summaryrefslogblamecommitdiffstats
path: root/private/ntos/fstub/drivesup.c
blob: 57b1b76a8f9d4f29075f1dc4a9fd6308e290e379 (plain) (tree)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715


































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































                                                                                                                                           

/*++

Copyright (c) 1990  Microsoft Corporation

Module Name:

    hanfnc.c

Abstract:

    default handlers for hal functions which don't get handlers
    installed by the hal

Author:

    Ken Reneris (kenr) 19-July-1994

Revision History:
    G.Chrysanthakopoulos (georgioc)
    Added support for removable disk with a BPB,instead of a partition table.
    All changes in HalIoReadParitionTable. Started 01-June-1996


--*/

#include "ntos.h"
#include "zwapi.h"
#include "hal.h"
#include "ntdddisk.h"
#include "haldisp.h"
#include "ntddft.h"
#include "stdio.h"

//
// Strings definitions
//

static PUCHAR DiskPartitionName = "\\Device\\Harddisk%d\\Partition%d";
static PUCHAR CdRomDeviceName   = "\\Device\\CdRom%d";
static PUCHAR RegistryKeyName   = DISK_REGISTRY_KEY;


VOID
HalpCalculateChsValues(
    IN PLARGE_INTEGER PartitionOffset,
    IN PLARGE_INTEGER PartitionLength,
    IN CCHAR ShiftCount,
    IN ULONG SectorsPerTrack,
    IN ULONG NumberOfTracks,
    IN ULONG ConventionalCylinders,
    OUT PPARTITION_DESCRIPTOR PartitionDescriptor
    );

BOOLEAN
HalpCreateDosLink(
    IN PLOADER_PARAMETER_BLOCK LoaderBlock,
    IN UCHAR DriveLetter,
    IN PUCHAR DeviceName,
    IN PSTRING BootDeviceName,
    OUT PUCHAR NtSystemPath,
    OUT PSTRING NtSystemPathString
    );

NTSTATUS
HalpGetRegistryPartitionInformation(
    IN ULONG DiskSignature,
    IN LARGE_INTEGER PartitionOffset,
    IN LARGE_INTEGER PartitionLength,
    IN OUT DISK_PARTITION *PartitionConfiguration
    );

UCHAR
HalpGetRegistryCdromInformation(
    IN PUCHAR CdromName
    );

#ifdef ALLOC_PRAGMA
#pragma alloc_text(PAGE, HalpCalculateChsValues)
#pragma alloc_text(PAGE, HalpCreateDosLink)
#pragma alloc_text(PAGE, HalpGetRegistryPartitionInformation)
#pragma alloc_text(PAGE, HalpGetRegistryCdromInformation)
#pragma alloc_text(PAGE, xHalIoAssignDriveLetters)
#pragma alloc_text(PAGE, xHalIoReadPartitionTable)
#pragma alloc_text(PAGE, xHalIoSetPartitionInformation)
#pragma alloc_text(PAGE, xHalIoWritePartitionTable)
#endif



VOID
FASTCALL
xHalExamineMBR(
    IN PDEVICE_OBJECT DeviceObject,
    IN ULONG SectorSize,
    IN ULONG MBRTypeIdentifier,
    OUT PVOID *Buffer
    )

/*++

Routine Description:

    Given a master boot record type (MBR - the zero'th sector on the disk),
    read the master boot record of a disk.  If the MBR is found to be of that
    type, allocate a structure whose layout is dependant upon that partition
    type, fill with the appropriate values, and return a pointer to that buffer
    in the output parameter.

    The best example for a use of this routine is to support Ontrack
    systems DiskManager software.  Ontrack software lays down a special
    partition describing the entire drive.  The special partition type
    (0x54) will be recognized and a couple of longwords of data will
    be passed back in a buffer for a disk driver to act upon.

Arguments:

    DeviceObject - The device object describing the entire drive.

    SectorSize - The minimum number of bytes that an IO operation can
                 fetch.

    MBRIndentifier - A value that will be searched for in the
                     in the MBR.  This routine will understand
                     the semantics implied by this value.

    Buffer - Pointer to a buffer that returns data according to the
             type of MBR searched for.  If the MBR is not of the
             type asked for, the buffer will not be allocated and this
             pointer will be NULL.  It is the responsibility of the
             caller of HalExamineMBR to deallocate the buffer.  The
             caller should deallocate the memory ASAP.

Return Value:

    None.

--*/

{


    LARGE_INTEGER partitionTableOffset;
    PUCHAR readBuffer = (PUCHAR) NULL;
    KEVENT event;
    IO_STATUS_BLOCK ioStatus;
    PIRP irp;
    PPARTITION_DESCRIPTOR partitionTableEntry;
    NTSTATUS status = STATUS_SUCCESS;
    ULONG readSize;

    *Buffer = NULL;
    //
    // Determine the size of a read operation to ensure that at least 512
    // bytes are read.  This will guarantee that enough data is read to
    // include an entire partition table.  Note that this code assumes that
    // the actual sector size of the disk (if less than 512 bytes) is a
    // multiple of 2, a fairly reasonable assumption.
    //

    if (SectorSize >= 512) {
        readSize = SectorSize;
    } else {
        readSize = 512;
    }

    //
    // Start at sector 0 of the device.
    //

    partitionTableOffset = RtlConvertUlongToLargeInteger( 0 );

    //
    // Allocate a buffer that will hold the reads.
    //

    readBuffer = ExAllocatePool(
                     NonPagedPoolCacheAligned,
                     PAGE_SIZE>readSize?PAGE_SIZE:readSize
                     );

    if (readBuffer == NULL) {
        return;
    }

    //
    // Read record containing partition table.
    //
    // Create a notification event object to be used while waiting for
    // the read request to complete.
    //

    KeInitializeEvent( &event, NotificationEvent, FALSE );

    irp = IoBuildSynchronousFsdRequest( IRP_MJ_READ,
                                        DeviceObject,
                                        readBuffer,
                                        readSize,
                                        &partitionTableOffset,
                                        &event,
                                        &ioStatus );

    status = IoCallDriver( DeviceObject, irp );

    if (status == STATUS_PENDING) {
        (VOID) KeWaitForSingleObject( &event,
                                      Executive,
                                      KernelMode,
                                      FALSE,
                                      (PLARGE_INTEGER) NULL);
        status = ioStatus.Status;
    }

    if (!NT_SUCCESS( status )) {
        ExFreePool(readBuffer);
        return;
    }

    //
    // Check for Boot Record signature.
    //

    if (((PUSHORT) readBuffer)[BOOT_SIGNATURE_OFFSET] != BOOT_RECORD_SIGNATURE) {
        ExFreePool(readBuffer);
        return;
    }

    //
    // Check for DM type partition.
    //

    partitionTableEntry = (PPARTITION_DESCRIPTOR) &(((PUSHORT) readBuffer)[PARTITION_TABLE_OFFSET]);

    if (partitionTableEntry->PartitionType != MBRTypeIdentifier) {

        //
        // The partition type isn't what the caller cares about.
        //
        ExFreePool(readBuffer);

    } else {

        if (partitionTableEntry->PartitionType == 0x54) {

            //
            // Rather than allocate a new piece of memory to return
            // the data - just use the memory allocated for the buffer.
            // We can assume the caller will delete this shortly.
            //

            ((PULONG)readBuffer)[0] = 63;
            *Buffer = readBuffer;

        } else if (partitionTableEntry->PartitionType == 0x55) {

            //
            // EzDrive Parititon.  Simply return the pointer to non-null
            // There is no skewing here.
            //

            *Buffer = readBuffer;

        } else {

            ASSERT(partitionTableEntry->PartitionType == 0x55);

        }

    }

}

VOID
FASTCALL
xHalGetPartialGeometry(
    IN PDEVICE_OBJECT DeviceObject,
    IN PULONG ConventionalCylinders,
    IN PLONGLONG DiskSize
    )

/*++

Routine Description:

    We need this routine to get the number of cylinders that the disk driver
    thinks is on the drive.  We will need this to calculate CHS values
    when we fill in the partition table entries.

Arguments:

    DeviceObject - The device object describing the entire drive.

    ConventionalCylinders - Number of cylinders on the drive.

Return Value:

    None.

--*/

{
    PIRP localIrp;
    PDISK_GEOMETRY diskGeometry;
    PIO_STATUS_BLOCK iosb;
    PKEVENT eventPtr;
    NTSTATUS status;

    *ConventionalCylinders = 0UL;
    *DiskSize = 0UL;

    diskGeometry = ExAllocatePool(
                      NonPagedPool,
                      sizeof(DISK_GEOMETRY)
                      );

    if (!diskGeometry) {

        return;

    }

    iosb = ExAllocatePool(
               NonPagedPool,
               sizeof(IO_STATUS_BLOCK)
               );

    if (!iosb) {

        ExFreePool(diskGeometry);
        return;

    }

    eventPtr = ExAllocatePool(
                   NonPagedPool,
                   sizeof(KEVENT)
                   );

    if (!eventPtr) {

        ExFreePool(iosb);
        ExFreePool(diskGeometry);
        return;

    }

    KeInitializeEvent(
        eventPtr,
        NotificationEvent,
        FALSE
        );

    localIrp = IoBuildDeviceIoControlRequest(
                   IOCTL_DISK_GET_DRIVE_GEOMETRY,
                   DeviceObject,
                   NULL,
                   0UL,
                   diskGeometry,
                   sizeof(DISK_GEOMETRY),
                   FALSE,
                   eventPtr,
                   iosb
                   );

    if (!localIrp) {

        ExFreePool(eventPtr);
        ExFreePool(iosb);
        ExFreePool(diskGeometry);
        return;

    }


    //
    // Call the lower level driver, wait for the opertion
    // to finish.
    //

    status = IoCallDriver(
                 DeviceObject,
                 localIrp
                 );

    if (status == STATUS_PENDING) {
        (VOID) KeWaitForSingleObject(
                   eventPtr,
                   Executive,
                   KernelMode,
                   FALSE,
                   (PLARGE_INTEGER) NULL
                   );
        status = iosb->Status;
    }

    if (NT_SUCCESS(status)) {

    //
    // The operation completed successfully.  Get the cylinder
    // count of the drive.
    //

        *ConventionalCylinders = diskGeometry->Cylinders.LowPart;

        //
        // If the count is less than 1024 we can pass that back.  Otherwise
        // send back the 1024
        //

        if (diskGeometry->Cylinders.QuadPart >= (LONGLONG)1024) {

            *ConventionalCylinders = 1024;

        }

        //
        // Calculate disk size from gemotry information
        //

        *DiskSize = (ULONG) diskGeometry->Cylinders.QuadPart *
                    diskGeometry->TracksPerCylinder *
                    diskGeometry->SectorsPerTrack *
                    diskGeometry->BytesPerSector;

    }

    ExFreePool(eventPtr);
    ExFreePool(iosb);
    ExFreePool(diskGeometry);
    return;

}

//
// Define macros local to this module.
//

//++
//
// VOID
// GetNextAvailableDriveLetter(
//     IN ULONG BitMap,
//     OUT PCHAR DriveLetter
//     )
//
// Routine Description:
//
//     This routine determines the next available drive letter to be used
//     based on a bitmap of the mapped drives and returns the letter.
//     NOTE:  The drive letter returned must be in UPPERCASE.
//
// Arguments:
//
//     BitMap - Specifies the bitmap of the assigned drives.
//
//     DriveLetter - Supplies a variable to receive the letter for the next
//         available drive.
//
// Return Value:
//
//     None.
//
//
//--

#define GetNextAvailableDriveLetter( BitMap, DriveLetter ) { \
    ULONG bit;                                               \
    DriveLetter = 'C';                                       \
    for (bit = 0; bit < 32; bit++) {                         \
        if ((BitMap >> bit) & 1) {                           \
            DriveLetter++;                                   \
            continue;                                        \
        } else {                                             \
            break;                                           \
        }                                                    \
    }                                                        \
}

VOID
HalpCalculateChsValues(
    IN PLARGE_INTEGER PartitionOffset,
    IN PLARGE_INTEGER PartitionLength,
    IN CCHAR ShiftCount,
    IN ULONG SectorsPerTrack,
    IN ULONG NumberOfTracks,
    IN ULONG ConventionalCylinders,
    OUT PPARTITION_DESCRIPTOR PartitionDescriptor
    )

/*++

Routine Description:

    This routine will determine the cylinder, head, and sector (CHS) values
    that should be placed in a partition table entry, given the partition's
    location on the disk and its size.  The values calculated are packed into
    int13 format -- the high two bits of the sector byte contain bits 8 and 9
    of the 10 bit cylinder value, the low 6 bits of the sector byte contain
    the 6 bit sector value;  the cylinder byte contains the low 8 bits
    of the cylinder value; and the head byte contains the 8-bit head value.
    Both the start and end CHS values are calculated.

