0ff, r1		# pieces of dividend
	subq	r0, 8, r0		# how far right after first byte
	srl	r16, 8, r27
	# many stalls
	addq	r18, r1, r1		# add low piece of dividend, no carry
	srl	r1, 8, r1		# make room for high piece
	#stall
	addq	r1, r27, r1		# finish adding hidden bit * dividend
	srl	r1, r0, r0		# final shift
	mulq	r17, r0, r1		# need to compute remainder too
	# many stalls
	subq	r16, r1, r1
	ret	r31, (r28)		# done

d64_pow2:
	not	r0, r0			# how far right to shift quotient
	subq	r17, 1, r1		# mask for remainder
	srl	r16, r0, r0		# shift for quotient
	and	r16, r1, r1		# get remainder
	ret	r31, (r28)		# done

d64end:	mov	r16, r1			# Remainder to r1 for small quotient case
	  ret	r31, (r28)		# Not a real software procedure return

 # long ots_div_l_o(long dividend, long divisor)
 # signed 64 bit division support, overflow detection
 #
	#.align	4
	.globl	_OtsDivide64Overflow
	.aent	_OtsDivide64Overflow
_OtsDivide64Overflow:
#ifdef	VMS
	ldq	r27, <ots_div_addr-ots_div_l_o>(r27)# start loading address of division data area
#endif
#ifdef	OSF
	ldgp	gp, 0(r27)		# load the global pointer
	.frame	sp, 0, r26
	lda	r27, _OtsDivData	# start loading address of the division data area
#endif
#ifdef	WNT
	.frame	sp, 0, r26
	lda	r27, _OtsDivData	# load the division data table address
#endif
	not	r17, r1			# is the divisor -1?
	bne	r1, dl_skip		# continue if not
	negqv	r16, r0			# q = -dividend, oflow on ^x800000000 00000000
	ret	r31, (r26)
	nop

 # long ots_div_l(long dividend, long divisor)
 # signed 64 bit division support, no overflow detection
 #
	.globl	_OtsDivide64
	.aent	_OtsDivide64
_OtsDivide64:
#ifdef	VMS
	ldq	r27, <ots_div_addr-ots_div_l>(r27)# start loading address of division data area
#endif
#ifdef	OSF
	ldgp	gp, 0(r27)		# load the global pointer
	.frame	sp, 0, r26
	lda	r27, _OtsDivData	# start loading address of the division data area
#endif
#ifdef	WNT
	.frame	sp, 0, r26
	lda	r27, _OtsDivData	# load the division data table address
#endif
dl_skip:
	xor	r16, r17, r19		# sign bit = result needs to be complimented (here to handle -maxint correctly)
dl_retry:
	lda	r28, -table_max(r17)	# test for table lookup
	ble	r17, dl_notpos		# not a positive divisor case
	addq	r17, r17, r0		# compute divisor*2
	negq	r16, r18		# part 1 of abs(dividend) -> r18
	bgt	r28, dl_lrgdiv		# branch if large divisor
	s8addq	r0, r27, r27		# finish computing table entry addr (table addr+divisor*16)
	srl	r16, 33, r1		# can this be handled via a 32 bit case?
	cmpule	r17, r18, r0		# divisor <= dividend?
	bne	r1, dl_64bit		# does this need to be a real 64 bit case?
	cmovge	r16, r16, r18		# part 2 abs. val of the dividend -> r18
	beq	r0, dl_end		# if not, result is zero
	ldq	r27, recip32_o(r27)	# load 32b approximate reciprocal
	sra	r19, 63, r19		# get 0/-1
	blt	r27, dl_smpwr2		# skip umulh for powers of 2 specially
	umulh	r18, r27, r0		# start multiplication
	beq	r19, dl_end		# if compliment not required, let umulh "hang out"
	negq	r0, r0			# compliment case
	ret	r31, (r26)		#
dl_64bit:
	cmovge	r16, r16, r18		# part 2 abs. val of the dividend -> r18
	beq	r0, dl_end		# if not, result is zero
	ldq	r1, recip64_o(r27)	# load approximate reciprocal
	sra	r19, 63, r19		# get 0/-1
	ldq	r27, shift_o(r27)	# load shift count (low 6 bits are all that matters)
	beq	r1, dl_smpwr2		# skip umulh for powers of 2 specially
	umulh	r18, r1, r0		# start multiplication
	addq	r0, r18, r18		# add hidden bit
dl_smpwr2:
	srl	r18, r27, r18		# shift the result into place
	xor	r18, r19, r18		# conditionally compliment
	subq	r18, r19, r0		# and increment for the final value
dl_end:	ret	r31, (r26)		#