Arguments:

    PartitionOffset - Byte offset of the partition, relative to the entire
        physical disk.

    PartitionLength - Size in bytes of the partition.

    ShiftCount - Shift count to convert from byte counts to sector counts.

    SectorsPerTrack - Number of sectors in a track on the media on which
        the partition resides.

    NumberOfTracks - Number of tracks in a cylinder on the media on which
        the partition resides.

    ConventionalCylinders - The "normalized" disk cylinders.  We will never
        set the cylinders greater than this.

    PartitionDescriptor - Structure to be filled in with the start and
        end CHS values.  Other fields in the structure are not referenced
        or modified.

Return Value:

    None.

Note:

    The Cylinder and Head values are 0-based but the Sector value is 1-based.

    If the start or end cylinder overflows 10 bits (ie, > 1023), CHS values
    will be set to all 1's.

    No checking is done on the SectorsPerTrack and NumberOfTrack values.

--*/

{
    ULONG startSector, sectorCount, endSector;
    ULONG sectorsPerCylinder;
    ULONG remainder;
    ULONG startC, startH, startS, endC, endH, endS;
    LARGE_INTEGER tempInt;

    PAGED_CODE();

    //
    // Calculate the number of sectors in a cylinder.  This is the
    // number of heads multiplied by the number of sectors per track.
    //

    sectorsPerCylinder = SectorsPerTrack * NumberOfTracks;

    //
    // Convert byte offset/count to sector offset/count.
    //

    tempInt.QuadPart = PartitionOffset->QuadPart >> ShiftCount;
    startSector = tempInt.LowPart;

    tempInt.QuadPart = PartitionLength->QuadPart >> ShiftCount;
    sectorCount = tempInt.LowPart;

    endSector = startSector + sectorCount - 1;

    startC = startSector / sectorsPerCylinder;
    endC   = endSector   / sectorsPerCylinder;

    if (!ConventionalCylinders) {

        ConventionalCylinders = 1024;

    }

    //
    // Set these values so that win95 is happy.
    //

    if (startC >= ConventionalCylinders) {

        startC = ConventionalCylinders - 1;

    }

    if (endC >= ConventionalCylinders) {

        endC = ConventionalCylinders - 1;

    }

    //
    // Calculate the starting track and sector.
    //

    remainder = startSector % sectorsPerCylinder;
    startH = remainder / SectorsPerTrack;
    startS = remainder % SectorsPerTrack;

    //
    // Calculate the ending track and sector.
    //

    remainder = endSector % sectorsPerCylinder;
    endH = remainder / SectorsPerTrack;
    endS = remainder % SectorsPerTrack;

    //
    // Pack the result into the caller's structure.
    //

    // low 8 bits of the cylinder => C value

    PartitionDescriptor->StartingCylinderMsb = (UCHAR) startC;
    PartitionDescriptor->EndingCylinderMsb   = (UCHAR) endC;

    // 8 bits of head value => H value

    PartitionDescriptor->StartingTrack = (UCHAR) startH;
    PartitionDescriptor->EndingTrack   = (UCHAR) endH;

    // bits 8-9 of cylinder and 6 bits of the sector => S value

    PartitionDescriptor->StartingCylinderLsb = (UCHAR) (((startS + 1) & 0x3f)
                                                        | ((startC >> 2) & 0xc0));

    PartitionDescriptor->EndingCylinderLsb = (UCHAR) (((endS + 1) & 0x3f)
                                                        | ((endC >> 2) & 0xc0));
}

BOOLEAN
HalpCreateDosLink(
    IN PLOADER_PARAMETER_BLOCK LoaderBlock,
    IN UCHAR DriveLetter,
    IN PUCHAR DeviceName,
    IN PSTRING BootDeviceName,
    OUT PUCHAR NtSystemPath,
    OUT PSTRING NtSystemPathString
    )

/*++

Routine Description:

    This routine links an NT device name path (\Devices ...) to
    a DOS drive letter (\DosDevices\C:, for instance). It also
    checks to see if this device name path is the same as the
    path the loader passed in to assign the system path (SystemRoot).

Arguments:

    LoaderBlock - Loader information passed in by boot loader. Contains
        boot path.

    DriveLetter - Drive letter to assign to this partition.

    DeviceName - Device name path corresponding to partition.

    BootDeviceName - NT device name path from loader.

    NtSystemPath - Set to point to the name of the path string that was
        booted from.

    NtSystemPathString - String that describes the system path.

Return Value:

    TRUE if link successful.


--*/

{
    NTSTATUS status;
    UCHAR driveName[16];
    UNICODE_STRING unicodeLinkName;
    ANSI_STRING linkName;
    STRING linkTarget;
    UNICODE_STRING unicodeLinkTarget;
    BOOLEAN DoubleSpaceBoot;

#if DBG
    UCHAR debugBuffer[256];
    STRING debugString;
    UNICODE_STRING debugMessage;
#endif

    PAGED_CODE();

    sprintf( driveName, "\\DosDevices\\%c:", DriveLetter );

    RtlInitAnsiString(&linkName, driveName);

    status = RtlAnsiStringToUnicodeString(&unicodeLinkName,
                                          &linkName,
                                          TRUE);

    if (!NT_SUCCESS(status)) {
        return FALSE;
    }

    RtlInitAnsiString(&linkTarget, DeviceName);

    //
    // Check if this should be a double space assignment
    //

    if (!RtlEqualString(
             &linkTarget,
             BootDeviceName,
             FALSE
             )) {

        status = RtlAnsiStringToUnicodeString(&unicodeLinkTarget,
                                              &linkTarget,
                                              TRUE);
        DoubleSpaceBoot = FALSE;
    } else {

        status = RtlAnsiStringToUnicodeString(&unicodeLinkTarget,
                                              BootDeviceName,
                                              TRUE);
        DoubleSpaceBoot = TRUE;
    }

    if (!NT_SUCCESS(status)) {
        RtlFreeUnicodeString(&unicodeLinkName);
        return FALSE;
    }

    status = IoCreateSymbolicLink(&unicodeLinkName,
                                  &unicodeLinkTarget);

    RtlFreeUnicodeString(&unicodeLinkName);
    RtlFreeUnicodeString(&unicodeLinkTarget);

    if (!NT_SUCCESS(status)) {
        return FALSE;
    }

#if DBG

        sprintf(debugBuffer,
                "INIT: %c: => %s\n",
                DriveLetter,
                DeviceName);

        RtlInitAnsiString(&debugString, debugBuffer);

        if (NT_SUCCESS(RtlAnsiStringToUnicodeString(&debugMessage,
                                                    &debugString,
                                                    TRUE))) {

            //
            // Print message to console.
            //

            if (ZwDisplayString(&debugMessage)) {

                DbgPrint("HalpCreateDosLink: ZwDisplayString failed\n");
            }
            RtlFreeUnicodeString(&debugMessage);
        }
#endif

    //
    // Check if this partition is the one that holds the NT tree.
    //

    if (RtlEqualString(BootDeviceName, &linkTarget, TRUE) || DoubleSpaceBoot) {

        NtSystemPath[0] = DriveLetter;
        NtSystemPath[1] = ':';

        strcpy(&NtSystemPath[2],
               LoaderBlock->NtBootPathName);

        NtSystemPath[strlen(NtSystemPath)-1] = '\0';

        RtlInitString(NtSystemPathString, NtSystemPath);

#if DBG

        sprintf(debugBuffer,
                "INIT: NtSystemPath == %s\n",
                NtSystemPath);

        RtlInitAnsiString(&debugString, debugBuffer);

        if (NT_SUCCESS(RtlAnsiStringToUnicodeString(&debugMessage,
                                                    &debugString,
                                                    TRUE))) {

            //
            // Print message to console.
            //

            if (ZwDisplayString(&debugMessage)) {

                DbgPrint("HalpCreateDosLink: ZwDisplayString failed\n");
            }
            RtlFreeUnicodeString(&debugMessage);
        }
#endif

    }

    return TRUE;

}

NTSTATUS
HalpGetRegistryPartitionInformation(
    IN ULONG DiskSignature,
    IN LARGE_INTEGER PartitionOffset,
    IN LARGE_INTEGER PartitionLength,
    IN OUT DISK_PARTITION *PartitionConfiguration
    )

/*++

Routine Description:

    This routine attempts to open the configuration registry key for the
    disk  signature passed in. If successful, it uses the partition offset
    and length to find the partition and returns the information in the
    specified buffer.

Arguments:

    DiskSignature - 32-bit timestamp uniquely identifying a disk.

    PartitionOffset - byte offset from beginning of disk of start
        of this partition.

    PartitionLength - length of partition in bytes.

    PartitionInformation - Pointer to buffer in which to return registry
        information.

Return Value:

    The function value is the final status of the lookup and search operation.

--*/

{
    NTSTATUS status;
    HANDLE handle;
    STRING keyString;
    OBJECT_ATTRIBUTES objectAttributes;
    UNICODE_STRING unicodeKeyName;
    ULONG resultLength;
    ULONG numberDisks;
    ULONG i;
    ULONG j;
    STRING valueString;
    UNICODE_STRING unicodeValueName;
    PDISK_REGISTRY diskRegistry;
    PDISK_DESCRIPTION disk;
    PDISK_PARTITION partition;
    PDISK_CONFIG_HEADER regHeader;
    PKEY_VALUE_FULL_INFORMATION keyValueInformation;
    ULONG requestedSize;

    PAGED_CODE();

    //
    // Open the registry key for the disk information.
    //

    RtlInitString( &keyString, RegistryKeyName );

    RtlAnsiStringToUnicodeString( &unicodeKeyName, &keyString, TRUE );

    InitializeObjectAttributes( &objectAttributes,
                                &unicodeKeyName,
                                OBJ_CASE_INSENSITIVE,
                                (HANDLE) NULL,
                                (PSECURITY_DESCRIPTOR) NULL );

    status = ZwOpenKey( &handle, KEY_READ, &objectAttributes );

    RtlFreeUnicodeString( &unicodeKeyName );

    if (!NT_SUCCESS( status )) {

        //
        // There is no registry key for disk information.  Return the
        // failure from the configuration registry.
        //

        return status;
    }

    //
    // Get the disk registry value.
    //

    RtlInitString( &valueString, DISK_REGISTRY_VALUE );

    RtlAnsiStringToUnicodeString( &unicodeValueName, &valueString, TRUE );

    requestedSize = PAGE_SIZE;

    while (1) {

        keyValueInformation =
            (PKEY_VALUE_FULL_INFORMATION) ExAllocatePool( NonPagedPool,
                                                          requestedSize );

        status = ZwQueryValueKey( handle,
                                  &unicodeValueName,
                                  KeyValueFullInformation,
                                  keyValueInformation,
                                  requestedSize,
                                  &resultLength );

        if (status == STATUS_BUFFER_OVERFLOW) {

            //
            // Get bigger buffer.
            //

            requestedSize += 256;
            ExFreePool( keyValueInformation );

        } else {
            break;
        }
    }

    RtlFreeUnicodeString( &unicodeValueName );
    ZwClose( handle );

    if (NT_SUCCESS( status )) {

        //
        // The disk registry information is constructed in the following
        // manner:
        //
        //  RegistryHeader
        //   DiskHeader
        //    DiskInformation
        //     PartitionInformation
        //   FtHeader
        //    FtComponentInformation
        //     FtMemberInformation
        //
        // There is one RegistryHeader, one DiskHeader, and one FtHeader.
        // Inside the DiskHeader area there are as many DiskInformation
        // sections as there are disks in the registry.  Inside the
        // DiskInformation there are as many PartitionInformation sections
        // as paritition on the disk.
        //
        // The algorithm used is to search DiskInformation sections for
        // a match on the Signature desired then search the PartitionInformation
        // within the located disk for a match on starting offset and length.
        // Since the DiskInformation sections are packed together, if the
        // current DiskInformation is not the desired section, the next
        // DiskInformation section can be located by taking the address of
        // the current DiskInformation after the last PartitionInformation
        // section it contains.
        //

        if (keyValueInformation->DataLength) {
            regHeader = (PDISK_CONFIG_HEADER) ((PUCHAR)keyValueInformation + keyValueInformation->DataOffset);
        } else {
            return STATUS_RESOURCE_DATA_NOT_FOUND;
        }

        diskRegistry = (PDISK_REGISTRY) ((PUCHAR)regHeader + regHeader->DiskInformationOffset);

        numberDisks = diskRegistry->NumberOfDisks;

        disk = &diskRegistry->Disks[0];

        //
        // Search the disk descriptions for a signature that matches the
        // one requested.
        //

        for (i = 0; i < numberDisks; i++) {

            if (disk->Signature == DiskSignature) {

                //
                // Having found a matching disk description, search the
                // partition descriptions for a match on starting offset
                // and length.
                //

                for (j = 0; j < (ULONG)disk->NumberOfPartitions; j++) {

                    partition = &disk->Partitions[j];

                    if (partition->StartingOffset.QuadPart == PartitionOffset.QuadPart &&
                        partition->Length.QuadPart == PartitionLength.QuadPart ) {

                        //
                        // Copy to output buffer.
                        //

                        *PartitionConfiguration = *partition;

                        ExFreePool( keyValueInformation );
                        return STATUS_SUCCESS;
                    }
                }
            }

            //
            // The next disk description is after that last partition
            // description.
            //

            disk = (PDISK_DESCRIPTION) &disk->Partitions[disk->NumberOfPartitions];
        }

        status = STATUS_RESOURCE_DATA_NOT_FOUND;
    }

    ExFreePool( keyValueInformation );
    return status;
}

UCHAR
HalpGetRegistryCdromInformation(
    IN PUCHAR CdromName
    )

/*++

Routine Description:

    This routine attempts to open the configuration registry key containing
    stick cdrom letter information and returns this information if present.

Arguments:

    CdromName - The ASCII string for the device in question.

Return Value:

    Zero if there is a problem or there is no stick letter assignment.
    The drive letter if there is an assignment.

--*/

{
    NTSTATUS status;
    HANDLE handle;
    STRING keyString;
    OBJECT_ATTRIBUTES objectAttributes;
    UNICODE_STRING unicodeKeyName;
    ULONG resultLength;
    ULONG numberDisks;
    ULONG i;
    ULONG j;
    STRING valueString;
    UNICODE_STRING unicodeValueName;
    PKEY_VALUE_FULL_INFORMATION keyValueInformation;
    ULONG requestedSize;
    UCHAR returnValue;

    PAGED_CODE();

    //
    // Initialize the return value to zero for all error conditions.
    //

    returnValue = 0;

    //
    // Open the registry key for the cdrom information.
    //

    RtlInitString( &keyString, RegistryKeyName );

    RtlAnsiStringToUnicodeString( &unicodeKeyName, &keyString, TRUE );

    InitializeObjectAttributes( &objectAttributes,
                                &unicodeKeyName,
                                OBJ_CASE_INSENSITIVE,
                                (HANDLE) NULL,
                                (PSECURITY_DESCRIPTOR) NULL );

    status = ZwOpenKey( &handle, KEY_READ, &objectAttributes );

    RtlFreeUnicodeString( &unicodeKeyName );

    if (!NT_SUCCESS( status )) {

        //
        // There is no registry key for disk information.  Return the
        // failure from the configuration registry.
        //

        return returnValue;
    }

    //
    // Get the cdrom information
    //

    RtlInitString( &valueString, CdromName );

    RtlAnsiStringToUnicodeString( &unicodeValueName, &valueString, TRUE );

    requestedSize = PAGE_SIZE;

    while (1) {

        keyValueInformation =
            (PKEY_VALUE_FULL_INFORMATION) ExAllocatePool( NonPagedPool,
                                                          requestedSize );

        status = ZwQueryValueKey( handle,
                                  &unicodeValueName,
                                  KeyValueFullInformation,
                                  keyValueInformation,
                                  requestedSize,
                                  &resultLength );

        if (status == STATUS_BUFFER_OVERFLOW) {

            //
            // Get bigger buffer.
            //

            requestedSize += 256;
            ExFreePool( keyValueInformation );

        } else {
            break;
        }
    }

    RtlFreeUnicodeString( &unicodeValueName );
    ZwClose( handle );

    if (NT_SUCCESS(status)) {

        //
        // Check for an entry without any information.

        if (keyValueInformation->DataLength) {

            //
            // There is a drive letter present.  Pick it up to be returned.
            //

            returnValue = (UCHAR) (*(PUCHAR)((PUCHAR)keyValueInformation + keyValueInformation->DataOffset));
        }

    }

    ExFreePool( keyValueInformation );
    return returnValue;
}

VOID
FASTCALL
xHalIoAssignDriveLetters(
    IN struct _LOADER_PARAMETER_BLOCK *LoaderBlock,
    IN PSTRING NtDeviceName,
    OUT PUCHAR NtSystemPath,
    OUT PSTRING NtSystemPathString
    )

/*++

Routine Description:

    This routine assigns DOS drive letters to eligible disk partitions
    and CDROM drives. It also maps the partition containing the NT
    boot path to \SystemRoot. In NT, objects are built for all partition
    types except 0 (unused) and 5 (extended). But drive letters are assigned
    only to recognized partition types (1, 4, 6, 7, e).

    Drive letter assignment is done in several stages:

        1) For each CdRom:
            Determine if sticky letters are assigned and reserve the letter.

        2) For each disk:
            Determine how many primary partitions and which is bootable.
            Determine which partitions already have 'sticky letters'
                and create their symbolic links.
            Create a bit map for each disk that idicates which partitions
                require default drive letter assignments.

        3) For each disk:
            Assign default drive letters for the bootable
                primary partition or the first nonbootable primary partition.

        4) For each disk:
            Assign default drive letters for the partitions in
                extended volumes.

        5) For each disk:
            Assign default drive letters for the remaining (ENHANCED)
                primary partitions.

        6) Assign A: and B: to the first two floppies in the system if they
            exist. Then assign remaining floppies next available drive letters.

        7) Assign drive letters to CdRoms (either sticky or default).

Arguments:

    LoaderBlock - pointer to a loader parameter block.

    NtDeviceName - pointer to the boot device name string used
            to resolve NtSystemPath.

Return Value:

    None.

--*/

{
    typedef struct _IO_DRIVE_LAYOUT {
        UCHAR PartitionCount;
        UCHAR PrimaryPartitions;
        ULONG NeedsDriveLetter;
        UCHAR BootablePrimary;
    } IO_DRIVE_LAYOUT, *PIO_DRIVE_LAYOUT;

    PUCHAR ntName;
    STRING ansiString;
    UNICODE_STRING unicodeString;
    PUCHAR ntPhysicalName;
    STRING ansiPhysicalString;
    UNICODE_STRING unicodePhysicalString;
    PVOID buffer;
    ULONG bufferSize;
    NTSTATUS status;
    OBJECT_ATTRIBUTES objectAttributes;
    PCONFIGURATION_INFORMATION configurationInformation;
    ULONG diskCount;
    ULONG floppyCount;
    ULONG cdromCount;
    HANDLE deviceHandle;
    IO_STATUS_BLOCK ioStatusBlock;
    PDRIVE_LAYOUT_INFORMATION partitionInformation;
    PPARTITION_INFORMATION partitionEntry;
    ULONG partitionNumber;
    PIO_DRIVE_LAYOUT driveLayout = NULL;
    UCHAR nextDriveLetter = 'C';
    UCHAR stickyDriveLetter;
    ULONG driveLetterMap;
    ULONG diskNumber;
    ULONG floppyNumber;
    ULONG cdromNumber;

    PAGED_CODE();

    //
    // Get the count of devices from the registry.
    //

    configurationInformation = IoGetConfigurationInformation();

    diskCount = configurationInformation->DiskCount;
    cdromCount = configurationInformation->CdRomCount;
    floppyCount = configurationInformation->FloppyCount;

    //
    // Allocate drive layout buffer if there are fixed disks in the system.
    //

    if (diskCount) {

        driveLayout =
            ExAllocatePool( NonPagedPool, sizeof(IO_DRIVE_LAYOUT) * diskCount);

        if (driveLayout == NULL) {

            KeBugCheck( ASSIGN_DRIVE_LETTERS_FAILED );
        }
        //
        // Initialize drive layout structure.
        //

        RtlZeroMemory( driveLayout, sizeof(IO_DRIVE_LAYOUT) * diskCount);
    }

    //
    // Allocate general NT name buffer.
    //

    ntName = ExAllocatePool( NonPagedPool, 64 );

    ntPhysicalName = ExAllocatePool( NonPagedPool, 64 );

    if (ntName == NULL || ntPhysicalName == NULL) {

        KeBugCheck( ASSIGN_DRIVE_LETTERS_FAILED );

    }


    //
    // Initialize the drive letter map so all drive letters are available
    //

    driveLetterMap = 0;

    //
    // Reserve the drive letters for "sticky" CdRom drives.
    //

    for (cdromNumber = 0; cdromNumber < cdromCount; cdromNumber++) {

        //
        // Construct the Registry path to look for CdRom drive letter
        // assignments.
        //

        sprintf( ntName, CdRomDeviceName, cdromNumber );

        //
        // Determine if there is an assigned device letter for this Cdrom.
        //

        stickyDriveLetter = HalpGetRegistryCdromInformation( ntName );

        if (stickyDriveLetter) {


            //
            // Mark the drive letter in use in the letter map.  This will
            // avoid the problem of somebody adding a new disk to the system
            // and the new disk partitions would default to the sticky letter
            // for the Cdrom.  It does not fix the problem where there is
            // disk information for the new disk and that information also
            // allocates the same sticky drive letter.  Note, if no letter,
            // don't try to put in the map.
            //

            if (stickyDriveLetter != '%') {

                driveLetterMap |= 1 << (stickyDriveLetter - 'C');

            }
        }
    }

    //
    // For each disk ...
    //

    for (diskNumber = 0; diskNumber < diskCount; diskNumber++) {

        //
        // This var is used to count the number of times we've tried
        // to read the partition information for a particular disk.  We
        // will retry X times on a device not ready.
        //
        ULONG retryTimes = 0;

        //
        // Create ANSI name string for physical disk.
        //

        sprintf( ntName, DiskPartitionName, diskNumber, 0 );

        //
        // Convert to unicode string.
        //

        RtlInitAnsiString( &ansiString, ntName );

        RtlAnsiStringToUnicodeString( &unicodeString, &ansiString, TRUE );

        InitializeObjectAttributes( &objectAttributes,
                                    &unicodeString,
                                    OBJ_CASE_INSENSITIVE,
                                    NULL,
                                    NULL );