	# Zero or negative divisor case.  If just a negative divisor,
	# compliment both dividend and divisor and do things again.
dl_notpos:
	beq	r17, divzer		# division by zero
	negq	r17, r17		# |divisor|, note that 0x80000000 00000000 still appears negative
	negq	r16, r16		# compliment dividend
	bgt	r17, dl_retry		# dispatch back for normal case (not 0x80000000 00000000 or 0)
	cmpeq	r16, r17, r0		# -maxint/-maxint = 1, all others 0
	ret	r31, (r26)		# done

	# Large divisor for signed 64/64 case
	#
dl_lrgdiv:
	sra	r19, 63, r19		# get 0/-1
	cmovlt	r16, r18, r16		# 
	bsr	r28, div64		# go use core routine
	xor	r0, r19, r0		# conditionally compliment
	subq	r0, r19, r0		# and increment for the final value
	ret	r31, (r26)		# done


 # long ots_rem_l(long dividend, long divisor)
 # signed 64 bit remainder support
 #
	#.align	4
	.globl	_OtsRemainder64
	.aent	_OtsRemainder64
_OtsRemainder64:
#ifdef	VMS
	ldq	r27, <ots_div_addr-ots_rem_l>(r27)# start loading address of division data area
#endif
#ifdef	OSF
	ldgp	gp, 0(r27)		# load the global pointer
	.frame	sp, 0, r26
	lda	r27, _OtsDivData	# start loading address of the division data area
#endif
#ifdef	WNT
	.frame	sp, 0, r26
	lda	r27, _OtsDivData	# load the division data table address
#endif
	negq	r17, r18		# first part of abs(divisor)
	cmovlt	r17, r18, r17		# second part of abs(divisor)
	subq	r17, 1, r1		# start checking for power of 2
	and	r17, r1, r0		# finish check for power of 2
	sra	r16, 63, r19		# get -1/0 if dividend was negative
	negq	r16, r18		# first part of abs(dividend)
	cmovlt	r16, r18, r16		# second part of abs(dividend)
	beq	r0, rl_pwr2		# for powers of two, simply do a mask (not power of 2 include 0 and 80000000)
	lda	r28, -table_max(r17)	# test for table lookup
	bgt	r28, rl_lrgdiv		# branch if large divisor
	addq	r17, r17, r0		# compute divisor*2 for table lookup
	s8addq	r0, r27, r27		# finish computing table entry addr (table addr+divisor*16)
	ldq	r1, recip64_o(r27)	# load approximate reciprocal
	ldq	r18, shift_o(r27)	# load shift amount
	umulh	r16, r1, r0		# multiplication for division step
	addq	r0, r16, r0		# add hidden bit
	srl	r0, r18, r0
	mulq	r0, r17, r0		# multiply back to get value to subtract
	subq	r16, r0, r0		# get abs of final result
	xor	r0, r19, r0		# start compliment if original dividend was <0
	subq	r0, r19, r0		# finish compliement
	ret	r31, (r26)		# and return

	# Handle powers of 2, including 0 and 80000000 00000000
rl_pwr2:
	negq	r16, r18		# first part of abs(dividend)
	cmovlt	r16, r18, r16		# second part of abs(dividend)
	and	r16, r1, r0		# use the divisor-1 mask in r1
	beq	r17, divzer		# division by zero
	xor	r0, r19, r0		# start compliment if original dividend was <0
	subq	r0, r19, r0		# finish compliement
	ret	r31, (r26)

rl_lrgdiv:
	bsr	r28, div64		# use the core routine getting the remainder in r1
	xor	r1, r19, r0		# start compliment if original dividend was <0
	subq	r0, r19, r0		# finish complement
	ret	r31, (r26)