        //
        // Open device by name.
        //

        status = ZwOpenFile( &deviceHandle,
                             FILE_READ_DATA | SYNCHRONIZE,
                             &objectAttributes,
                             &ioStatusBlock,
                             FILE_SHARE_READ,
                             FILE_SYNCHRONOUS_IO_NONALERT );

        if (NT_SUCCESS( status )) {

            //
            // The device was successfully opened.  Generate a DOS device name
            // for the drive itself.
            //

            sprintf( ntPhysicalName, "\\DosDevices\\PhysicalDrive%d", diskNumber );

            RtlInitAnsiString( &ansiPhysicalString, ntPhysicalName );

            RtlAnsiStringToUnicodeString( &unicodePhysicalString, &ansiPhysicalString, TRUE );

            IoCreateSymbolicLink( &unicodePhysicalString, &unicodeString );

            RtlFreeUnicodeString( &unicodePhysicalString );
        }

        RtlFreeUnicodeString( &unicodeString );

        if (!NT_SUCCESS( status )) {

#if DBG
            DbgPrint( "IoAssignDriveLetters: Failed to open %s\n", ntName );
#endif // DBG

            //
            // Assume no more disks.
            //

            break;
        }

        //
        // Allocate 1k buffer to read partition information.
        //

        bufferSize = 1024;

retry:

        buffer = ExAllocatePool( NonPagedPool, bufferSize );

        if (!buffer) {

            //
            // Skip this disk.
            //

            ZwClose( deviceHandle );
            continue;
        }

        //
        // Determine if this is a removable disk by issuing a
        // query volume information file call.
        //

        status = ZwQueryVolumeInformationFile( deviceHandle,
                                               &ioStatusBlock,
                                               buffer,
                                               sizeof(FILE_FS_DEVICE_INFORMATION),
                                               FileFsDeviceInformation );

        //
        // If this call fails, then skip the device.
        //

        if (!NT_SUCCESS(status)) {

                //
                // Skip this disk.
                //

                ZwClose( deviceHandle );
                continue;
        }

        //
        // Determine if this is a removable partition.
        //

        if (((PFILE_FS_DEVICE_INFORMATION) buffer)->Characteristics &
            FILE_REMOVABLE_MEDIA) {

            //
            // Indicate there is one partition and it needs a
            // drive letter.
            //

            driveLayout[diskNumber].PartitionCount++;
            driveLayout[diskNumber].NeedsDriveLetter = 1;

            //
            // Continue on to the next disk.
            //

            ZwClose( deviceHandle );
            continue;
        }

        //
        // Issue device control to get partition information.
        //

        status = ZwDeviceIoControlFile( deviceHandle,
                                        NULL,
                                        NULL,
                                        NULL,
                                        &ioStatusBlock,
                                        IOCTL_DISK_GET_DRIVE_LAYOUT,
                                        NULL,
                                        0,
                                        buffer,
                                        bufferSize );

        if (!NT_SUCCESS( status )) {

            ExFreePool( buffer );

            //
            // Check if buffer too small.
            //

            if (status == STATUS_BUFFER_TOO_SMALL) {

                //
                // Double buffer size.
                //

                bufferSize = bufferSize << 1;

                //
                // Try again with larger buffer.
                //

                goto retry;

            } else if (status == STATUS_DEVICE_NOT_READY) {

                LARGE_INTEGER delayTime;

                if (retryTimes < 4) {

                    delayTime.QuadPart = (LONGLONG)-1 * 500 * 1000 * 10;
                    KeDelayExecutionThread(
                        KernelMode,
                        FALSE,
                        &delayTime
                        );

                    retryTimes++;
                    goto retry;

                } else {

                    ZwClose( deviceHandle );
                    continue;

                }

            } else {

                //
                // Skip this disk.
                //

                ZwClose( deviceHandle );
                continue;
            }

        } else {

            ZwClose( deviceHandle );
        }

        //
        // Get pointer to partition information.
        //

        partitionInformation = (PDRIVE_LAYOUT_INFORMATION) buffer;

        //
        // For each partition on this disk ...
        //

        for (partitionNumber = 0;
             partitionNumber < partitionInformation->PartitionCount;
             partitionNumber++) {

            //
            // Get pointer to partition entry.
            //

            partitionEntry =
                &partitionInformation->PartitionEntry[partitionNumber];

            //
            // Check if partition entry describes a partition that
            // requires a drive letter assignment.
            //

            if (IsRecognizedPartition( partitionEntry->PartitionType )) {

                //
                // Check for NTFT disk signature.
                //

                if (partitionInformation->Signature) {

                    DISK_PARTITION partitionConfiguration;

                    //
                    // Check if partition has a 'sticky' drive assignment.
                    //

                    status = HalpGetRegistryPartitionInformation(
                                 partitionInformation->Signature,
                                 partitionEntry->StartingOffset,
                                 partitionEntry->PartitionLength,
                                 &partitionConfiguration );

                    if (NT_SUCCESS( status )) {

                        //
                        // Check if this is the NTFT member that should
                        // receive the drive letter assignment.
                        //

                        if (partitionConfiguration.AssignDriveLetter) {

                            //
                            // Assign drive letter from registry.
                            //

                            stickyDriveLetter =
                                partitionConfiguration.DriveLetter;

                        } else {

                            stickyDriveLetter = 0xff;
                        }

                    } else {
                        stickyDriveLetter = 0;
                    }

                } else {

                    //
                    // No signature - no configuration registry information.
                    //

                    stickyDriveLetter = 0;
                }

                if (stickyDriveLetter) {

                    UCHAR deviceNameBuffer[64];

                    if (stickyDriveLetter != 0xff) {

                        //
                        // Create symbolic link to drive letter.
                        //

                        sprintf( deviceNameBuffer,
                                 DiskPartitionName,
                                 diskNumber,
                                 driveLayout[diskNumber].PartitionCount + 1 );

                        if (!HalpCreateDosLink( LoaderBlock,
                                                stickyDriveLetter,
                                                deviceNameBuffer,
                                                NtDeviceName,
                                                NtSystemPath,
                                                NtSystemPathString )) {

                            //
                            // Check if this drive letter already taken.
                            //

                            if (driveLetterMap & (1 << (stickyDriveLetter - 'C'))) {

                                //
                                // *TMP* - Somehow indicate this configuration
                                //         conflict to the user.
                                //
#if DBG
                                DbgPrint("IoAssignDriveLetter: Drive letter assignment conflict in registry\n");
#endif // DBG
                            }

                        } else {

                            //
                            // Set corresponding bit in drive letter map to
                            // indicate this letter is taken.
                            //

                            driveLetterMap |= 1 << (stickyDriveLetter - 'C');
                        }
                    }

                } else {

                    //
                    // Check if this partition is part of an NTFT volume.
                    //

                    if (partitionEntry->PartitionType & PARTITION_NTFT) {

                        //
                        // Increment count of partitions.
                        //

                        driveLayout[diskNumber].PartitionCount++;

                        //
                        // These partitions do not require drive letter
                        // assignments.
                        //

                        continue;
                    }

                    //
                    // Set corresponding bit in drive layout structure to
                    // identify a partition that needs a drive letter
                    // assignment.

                    driveLayout[diskNumber].NeedsDriveLetter |=
                        (1 << (driveLayout[diskNumber].PartitionCount));

                } // end if (stickyDriveLetter ...)

                //
                // Check if partition is primary.
                //

                if (partitionNumber < 4) {

                    //
                    // Determine if this primary partition is bootable
                    // or if this is the first recognized primary.
                    //

                    if (partitionEntry->BootIndicator) {

                        driveLayout[diskNumber].BootablePrimary =
                            (UCHAR) (driveLayout[diskNumber].PartitionCount);
                    }
                }

            } // end if (IsRecognizedPartition ...

            //
            // Check if partition type is extended or unused.
            //

            if ((partitionEntry->PartitionType != PARTITION_ENTRY_UNUSED) &&
                !IsContainerPartition(partitionEntry->PartitionType)) {

                //
                // Increment count of partitions.
                //

                driveLayout[diskNumber].PartitionCount++;

                if (partitionNumber < 4) {

                    //
                    // Increment count of primary partitions.
                    //

                    driveLayout[diskNumber].PrimaryPartitions++;
                }
            }

        } // end for partitionNumber = ...

        //
        // Free partition information buffer.
        //

        ExFreePool( buffer );

    } // end for diskNumber ...

    //
    // For each disk ...
    //

    for (diskNumber=0; diskNumber<diskCount; diskNumber++) {

        //
        // If there are primary partitions then assign the next
        // available drive letter to the one with the boot indicator
        // set. If none of the primaries are bootable then assign
        // the drive letter to the first primary.
        //

        if (driveLayout[diskNumber].PrimaryPartitions) {

            //
            // Check if the primary partition marked bootable
            // needs a drive letter.
            //

            if ((driveLayout[diskNumber].NeedsDriveLetter &
                (1 << driveLayout[diskNumber].BootablePrimary))) {

                //
                // Create symbolic link to drive letter.
                //

                sprintf( ntName,
                         DiskPartitionName,
                         diskNumber,
                         driveLayout[diskNumber].BootablePrimary + 1);

                GetNextAvailableDriveLetter(driveLetterMap, nextDriveLetter);

                if (nextDriveLetter > 'Z') {

                    continue;

                }
                if (!HalpCreateDosLink( LoaderBlock,
                                        nextDriveLetter,
                                        ntName,
                                        NtDeviceName,
                                        NtSystemPath,
                                        NtSystemPathString )) {

                    //
                    // Check if this drive letter already taken.
                    //

                    if (driveLetterMap & (1 << (nextDriveLetter - 'C'))) {

                        //
                        // *TMP* - Somehow indicate this configuration conflict
                        //         to the user.
                        //
#if DBG
                        DbgPrint("IoAssignDriveLetter: Drive letter assignment conflict in registry\n");
#endif // DBG
                    }

                } else {

                    //
                    // Clear bit indicating this partition needs driver letter.
                    //

                    driveLayout[diskNumber].NeedsDriveLetter &=
                        ~(1 << driveLayout[diskNumber].BootablePrimary);

                    //
                    // Set corresponding bit in drive letter map to
                    // indicate this letter is taken.
                    //

                    driveLetterMap |= 1 << (nextDriveLetter - 'C');
                }
            }

        } // end if ((driveLayout[diskNumber].PrimaryPartitions)

    } // end for diskNumber ...

    //
    // For each disk ...
    //

    for (diskNumber = 0; diskNumber < diskCount; diskNumber++) {

        //
        // Assign drive letters to partitions in extended
        // volumes that don't already have them.
        //

        for (partitionNumber = driveLayout[diskNumber].PrimaryPartitions;
             partitionNumber < (ULONG)driveLayout[diskNumber].PartitionCount;
             partitionNumber++) {

            //
            // Check if this partition requires a drive letter assignment.
            //

            if (driveLayout[diskNumber].NeedsDriveLetter &
                (1 << partitionNumber)) {

                //
                // Create symbolic link to drive letter.
                //

                sprintf( ntName,
                         DiskPartitionName,
                         diskNumber,
                         partitionNumber + 1);

                GetNextAvailableDriveLetter( driveLetterMap, nextDriveLetter );

                if (nextDriveLetter > 'Z') {

                    continue;

                }
                if (!HalpCreateDosLink( LoaderBlock,
                                        nextDriveLetter,
                                        ntName,
                                        NtDeviceName,
                                        NtSystemPath,
                                        NtSystemPathString )) {

                    //
                    // Check if this drive letter already taken.
                    //

                    if (driveLetterMap & (1 << (nextDriveLetter - 'C'))) {

                        //
                        // *TMP* - Somehow indicate this configuration conflict
                        //         to the user.
                        //

#if DBG
                        DbgPrint( "IoAssignDriveLetters: %c: already taken\n",
                                  nextDriveLetter );
#endif // DBG

                    }

                } else {

                    //
                    // Set corresponding bit in drive letter map to
                    // indicate this letter is taken.
                    //

                    driveLetterMap |= 1 << (nextDriveLetter - 'C');
                }
            }

        } // end for partitionNumber ...

    } // end for diskNumber ...

    //
    // For each disk ...
    //

    for (diskNumber=0; diskNumber<diskCount; diskNumber++) {

        //
        // Assign drive letters to remaining partitions.  These are nonbootable
        // primaries (ENHANCED).
        //

        for (partitionNumber = 0;
             partitionNumber < (ULONG)driveLayout[diskNumber].PrimaryPartitions;
             partitionNumber++) {

            //
            // Check if this partition requires a drive letter assignment.
            //

            if (driveLayout[diskNumber].NeedsDriveLetter &
                (1 << partitionNumber)) {

                //
                // Create symbolic link to drive letter.
                //

                sprintf( ntName,
                         DiskPartitionName,
                         diskNumber,
                         partitionNumber + 1 );

                GetNextAvailableDriveLetter( driveLetterMap, nextDriveLetter );

                if (nextDriveLetter > 'Z') {

                    continue;

                }

                if (!HalpCreateDosLink( LoaderBlock,
                                        nextDriveLetter,
                                        ntName,
                                        NtDeviceName,
                                        NtSystemPath,
                                        NtSystemPathString )) {

                    //
                    // Check if this drive letter already taken.
                    //

                    if (driveLetterMap & (1 << (nextDriveLetter - 'C'))) {

                        //
                        // *TMP* - Somehow indicate this configuration conflict
                        //         to the user.
                        //
#if DBG
                        DbgPrint( "IoAssignDriveLetters: %c: already taken\n",
                                  nextDriveLetter );
#endif // DBG
                    }
                } else {

                    //
                    // Set corresponding bit in drive letter map to
                    // indicate this letter is taken.
                    //

                    driveLetterMap |= 1 << (nextDriveLetter - 'C');
                }
            }

        } // end for partitionNumber ...

    } // end for diskNumber ...

    //
    // For each floppy ...
    //

    for (floppyNumber = 0; floppyNumber < floppyCount; floppyNumber++) {

        //
        // Create ANSI device name string.
        //

        sprintf( ntName,
                 "\\Device\\Floppy%d",
                 floppyNumber );

        //
        // Check if this is one of the first two floppies in the system.
        //

        if (floppyNumber == 0) {

            //
            // The first floppy in the system is assigned drive letter A:.
            //

            if (!HalpCreateDosLink( LoaderBlock,
                                    'A',
                                    ntName,
                                    NtDeviceName,
                                    NtSystemPath,
                                    NtSystemPathString )) {

#if DBG
                    DbgPrint( "IoAssignDriveLetters: Drive letter 'A' already taken\n",
                              nextDriveLetter );
#endif // DBG

            }

        } else if (floppyNumber == 1) {

            //
            // The secod floppy in the system is assigned drive letter B:.
            //

            if (!HalpCreateDosLink( LoaderBlock,
                                    'B',
                                    ntName,
                                    NtDeviceName,
                                    NtSystemPath,
                                    NtSystemPathString )) {

#if DBG
                    DbgPrint( "IoAssignDriveLetters: Drive letter 'B' already taken\n",
                              nextDriveLetter );
#endif // DBG

            }

        } else {

            GetNextAvailableDriveLetter( driveLetterMap, nextDriveLetter );

            if (nextDriveLetter > 'Z') {

                continue;

            }
            //
            // Create symbolic link to drive letter.
            //

            if (!HalpCreateDosLink( LoaderBlock,
                                    nextDriveLetter,
                                    ntName,
                                    NtDeviceName,
                                    NtSystemPath,
                                    NtSystemPathString )) {

                //
                // Check if this drive letter already taken.
                //

                if (driveLetterMap & (1 << (nextDriveLetter - 'C:'))) {

                    //
                    // Somehow indicate this configuration conflict
                    // to the user.
                    //
#if DBG
                    DbgPrint( "IoAssignDriveLetters: %c: already taken\n",
                              nextDriveLetter );
#endif // DBG

                }

            } else {

                //
                // Set corresponding bit in drive letter map to
                // indicate this letter is taken.
                //

                driveLetterMap |= 1 << (nextDriveLetter - 'C');
            }
        }

    } // end for floppyNumber ...

    //
    // For each cdrom ...  Count was obtained before looking for disks.
    //

    for (cdromNumber = 0; cdromNumber < cdromCount; cdromNumber++) {

        //
        // Create ANSI device name string.
        //

        sprintf( ntName, CdRomDeviceName, cdromNumber );

        //
        // Determine if there is an assigned device letter for this Cdrom.
        //

        nextDriveLetter = HalpGetRegistryCdromInformation( ntName );

        if (!nextDriveLetter) {

            //
            // There is no sticky drive letter for the drive.  Allocate
            // the next one available.
            //

            GetNextAvailableDriveLetter( driveLetterMap, nextDriveLetter );
        }

        //
        // If there is NOT supposed to be a drive letter assigned, simply go
        // on to the next device.
        //

        if (nextDriveLetter == '%') {

            continue;

        }

        if (nextDriveLetter > 'Z') {

            continue;

        }

        //
        // Create symbolic link to drive letter.
        //

        while (!HalpCreateDosLink( LoaderBlock,
                                   nextDriveLetter,
                                   ntName,
                                   NtDeviceName,
                                   NtSystemPath,
                                   NtSystemPathString )) {

            //
            // Somehow this letter is already taken.  Try the next
            // available letter based on the letter map.
            //

            if (driveLetterMap & (1 << (nextDriveLetter - 'C:'))) {

                //
                // Somehow indicate this configuration conflict
                // to the user.
                //
#if DBG
                DbgPrint( "IoAssignDriveLetters: %c: already taken\n",
                          nextDriveLetter );
#endif // DBG

            }

            //
            // Insure that it is marked in use by the map before getting
            // a new letter.
            //

            driveLetterMap |= 1 << (nextDriveLetter - 'C');
            GetNextAvailableDriveLetter( driveLetterMap, nextDriveLetter );
            if (nextDriveLetter > 'Z') {

                //
                // No more letters just get out of here.
                //

                break;
            }

        }

    } // end for cdromNumber ...

    //
    // Free drive layout buffer and NT name buffer.
    //

    if (diskCount) {
        ExFreePool( driveLayout );
    }
    ExFreePool( ntName );
    ExFreePool( ntPhysicalName );

} // end IoAssignDriveLetters()

NTSTATUS
FASTCALL
xHalIoReadPartitionTable(
    IN PDEVICE_OBJECT DeviceObject,
    IN ULONG SectorSize,
    IN BOOLEAN ReturnRecognizedPartitions,
    OUT struct _DRIVE_LAYOUT_INFORMATION **PartitionBuffer
    )

/*++

Routine Description:

    This routine walks the disk reading the partition tables and creates
    an entry in the partition list buffer for each partition.

    The algorithm used by this routine is two-fold:

        1)  Read each partition table and for each valid, recognized
            partition found, to build a descriptor in a partition list.
            Extended partitions are located in order to find other
            partition tables, but no descriptors are built for these.
            The partition list is built in nonpaged pool that is allocated
            by this routine.  It is the caller's responsibility to free
            this pool after it has gathered the appropriate information
            from the list.

        2)  Read each partition table and for each and every entry, build
            a descriptor in the partition list.  Extended partitions are
            located to find each partition table on the disk, and entries
            are built for these as well.  The partition list is build in
            nonpaged pool that is allocated by this routine.  It is the
            caller's responsibility to free this pool after it has copied
            the information back to its caller.

    The first algorithm is used when the ReturnRecognizedPartitions flag
    is set.  This is used to determine how many partition device objects
    the device driver is to create, and where each lives on the drive.

    The second algorithm is used when the ReturnRecognizedPartitions flag
    is clear.  This is used to find all of the partition tables and their
    entries for a utility such as fdisk, that would like to revamp where
    the partitions live.

Arguments:

    DeviceObject - Pointer to device object for this disk.

    SectorSize - Sector size on the device.

    ReturnRecognizedPartitions - A flag indicated whether only recognized
        partition descriptors are to be returned, or whether all partition
        entries are to be returned.

    PartitionBuffer - Pointer to the pointer of the buffer in which the list
        of partition will be stored.

Return Value:

    The functional value is STATUS_SUCCESS if at least one sector table was
    read.

Notes:

    It is the responsibility of the caller to deallocate the partition list
    buffer allocated by this routine.

--*/

{

//
// We need this structure in case we encounter a disk with a BPB instead of
// an MBR. In that case we will still return a valid partition table entry
// effectively simulating a partition, using the data from the BPB.
//
typedef struct _BOOT_SECTOR_INFO {
    UCHAR   JumpByte[3];
    UCHAR   OemData[8];
    UCHAR   BytesPerSector[2];
    UCHAR   SectorsPerCluster[1];
    UCHAR   NumberOfReservedSectors[2];
    UCHAR   NumberOfFatTables[1];
    UCHAR   NumberOfDirectoryEntries[2];
    UCHAR   SmallNumberOfSectors[2];
    UCHAR   MediaByte[1];
    UCHAR   NumberOfFatSectors[2];
    UCHAR   SectorsPerTrack[2];
    UCHAR   NumberOfHeads[2];
    UCHAR   NumberOfHiddenSectors[2];
    UCHAR   Ignore4[2];
    UCHAR   LargeNumberOfSectors[3];
   } BOOT_SECTOR_INFO, *PBOOT_SECTOR_INFO;



#define GET_STARTING_SECTOR( p ) (                  \
        (ULONG) (p->StartingSectorLsb0) +           \
        (ULONG) (p->StartingSectorLsb1 << 8) +      \
        (ULONG) (p->StartingSectorMsb0 << 16) +     \
        (ULONG) (p->StartingSectorMsb1 << 24) )

#define GET_PARTITION_LENGTH( p ) (                 \
        (ULONG) (p->PartitionLengthLsb0) +          \
        (ULONG) (p->PartitionLengthLsb1 << 8) +     \
        (ULONG) (p->PartitionLengthMsb0 << 16) +    \
        (ULONG) (p->PartitionLengthMsb1 << 24) )

    ULONG partitionBufferSize = PARTITION_BUFFER_SIZE;
    PDRIVE_LAYOUT_INFORMATION newPartitionBuffer = NULL;

    //
    // Super floppy detection variables
    //
    UCHAR partitionTableCounter = 0;
    LONGLONG partitionLength = 0;
    LONGLONG partitionStartingOffset = 0;
    PBOOT_SECTOR_INFO bootSector;
    UCHAR bpbJumpByte;
    ULONG bpbNumberOfSectors;
    ULONG bpbBytesPerSector;
    ULONG bpbNumberOfHiddenSectors;



    LARGE_INTEGER partitionTableOffset;
    LARGE_INTEGER volumeStartOffset;
    LARGE_INTEGER tempInt;
    BOOLEAN primaryPartitionTable;
    LONG partitionNumber;
    PUCHAR readBuffer = (PUCHAR) NULL;
    KEVENT event;

    IO_STATUS_BLOCK ioStatus;
    PIRP irp;
    PPARTITION_DESCRIPTOR partitionTableEntry;
    CCHAR partitionEntry;
    NTSTATUS status = STATUS_SUCCESS;
    ULONG readSize;
    LONGLONG diskSize;
    ULONG conventionalCylinders;
    PPARTITION_INFORMATION partitionInfo;
    BOOLEAN foundEZHooker = FALSE;

    PAGED_CODE();

    //
    // Create the buffer that will be passed back to the driver containing
    // the list of partitions on the disk.
    //

    *PartitionBuffer = ExAllocatePool( NonPagedPool,
                                       partitionBufferSize );

    if (*PartitionBuffer == NULL) {
        return STATUS_INSUFFICIENT_RESOURCES;
    }

    //
    // Determine the size of a read operation to ensure that at least 512
    // bytes are read.  This will guarantee that enough data is read to
    // include an entire partition table.  Note that this code assumes that
    // the actual sector size of the disk (if less than 512 bytes) is a
    // multiple of 2, a fairly reasonable assumption.
    //

    if (SectorSize >= 512) {
        readSize = SectorSize;
    } else {
        readSize = 512;
    }