 # long ots_mod_l(long dividend, long modulus)
 # signed 64 bit modulus support
 #
 # This entry could be MUCH more optimized.  It doesn't even try to use
 # UMULH division currently...  (A casualty of time-to-market.)
 # Note that mod is only used by Ada and PL/I.
 #
	#.align	4
	.globl	_OtsModulus64
	.aent	_OtsModulus64
_OtsModulus64:
#ifdef	VMS
	ldq	r27, <ots_div_addr-ots_rem_l>(r27)# start loading address of division data area
#endif
#ifdef	OSF
	ldgp	gp, 0(r27)		# load the global pointer
	.frame	sp, 0, r26
	lda	r27, _OtsDivData	# start loading address of the division data area
#endif
#ifdef	WNT
	.frame	sp, 0, r26
	lda	r27, _OtsDivData	# load the division data table address
#endif
	negq	r17, r18		# first part of abs(divisor)
	cmovge	r17, r17, r18		# second part of abs(divisor)
	subq	r18, 1, r1		# start checking for power of 2
	beq	r17, divzer		# check for 0
	and	r18, r1, r0		# second part of power-of-2 check
	beq	r0, ml_p2		# for powers of two, simply do a mask
					# (note that the power-of-2 case MUST be used to handle
					# the -maxint case due to the way the fix-up info is
					# saved across the core routine call)
	xor	r16, r17, r28		# get xor of signs
	clr	r19			# don't need a bias if dividend and divisor have same sign
	cmovlt	r28, r17, r19		# bias is original divisor for different sign case
	and	r16, r17, r28		# if both dividend & divisor were neg. need to negate result
	mov	r18, r17		# move abs(divisor) into r17
	negq	r16, r18		# first part of abs(dividend)
	cmovlt	r16, r18, r16		# second part of abs(dividend)
	cmplt	r28, r31, r0		# get 1 if both operands were <0
	sll	r0, 63, r0		# get bit as the high bit
	bis	r0, r19, r19		# and MERGE with bias (0 -> no fixup, -maxint -> negate result,
					# divisor > 0 - subtract remainder if non-zero, divisor < 0 -
					# add remainder if non-zero)
	bsr	r28, div64		# use the core routine getting the remainder in r1
	cmoveq	r1, r31, r19		# don't do any fix-up if the remainder was zero
	addq	r19, r19, r18		# check to see if this is the negative/negative case, which just gets a negated remainder
	subq	r19, 1, r28		# wrap -maxint to positive
	negq	r1, r0			# move negated value, may abort later
	cmovlt	r28, r1, r0		# if both positive, or negative divisor, keep positive remainder
	cmoveq	r18, r31, r19		# now that negation is done, treat -maxint case as 0
	addq	r19, r0, r0		# add any bias (original divisor or 0)
	ret	r31, (r26)		# and return

ml_p2:	cmovge	r17, r31, r17		# no bias if divisor was >= 0
	and	r16, r1, r1		# use the divisor-1 mask that's already in r1
	cmoveq	r1, r31, r17		# use zero if result was zero
	addq	r17, r1, r0		# do any biasing
	ret	r31, (r26)		# and return


 # unsigned long ots_div_ul(unsigned long dividend, unsigned long divisor)
 # unsigned 64 bit division support
 #
	nop	#.align	4
	.globl	_OtsDivide64Unsigned
	.aent	_OtsDivide64Unsigned
_OtsDivide64Unsigned:
#ifdef	VMS
	ldq	r27, <ots_div_addr-ots_div_ul>(r27)# start loading address of division data area
#endif
#ifdef	OSF
	ldgp	gp, 0(r27)		# load the global pointer
	.frame	sp, 0, r26
	lda	r27, _OtsDivData	# start loading address of the division data area
#endif
#ifdef	WNT
	.frame	sp, 0, r26
	lda	r27, _OtsDivData	# load the division data table address
#endif
	lda	r28, -table_max(r17)	# test for table lookup
	blt	r17, dul_big		# big divisors can (must) be handled by a simple comparison
	addq	r17, r17, r18		# compute divisor*2
	srl	r16, 33, r19		# can this be handled via the fast path for 31 bit dividends?
	beq	r17, divzer		# check for 0
	s8addq	r18, r27, r18		# finish computing table entry addr (table addr+divisor*16)
	bgt	r28, dul_lrgdiv		# branch if large divisor
	cmpule	r17, r16, r0		# is the dividend < divisor?
	bne	r19, dul_64bit		# if the dividend doesn't fit in 31 bits, use the larger umulh form
	ldq	r27, recip32_o(r18)	# load approximate 32b reciprocal & shift count
	beq	r0, dul_end		# fast out for divisor > dividend
	blt	r27, dul_smpwr2		# go handle powers of 2 specially
	umulh	r16, r27, r0		# 32b recip
	ret	r31, (r26)		#

	# the 64 bit case is at a disadvantage to the 32b case because it needs
	# a fix-up at the end, which prevents the latency of the umulh from
	# being partially absorbed by the procedure return and anything that
	# immediately follows that doesn't interlock.
	nop
dul_64bit:
	ldq	r1, recip64_o(r18)	# load approximate 64b reciprocal
	ldq	r27, shift_o(r18)	# load shift count (low 6 bits are all that matters)
	beq	r0, dul_end		# fast out for divisor > dividend
	beq	r1, dul_smpwr2		# go handle powers of 2 specially
	umulh	r16, r1, r0		# start multiplication for division step
	zap	r16, 0x0f, r18		# split dividend into two parts
	zapnot	r16, 0x0f, r16
	srl	r18, r27, r18		# position the high part
	addq	r0, r16, r0		# add hidden * low dividend (no carry)
	srl	r0, r27, r0		# shift into place
	addq	r0, r18, r0		# add hidden * high dividend
	ret	r31, (r26)

dul_smpwr2:
	srl	r16, r27, r0		# shift the result into place
dul_end: ret	r31, (r26)		#

dul_lrgdiv:
	bsr	r28, div64		# use the core routine
	ret	r31, (r26)