    //
    // Look to see if this is an EZDrive Disk.  If it is then get the
    // real parititon table at 1.
    //

    {

        PVOID buff;

        HalExamineMBR(
            DeviceObject,
            readSize,
            (ULONG)0x55,
            &buff
            );

        if (buff) {

            foundEZHooker = TRUE;
            ExFreePool(buff);
            partitionTableOffset.QuadPart = 512;

        } else {

            partitionTableOffset.QuadPart = 0;

        }

    }

    //
    // Indicate that the primary partition table is being read and
    // processed.
    //

    primaryPartitionTable = TRUE;

    //
    // The partitions in this volume have their start sector as 0.
    //

    volumeStartOffset.QuadPart = 0;

    //
    // Initialize the number of partitions in the list.
    //

    partitionNumber = -1;

    //
    // Allocate a buffer that will hold the reads.
    //

    readBuffer = ExAllocatePool( NonPagedPoolCacheAligned, PAGE_SIZE );

    if (readBuffer == NULL) {
        ExFreePool( *PartitionBuffer );
        return STATUS_INSUFFICIENT_RESOURCES;
    }

    //
    // Read each partition table, create an object for the partition(s)
    // it represents, and then if there is a link entry to another
    // partition table, repeat.
    //

    do {

        //
        // Read record containing partition table.
        //
        // Create a notification event object to be used while waiting for
        // the read request to complete.
        //

        KeInitializeEvent( &event, NotificationEvent, FALSE );

        irp = IoBuildSynchronousFsdRequest( IRP_MJ_READ,
                                            DeviceObject,
                                            readBuffer,
                                            readSize,
                                            &partitionTableOffset,
                                            &event,
                                            &ioStatus );

        status = IoCallDriver( DeviceObject, irp );

        if (status == STATUS_PENDING) {
            (VOID) KeWaitForSingleObject( &event,
                                          Executive,
                                          KernelMode,
                                          FALSE,
                                          (PLARGE_INTEGER) NULL);
            status = ioStatus.Status;
        }

        if (!NT_SUCCESS( status )) {
            break;
        }

        //
        // If EZDrive is hooking the MBR then we found the first partition table
        // in sector 1 rather than 0.  However that partition table is relative
        // to sector zero.  So, Even though we got it from one, reset the partition
        // offset to 0.
        //

        if (foundEZHooker && (partitionTableOffset.QuadPart == 512)) {

            partitionTableOffset.QuadPart = 0;

        }

        //
        // Check for Boot Record signature.
        //

        if (((PUSHORT) readBuffer)[BOOT_SIGNATURE_OFFSET] != BOOT_RECORD_SIGNATURE) {
            break;
        }



        //
        // Copy NTFT disk signature to buffer
        //

        if (partitionTableOffset.QuadPart == 0) {
            (*PartitionBuffer)->Signature =  ((PULONG) readBuffer)[PARTITION_TABLE_OFFSET/2-1];
        }

        partitionTableEntry = (PPARTITION_DESCRIPTOR) &(((PUSHORT) readBuffer)[PARTITION_TABLE_OFFSET]);

        //
        // the partitionInfo could be wrong, if there is
        // a BPB instead of an MBR. To make sure we can check if the first partitionTable
        // entry has data that make sense. If not we can use BPB info to fix them
        // This is valid only for the first partition table, so in case of extenede partitions
        // we wont check.
        //

        if (partitionTableCounter == 0) {
            bootSector = (PBOOT_SECTOR_INFO) &(((PUSHORT) readBuffer)[0]);

            //
            // If disk geometry information returns zero, we have to use the BPB at
            // the 0th sector to get size information.
            //

            bpbJumpByte = bootSector->JumpByte[0];
            bpbNumberOfSectors = (bootSector->LargeNumberOfSectors[2] * 0x10000) +
                                 (bootSector->LargeNumberOfSectors[1] *0x100) +
                                  bootSector->LargeNumberOfSectors[0];

            bpbBytesPerSector = (bootSector->BytesPerSector[1] * 0x100) +
                                bootSector->BytesPerSector[0];

            bpbNumberOfHiddenSectors = (bootSector->NumberOfHiddenSectors[1] * 0x100) +
                                       bootSector->NumberOfHiddenSectors[0];

        }

        //
        // Keep count of partition tables in case we have an extended partition;
        //

        partitionTableCounter++;




        //
        // First create the objects corresponding to the entries in this
        // table that are not link entries or are unused.
        //

        for (partitionEntry = 1;
             partitionEntry <= NUM_PARTITION_TABLE_ENTRIES;
             partitionEntry++, partitionTableEntry++) {

            //
            // If the partition entry is not used or not recognized, skip
            // it.  Note that this is only done if the caller wanted only
            // recognized partition descriptors returned.
            //

            if (ReturnRecognizedPartitions) {

                //
                // Check if partition type is 0 (unused) or 5/f (extended).
                // The definition of recognized partitions has broadened
                // to include any partition type other than 0 or 5/f.
                //

                if ((partitionTableEntry->PartitionType == PARTITION_ENTRY_UNUSED) ||
                    IsContainerPartition(partitionTableEntry->PartitionType)) {

                    continue;
                }
            }

            //
            // Bump up to the next partition entry.
            //

            partitionNumber++;

            if (((partitionNumber * sizeof( PARTITION_INFORMATION )) + sizeof( DRIVE_LAYOUT_INFORMATION )) > (ULONG) partitionBufferSize) {

                //
                // The partition list is too small to contain all of the
                // entries, so create a buffer that is twice as large to
                // store the partition list and copy the old buffer into
                // the new one.
                //

                newPartitionBuffer = ExAllocatePool( NonPagedPool,
                                                     partitionBufferSize << 1 );

                if (newPartitionBuffer == NULL) {
                    --partitionNumber;
                    status = STATUS_INSUFFICIENT_RESOURCES;
                    break;
                }

                RtlMoveMemory( newPartitionBuffer,
                               *PartitionBuffer,
                               partitionBufferSize );

                ExFreePool( *PartitionBuffer );

                //
                // Reassign the new buffer to the return parameter and
                // reset the size of the buffer.
                //

                *PartitionBuffer = newPartitionBuffer;
                partitionBufferSize <<= 1;
            }

            //
            // Describe this partition table entry in the partition list
            // entry being built for the driver.  This includes writing
            // the partition type, starting offset of the partition, and
            // the length of the partition.
            //

            partitionInfo = &(*PartitionBuffer)->PartitionEntry[partitionNumber];

            partitionInfo->PartitionType = partitionTableEntry->PartitionType;

            partitionInfo->RewritePartition = FALSE;



            if (partitionTableEntry->PartitionType != PARTITION_ENTRY_UNUSED) {
                LONGLONG startOffset;

                partitionInfo->BootIndicator =
                    partitionTableEntry->ActiveFlag & PARTITION_ACTIVE_FLAG ?
                        (BOOLEAN) TRUE : (BOOLEAN) FALSE;

                if (IsContainerPartition(partitionTableEntry->PartitionType)) {
                    partitionInfo->RecognizedPartition = FALSE;
                    startOffset = volumeStartOffset.QuadPart;
                } else {
                    partitionInfo->RecognizedPartition = TRUE;
                    startOffset = partitionTableOffset.QuadPart;
                }

                partitionInfo->StartingOffset.QuadPart = startOffset +
                    UInt32x32To64(GET_STARTING_SECTOR(partitionTableEntry),
                                  SectorSize);
                tempInt.QuadPart = (partitionInfo->StartingOffset.QuadPart -
                                   startOffset) / SectorSize;
                partitionInfo->HiddenSectors = tempInt.LowPart;

                partitionInfo->PartitionLength.QuadPart =
                    UInt32x32To64(GET_PARTITION_LENGTH(partitionTableEntry),
                                  SectorSize);

            } else {

                //
                // Partitions that are not used do not describe any part
                // of the disk.  These types are recorded in the partition
                // list buffer when the caller requested all of the entries
                // be returned.  Simply zero out the remaining fields in
                // the entry.
                //

                partitionInfo->BootIndicator = FALSE;
                partitionInfo->RecognizedPartition = FALSE;
                partitionInfo->StartingOffset.QuadPart = 0;
                partitionInfo->PartitionLength.QuadPart = 0;
                partitionInfo->HiddenSectors = 0;
            }

            //
            // Save relevant information to check later if this is a super floppy disk
            //

            if (partitionTableCounter == 1 && partitionNumber == 0) {
                partitionLength = (ULONG) partitionInfo->PartitionLength.QuadPart;
                partitionStartingOffset = (ULONG) partitionInfo->StartingOffset.QuadPart;
            }

        }




        //
        // If an error occurred, leave the routine now.
        //

        if (!NT_SUCCESS( status )) {
            break;
        }

        //
        // Now check to see if there are any link entries in this table,
        // and if so, set up the sector address of the next partition table.
        // There can only be one link entry in each partition table, and it
        // will point to the next table.
        //

        partitionTableEntry = (PPARTITION_DESCRIPTOR) &(((PUSHORT) readBuffer)[PARTITION_TABLE_OFFSET]);

        //
        // Assume that the link entry is empty.
        //

        partitionTableOffset.QuadPart = 0;

        for (partitionEntry = 1;
             partitionEntry <= NUM_PARTITION_TABLE_ENTRIES;
             partitionEntry++, partitionTableEntry++) {

            if (IsContainerPartition(partitionTableEntry->PartitionType)) {

                //
                // Obtain the address of the next partition table on the
                // disk.  This is the number of hidden sectors added to
                // the beginning of the extended partition (in the case of
                // logical drives), since all logical drives are relative
                // to the extended partition.  The VolumeStartSector will
                // be zero if this is the primary parition table.
                //

                partitionTableOffset.QuadPart = volumeStartOffset.QuadPart +
                    UInt32x32To64(GET_STARTING_SECTOR(partitionTableEntry),
                                  SectorSize);

                //
                // Set the VolumeStartSector to be the begining of the
                // second partition (extended partition) because all of
                // the offsets to the partition tables of the logical drives
                // are relative to this extended partition.
                //

                if (primaryPartitionTable) {
                    volumeStartOffset = partitionTableOffset;
                }

                //
                // There is only ever one link entry per partition table,
                // exit the loop once it has been found.
                //

                break;
            }
        }


        //
        // All the other partitions will be logical drives.
        //

        primaryPartitionTable = FALSE;


    } while (partitionTableOffset.HighPart | partitionTableOffset.LowPart);

    //
    // Fill in the first field in the PartitionBuffer. This field indicates how
    // many partition entries there are in the PartitionBuffer.
    //

    (*PartitionBuffer)->PartitionCount = ++partitionNumber;

    if (!partitionNumber) {

        //
        // Zero out disk signature.
        //

        (*PartitionBuffer)->Signature = 0;
    }

    //
    // Following is the super-floppy support. Super-floppies are removable media
    // such as zip disks, which are expected to have an MBR. However some media have only
    // a BPB, just like a floppy. In that case we need to detect the absence of the MBR,
    // and instead emulate one single partition the size of the entire disk. The BPB information
    // is used to properly fill the partition List fields (size, hidden sectors, etc).
    // If a BPB is found, this function will return a partition table table with one
    // entry (primary partition) and a partition count of 1.
    //



    if (bpbJumpByte==0xEB || bpbJumpByte==0xE9 ){


        xHalGetPartialGeometry( DeviceObject,
                                &conventionalCylinders,
                                &diskSize );


        if (diskSize == 0){

                diskSize = bpbNumberOfSectors * bpbBytesPerSector;
        }

        if (diskSize > 0) {

            //
            // We check if the partition length, retrieved from the MBR, is less
            // to the disk size we got from disk geometry. We saw some cases were
            // format had created a larger than the disk partition length. this has
            // not been reporduced but for compatibility reasons, we allow up to 20MB
            // larger partitionLength...
            //

            if (partitionStartingOffset > diskSize || partitionLength > (diskSize + 0x1400000)) {

                partitionInfo = &(*PartitionBuffer)->PartitionEntry[0];

                partitionInfo->RewritePartition = FALSE;
                partitionInfo->RecognizedPartition = TRUE;
                partitionInfo->PartitionType = PARTITION_FAT_16;
                partitionInfo->BootIndicator = FALSE;

                partitionInfo->HiddenSectors = 0;

                partitionInfo->StartingOffset.QuadPart = 0;

                partitionInfo->PartitionLength.QuadPart = diskSize -
                                  partitionInfo->StartingOffset.QuadPart;

                (*PartitionBuffer)->PartitionCount = 1;
                (*PartitionBuffer)->Signature = 1;

            }
        }
    }

    //
    // Deallocate read buffer if it was allocated it.
    //
    if (readBuffer != NULL) {
        ExFreePool( readBuffer );
    }

    return status;
}

NTSTATUS
FASTCALL
xHalIoSetPartitionInformation(
    IN PDEVICE_OBJECT DeviceObject,
    IN ULONG SectorSize,
    IN ULONG PartitionNumber,
    IN ULONG PartitionType
    )

/*++

Routine Description:

    This routine is invoked when a disk device driver is asked to set the
    partition type in a partition table entry via an I/O control code.  This
    control code is generally issued by the format utility just after it
    has formatted the partition.  The format utility performs the I/O control
    function on the partition and the driver passes the address of the base
    physical device object and the number of the partition associated with
    the device object that the format utility has open.  If this routine
    returns success, then the disk driver should updates its notion of the
    partition type for this partition in its device extension.