	# divisor with the sign bit set.  two possible results,
	# 1 if divisor <= dividend, or 0 otherwise
dul_big:
	cmpule	r17, r16, r0
	ret	r31, (r26)


 # long unsigned ots_rem_ul(long unsigned dividend, long unsigned divisor)
 # unsigned 64 bit remainder support
 #
	#.align	4
	.globl	_OtsRemainder64Unsigned
	.aent	_OtsRemainder64Unsigned
_OtsRemainder64Unsigned:
#ifdef	VMS
	ldq	r27, <ots_div_addr-ots_rem_ul>(r27)# start loading address of division data area
#endif
#ifdef	OSF
	ldgp	gp, 0(r27)		# load the global pointer
	.frame	sp, 0, r26
	lda	r27, _OtsDivData	# start loading address of the division data area
#endif
#ifdef	WNT
	.frame	sp, 0, r26
	lda	r27, _OtsDivData	# load the division data table address
#endif
	lda	r28, -table_max(r17)	# test for table lookup
	subq	r17, 1, r1		# first part of power-of-2 check
	blt	r17, rul_big		# big divisors can (must) be handled by a simple comparison
	and	r17, r1, r18		# second part of power-of-2 check
	bgt	r28, rul_lrgdiv		# branch if large divisor
	addq	r17, r17, r0		# compute divisor*2 for table lookup
	beq	r18, rul_pwr2		# if zero, divisor is a power of 2
	s8addq	r0, r27, r27		# finish computing table entry addr (table addr+divisor*16)
	ldq	r1, recip64_o(r27)	# load approximate reciprocal
	cmpult	r16, r17, r18		# is the dividend < divisor?
	bne	r18, rul_lss		# if so, fast exit
	ldq	r19, shift_o(r27)	# load the shift count
	umulh	r16, r1, r0		# multiplication for division step
	blt	r16, rul_carry		# careful handling if >= 2^63
	addq	r0, r16, r0		# add hidden bit * dividend
	srl	r0, r19, r0
	mulq	r0, r17, r0		# multiply back to get value to subtract
	subq	r16, r0, r0
	ret	r31, (r26)		# and return

rul_carry:
	zap	r16, 0x0f, r18		# split dividend into two parts
	zapnot	r16, 0x0f, r1
	srl	r18, r19, r18		# position the high part
	addq	r0, r1, r0		# add hidden * low dividend (no carry)
	srl	r0, r19, r0		# shift into place
	addq	r0, r18, r0		# add hidden * high dividend
	mulq	r0, r17, r0		# multiply back to get value to subtract
	subq	r16, r0, r0
	ret	r31, (r26)

rul_pwr2:
	beq	r17, divzer		# check for 0
	and	r16, r1, r0		# use x-1 to mask
	ret	r31, (r26)

rul_lss:
	mov	r16, r0
	ret	r31, (r26)

	# divisors with the sign bit set.  two possible results,
	# dividend if dividend < divisor, or dividend-divisor otherwise
rul_big:
	cmpult	r16, r17, r1
	subq	r16, r17, r0
	cmovne	r1, r16, r0
	ret	r31, (r26)

	nop
rul_lrgdiv:
	bsr	r28, div64		# use the core routine getting the remainder in r1
	mov	r1, r0			# return remainder as the result in r0
	ret	r31, (r26)


 # Division-by-zero handling
 #   (forward branch from all routines, out of the way here as well.)
 #
divzer:	lda	r16, GEN_INTDIV(r31)	# load GENTRAP code for division by zero
	clr	r0			# return 0 for the result
	clr	r1			#
#ifdef	VMS
	gentrap				# signal the error
#endif
#ifdef	OSF
	call_pal PAL_gentrap
#endif
#ifdef	WNT
	# Since I couldn't find this in a header file anywhere for NT...
#define PAL_gentrap 0xaa
	call_pal PAL_gentrap
#endif
	ret	r31, (r26)		# return (in case someone tries to continue)

	.set at
	.set reorder
	.end	_OtsDiv