Arguments:

    DeviceObject - Pointer to the base physical device object for the device
        on which the partition type is to be set.

    SectorSize - Supplies the size of a sector on the disk in bytes.

    PartitionNumber - Specifies the partition number on the device whose
        partition type is to be changed.

    PartitionType - Specifies the new type for the partition.

Return Value:

    The function value is the final status of the operation.

Notes:

    This routine is synchronous.  Therefore, it MUST be invoked by the disk
    driver's dispatch routine, or by a disk driver's thread.  Likewise, all
    users, FSP threads, etc., must be prepared to enter a wait state when
    issuing the I/O control code to set the partition type for the device.

    Note also that this routine assumes that the partition number passed
    in by the disk driver actually exists since the driver itself supplies
    this parameter.

    Finally, note that this routine may NOT be invoked at APC_LEVEL.  It
    must be invoked at PASSIVE_LEVEL.  This is due to the fact that this
    routine uses a kernel event object to synchronize I/O completion on the
    device.  The event cannot be set to the signaled state without queueing
    the I/O system's special kernel APC routine for I/O completion and
    executing it.  (This rules is a bit esoteric since it only holds true
    if the device driver returns something other than STATUS_PENDING, which
    it will probably never do.)

--*/

{

#define GET_STARTING_SECTOR( p ) (                  \
        (ULONG) (p->StartingSectorLsb0) +           \
        (ULONG) (p->StartingSectorLsb1 << 8) +      \
        (ULONG) (p->StartingSectorMsb0 << 16) +     \
        (ULONG) (p->StartingSectorMsb1 << 24) )

    PIRP irp;
    KEVENT event;
    IO_STATUS_BLOCK ioStatus;
    NTSTATUS status;
    LARGE_INTEGER partitionTableOffset;
    LARGE_INTEGER volumeStartOffset;
    PUCHAR buffer = (PUCHAR) NULL;
    ULONG transferSize;
    ULONG partitionNumber;
    ULONG partitionEntry;
    PPARTITION_DESCRIPTOR partitionTableEntry;
    BOOLEAN primaryPartitionTable;
    BOOLEAN foundEZHooker = FALSE;

    PAGED_CODE();

    //
    // Begin by determining the size of the buffer required to read and write
    // the partition information to/from the disk.  This is done to ensure
    // that at least 512 bytes are read, thereby guaranteeing that enough data
    // is read to include an entire partition table.  Note that this code
    // assumes that the actual sector size of the disk (if less than 512
    // bytes) is a multiple of 2, a
    // fairly reasonable assumption.
    //

    if (SectorSize >= 512) {
        transferSize = SectorSize;
    } else {
        transferSize = 512;
    }


    //
    // Look to see if this is an EZDrive Disk.  If it is then get the
    // real parititon table at 1.
    //

    {

        PVOID buff;

        HalExamineMBR(
            DeviceObject,
            transferSize,
            (ULONG)0x55,
            &buff
            );

        if (buff) {

            foundEZHooker = TRUE;
            ExFreePool(buff);
            partitionTableOffset.QuadPart = 512;

        } else {

            partitionTableOffset.QuadPart = 0;

        }

    }


    //
    // The partitions in this primary partition have their start sector 0.
    //

    volumeStartOffset.QuadPart = 0;

    //
    // Indicate that the table being read and processed is the primary partition
    // table.
    //

    primaryPartitionTable = TRUE;

    //
    // Initialize the number of partitions found thus far.
    //

    partitionNumber = 0;

    //
    // Allocate a buffer that will hold the read/write data.
    //

    buffer = ExAllocatePool( NonPagedPoolCacheAligned, PAGE_SIZE );
    if (buffer == NULL) {
        return STATUS_INSUFFICIENT_RESOURCES;
    }

    //
    // Initialize a kernel event to use in synchronizing device requests
    // with I/O completion.
    //

    KeInitializeEvent( &event, NotificationEvent, FALSE );

    //
    // Read each partition table scanning for the partition table entry that
    // the caller wishes to modify.
    //

    do {

        //
        // Read the record containing the partition table.
        //

        (VOID) KeResetEvent( &event );

        irp = IoBuildSynchronousFsdRequest( IRP_MJ_READ,
                                            DeviceObject,
                                            buffer,
                                            transferSize,
                                            &partitionTableOffset,
                                            &event,
                                            &ioStatus );

        status = IoCallDriver( DeviceObject, irp );

        if (status == STATUS_PENDING) {
            (VOID) KeWaitForSingleObject( &event,
                                          Executive,
                                          KernelMode,
                                          FALSE,
                                          (PLARGE_INTEGER) NULL );
            status = ioStatus.Status;
        }

        if (!NT_SUCCESS( status )) {
            break;
        }

        //
        // If EZDrive is hooking the MBR then we found the first partition table
        // in sector 1 rather than 0.  However that partition table is relative
        // to sector zero.  So, Even though we got it from one, reset the partition
        // offset to 0.
        //

        if (foundEZHooker && (partitionTableOffset.QuadPart == 512)) {

            partitionTableOffset.QuadPart = 0;

        }

        //
        // Check for a valid Boot Record signature in the partition table
        // record.
        //

        if (((PUSHORT) buffer)[BOOT_SIGNATURE_OFFSET] != BOOT_RECORD_SIGNATURE) {
            status = STATUS_BAD_MASTER_BOOT_RECORD;
            break;
        }

        partitionTableEntry = (PPARTITION_DESCRIPTOR) &(((PUSHORT) buffer)[PARTITION_TABLE_OFFSET]);

        //
        // Scan the partition entries in this partition table to determine if
        // any of the entries are the desired entry.  Each entry in each
        // table must be scanned in the same order as in IoReadPartitionTable
        // so that the partition table entry cooresponding to the driver's
        // notion of the partition number can be located.
        //

        for (partitionEntry = 1;
            partitionEntry <= NUM_PARTITION_TABLE_ENTRIES;
            partitionEntry++, partitionTableEntry++) {


            //
            // If the partition entry is empty or for an extended, skip it.
            //

            if ((partitionTableEntry->PartitionType == PARTITION_ENTRY_UNUSED) ||
                IsContainerPartition(partitionTableEntry->PartitionType)) {
                continue;
            }

            //
            // A valid partition entry that is recognized has been located.
            // Bump the count and check to see if this entry is the desired
            // entry.
            //

            partitionNumber++;

            if (partitionNumber == PartitionNumber) {

                //
                // This is the desired partition that is to be changed.  Simply
                // overwrite the partition type and write the entire partition
                // buffer back out to the disk.
                //

                partitionTableEntry->PartitionType = (UCHAR) PartitionType;

                (VOID) KeResetEvent( &event );

                irp = IoBuildSynchronousFsdRequest( IRP_MJ_WRITE,
                                                    DeviceObject,
                                                    buffer,
                                                    transferSize,
                                                    &partitionTableOffset,
                                                    &event,
                                                    &ioStatus );

                status = IoCallDriver( DeviceObject, irp );

                if (status == STATUS_PENDING) {
                    (VOID) KeWaitForSingleObject( &event,
                                                  Executive,
                                                  KernelMode,
                                                  FALSE,
                                                  (PLARGE_INTEGER) NULL );
                    status = ioStatus.Status;
                }

                break;
            }
        }

        //
        // If all of the entries in the current buffer were scanned and the
        // desired entry was not found, then continue.  Otherwise, leave the
        // routine.
        //

        if (partitionEntry <= NUM_PARTITION_TABLE_ENTRIES) {
            break;
        }

        //
        // Now scan the current buffer to locate an extended partition entry
        // in the table so that its partition information can be read.  There
        // can only be one extended partition entry in each partition table,
        // and it will point to the next table.
        //

        partitionTableEntry = (PPARTITION_DESCRIPTOR) &(((PUSHORT) buffer)[PARTITION_TABLE_OFFSET]);

        for (partitionEntry = 1;
            partitionEntry <= NUM_PARTITION_TABLE_ENTRIES;
            partitionEntry++, partitionTableEntry++) {

            if (IsContainerPartition(partitionTableEntry->PartitionType)) {

                //
                // Obtain the address of the next partition table on the disk.
                // This is the number of hidden sectors added to the beginning
                // of the extended partition (in the case of logical drives),
                // since all logical drives are relative to the extended
                // partition.  The starting offset of the volume will be zero
                // if this is the primary partition table.
                //

                partitionTableOffset.QuadPart = volumeStartOffset.QuadPart +
                    UInt32x32To64(GET_STARTING_SECTOR(partitionTableEntry),
                                  SectorSize);

                //
                // Set the starting offset of the volume to be the beginning of
                // the second partition (the extended partition) because all of
                // the offsets to the partition tables of the logical drives
                // are relative to this extended partition.
                //

                if (primaryPartitionTable) {
                    volumeStartOffset = partitionTableOffset;
                }

                break;
            }
        }

        //
        // Ensure that a partition entry was located that was an extended
        // partition, otherwise the desired partition will never be found.
        //

        if (partitionEntry > NUM_PARTITION_TABLE_ENTRIES) {
            status = STATUS_BAD_MASTER_BOOT_RECORD;
            break;
        }

        //
        // All the other partitions will be logical drives.
        //

        primaryPartitionTable = FALSE;

    } while (partitionNumber < PartitionNumber);

    //
    // If a data buffer was successfully allocated, deallocate it now.
    //

    if (buffer != NULL) {
        ExFreePool( buffer );
    }

    return status;
}

NTSTATUS
FASTCALL
xHalIoWritePartitionTable(
    IN PDEVICE_OBJECT DeviceObject,
    IN ULONG SectorSize,
    IN ULONG SectorsPerTrack,
    IN ULONG NumberOfHeads,
    IN struct _DRIVE_LAYOUT_INFORMATION *PartitionBuffer
    )

/*++

Routine Description:

    This routine walks the disk writing the partition tables from
    the entries in the partition list buffer for each partition.

    Applications that create and delete partitions should issue a
    IoReadPartitionTable call with the 'return recognized partitions'
    boolean set to false to get a full description of the system.

    Then the drive layout structure can be modified by the application to
    reflect the new configuration of the disk and then is written back
    to the disk using this routine.

Arguments:

    DeviceObject - Pointer to device object for this disk.

    SectorSize - Sector size on the device.

    SectorsPerTrack - Track size on the device.

    NumberOfHeads - Same as tracks per cylinder.

    PartitionBuffer - Pointer drive layout buffer.

Return Value:

    The functional value is STATUS_SUCCESS if all writes are completed
    without error.

--*/

{
typedef struct _PARTITION_TABLE {
    PARTITION_INFORMATION PartitionEntry[4];
} PARTITION_TABLE, *PPARTITION_TABLE;

typedef struct _DISK_LAYOUT {
    ULONG TableCount;
    ULONG Signature;
    PARTITION_TABLE PartitionTable[1];
} DISK_LAYOUT, *PDISK_LAYOUT;

typedef struct _PTE {
    UCHAR ActiveFlag;               // Bootable or not
    UCHAR StartingTrack;            // Not used
    USHORT StartingCylinder;        // Not used
    UCHAR PartitionType;            // 12 bit FAT, 16 bit FAT etc.
    UCHAR EndingTrack;              // Not used
    USHORT EndingCylinder;          // Not used
    ULONG StartingSector;           // Hidden sectors
    ULONG PartitionLength;          // Sectors in this partition
} PTE;
typedef PTE UNALIGNED *PPTE;

//
// This macro has the effect of Bit = log2(Data)
//

#define WHICH_BIT(Data, Bit) {                      \
    for (Bit = 0; Bit < 32; Bit++) {                \
        if ((Data >> Bit) == 1) {                   \
            break;                                  \
        }                                           \
    }                                               \
}

    ULONG writeSize;
    PUSHORT writeBuffer = NULL;
    PPTE partitionEntry;
    PPARTITION_TABLE partitionTable;
    CCHAR shiftCount;
    LARGE_INTEGER partitionTableOffset;
    LARGE_INTEGER nextRecordOffset;
    ULONG partitionTableCount;
    ULONG partitionEntryCount;
    KEVENT event;
    IO_STATUS_BLOCK ioStatus;
    PIRP irp;
    BOOLEAN rewritePartition;
    NTSTATUS status = STATUS_SUCCESS;
    LARGE_INTEGER tempInt;
    BOOLEAN foundEZHooker = FALSE;
    ULONG conventionalCylinders;
    LONGLONG diskSize;

    //
    // Cast to a structure that is easier to use.
    //

    PDISK_LAYOUT diskLayout = (PDISK_LAYOUT) PartitionBuffer;

    //
    // Ensure that no one is calling this function illegally.
    //

    PAGED_CODE();

    //
    // Determine the size of a write operation to ensure that at least 512
    // bytes are written.  This will guarantee that enough data is written to
    // include an entire partition table.  Note that this code assumes that
    // the actual sector size of the disk (if less than 512 bytes) is a
    // multiple of 2, a fairly reasonable assumption.
    //

    if (SectorSize >= 512) {
        writeSize = SectorSize;
    } else {
        writeSize = 512;
    }

    xHalGetPartialGeometry( DeviceObject,
                            &conventionalCylinders,
                            &diskSize );

    //
    // Look to see if this is an EZDrive Disk.  If it is then get the
    // real partititon table at 1.
    //

    {

        PVOID buff;

        HalExamineMBR(
            DeviceObject,
            writeSize,
            (ULONG)0x55,
            &buff
            );

        if (buff) {

            foundEZHooker = TRUE;
            ExFreePool(buff);
            partitionTableOffset.QuadPart = 512;

        } else {

            partitionTableOffset.QuadPart = 0;

        }

    }

    //
    // Initialize starting variables.
    //

    nextRecordOffset.QuadPart = 0;

    //
    // Calculate shift count for converting between byte and sector.
    //

    WHICH_BIT( SectorSize, shiftCount );

    //
    // Convert partition count to partition table or boot sector count.
    //

    diskLayout->TableCount =
        (PartitionBuffer->PartitionCount +
        NUM_PARTITION_TABLE_ENTRIES - 1) /
        NUM_PARTITION_TABLE_ENTRIES;

    //
    // Allocate a buffer for the sector writes.
    //

    writeBuffer = ExAllocatePool( NonPagedPoolCacheAligned, PAGE_SIZE );

    if (writeBuffer == NULL) {
        return STATUS_INSUFFICIENT_RESOURCES;
    }

    //
    // Point to the partition table entries in write buffer.
    //

    partitionEntry = (PPTE) &writeBuffer[PARTITION_TABLE_OFFSET];

    for (partitionTableCount = 0;
         partitionTableCount < diskLayout->TableCount;
         partitionTableCount++) {

        UCHAR   partitionType;

        //
        // the first partition table is in the mbr (physical sector 0).
        // other partition tables are in ebr's within the extended partition.
        //

        BOOLEAN mbr = (BOOLEAN) (!partitionTableCount);
        LARGE_INTEGER extendedPartitionOffset;

        //
        // Read the boot record that's already there into the write buffer
        // and save its boot code area if the signature is valid.  This way
        // we don't clobber any boot code that might be there already.
        //

        KeInitializeEvent( &event, NotificationEvent, FALSE );

        irp = IoBuildSynchronousFsdRequest( IRP_MJ_READ,
                                        DeviceObject,
                                        writeBuffer,
                                        writeSize,
                                        &partitionTableOffset,
                                        &event,
                                        &ioStatus );

        status = IoCallDriver( DeviceObject, irp );

        if (status == STATUS_PENDING) {
            (VOID) KeWaitForSingleObject( &event,
                                      Executive,
                                      KernelMode,
                                      FALSE,
                                      (PLARGE_INTEGER) NULL);
            status = ioStatus.Status;
        }

        if (!NT_SUCCESS( status )) {
            break;
        }

        //
        // If EZDrive is hooking the MBR then we found the first partition table
        // in sector 1 rather than 0.  However that partition table is relative
        // to sector zero.  So, Even though we got it from one, reset the partition
        // offset to 0.
        //

        if (foundEZHooker && (partitionTableOffset.QuadPart == 512)) {

            partitionTableOffset.QuadPart = 0;

        }

        //
        // Write signature to last word of boot sector.
        //

        writeBuffer[BOOT_SIGNATURE_OFFSET] = BOOT_RECORD_SIGNATURE;

        //
        // Write NTFT disk signature if it changed and this is the MBR.
        //

        rewritePartition = FALSE;
        if (partitionTableOffset.QuadPart == 0) {

            if (((PULONG)writeBuffer)[PARTITION_TABLE_OFFSET/2-1] !=
                PartitionBuffer->Signature) {

                ((PULONG) writeBuffer)[PARTITION_TABLE_OFFSET/2-1] =
                    PartitionBuffer->Signature;
                rewritePartition = TRUE;
            }
        }

        //
        // Get pointer to first partition table.
        //

        partitionTable = &diskLayout->PartitionTable[partitionTableCount];

        //
        // Walk table to determine whether this boot record has changed
        // and update partition table in write buffer in case it needs
        // to be written out to disk.
        //

        for (partitionEntryCount = 0;
             partitionEntryCount < NUM_PARTITION_TABLE_ENTRIES;
             partitionEntryCount++) {

            partitionType =
                    partitionTable->PartitionEntry[partitionEntryCount].PartitionType;

            //
            // If the rewrite ISN'T true then copy then just leave the data
            // alone that is in the on-disk table.
            //

            if (partitionTable->PartitionEntry[partitionEntryCount].RewritePartition) {

                //
                // This boot record needs to be written back to disk.
                //

                rewritePartition = TRUE;

                //
                // Copy partition type from user buffer to write buffer.
                //

                partitionEntry[partitionEntryCount].PartitionType =
                    partitionTable->PartitionEntry[partitionEntryCount].PartitionType;

                //
                // Copy the partition active flag.
                //

                partitionEntry[partitionEntryCount].ActiveFlag =
                    partitionTable->PartitionEntry[partitionEntryCount].BootIndicator ?
                    (UCHAR) PARTITION_ACTIVE_FLAG : (UCHAR) 0;

                if (partitionType != PARTITION_ENTRY_UNUSED) {

                    LARGE_INTEGER sectorOffset;

                    //
                    // Calculate partition offset.
                    // If in the mbr or the entry is not a link entry, partition offset
                    // is sectors past last boot record.  Otherwise (not in the mbr and
                    // entry is a link entry), partition offset is sectors past start
                    // of extended partition.
                    //

                    if (mbr || !IsContainerPartition(partitionType)) {
                        tempInt.QuadPart = partitionTableOffset.QuadPart;
                    } else {
                        tempInt.QuadPart = extendedPartitionOffset.QuadPart;
                    }

                    sectorOffset.QuadPart =
                        partitionTable->PartitionEntry[partitionEntryCount].StartingOffset.QuadPart -
                        tempInt.QuadPart;

                    tempInt.QuadPart = sectorOffset.QuadPart >> shiftCount;
                    partitionEntry[partitionEntryCount].StartingSector = tempInt.LowPart;

                    //
                    // Calculate partition length.
                    //

                    tempInt.QuadPart = partitionTable->PartitionEntry[partitionEntryCount].PartitionLength.QuadPart >> shiftCount;
                    partitionEntry[partitionEntryCount].PartitionLength = tempInt.LowPart;

                    //
                    // Fill in CHS values
                    //

                    HalpCalculateChsValues(
                        &partitionTable->PartitionEntry[partitionEntryCount].StartingOffset,
                        &partitionTable->PartitionEntry[partitionEntryCount].PartitionLength,
                        shiftCount,
                        SectorsPerTrack,
                        NumberOfHeads,
                        conventionalCylinders,
                        (PPARTITION_DESCRIPTOR) &partitionEntry[partitionEntryCount]);

                } else {

                    //
                    // Zero out partition entry fields in case an entry
                    // was deleted.
                    //

                    partitionEntry[partitionEntryCount].StartingSector = 0;
                    partitionEntry[partitionEntryCount].PartitionLength = 0;
                    partitionEntry[partitionEntryCount].StartingTrack = 0;
                    partitionEntry[partitionEntryCount].EndingTrack = 0;
                    partitionEntry[partitionEntryCount].StartingCylinder = 0;
                    partitionEntry[partitionEntryCount].EndingCylinder = 0;
                }

            }

            if (IsContainerPartition(partitionType)) {

                //
                // Save next record offset.
                //

                nextRecordOffset =
                    partitionTable->PartitionEntry[partitionEntryCount].StartingOffset;
            }

        } // end for partitionEntryCount ...

        if (rewritePartition == TRUE) {

            rewritePartition = FALSE;
            //
            // Create a notification event object to be used while waiting for
            // the write request to complete.
            //

            KeInitializeEvent( &event, NotificationEvent, FALSE );

            if (foundEZHooker && (partitionTableOffset.QuadPart == 0)) {

                partitionTableOffset.QuadPart = 512;

            }
            irp = IoBuildSynchronousFsdRequest( IRP_MJ_WRITE,
                                            DeviceObject,
                                            writeBuffer,
                                            writeSize,
                                            &partitionTableOffset,
                                            &event,
                                            &ioStatus );

            status = IoCallDriver( DeviceObject, irp );

            if (status == STATUS_PENDING) {
                (VOID) KeWaitForSingleObject( &event,
                                          Executive,
                                          KernelMode,
                                          FALSE,
                                          (PLARGE_INTEGER) NULL);
                status = ioStatus.Status;
            }

            if (!NT_SUCCESS( status )) {
                break;
            }


            if (foundEZHooker && (partitionTableOffset.QuadPart == 512)) {

                partitionTableOffset.QuadPart = 0;

            }

        } // end if (reWrite ...

        //
        // Update partitionTableOffset to next boot record offset
        //

        partitionTableOffset = nextRecordOffset;
        if(mbr) {
            extendedPartitionOffset = nextRecordOffset;
        }

    } // end for partitionTableCount ...

    //
    // Deallocate write buffer if it was allocated it.
    //

    if (writeBuffer != NULL) {
        ExFreePool( writeBuffer );
    }

    return status;
}