summaryrefslogblamecommitdiffstats
path: root/private/ntos/miniport/always/in2000.c
blob: b433a7f87295925af69215d0bec09abbc79ae678 (plain) (tree)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
































































































































































































































































































































































































































































































































































































































































































































































































































                                                                                                                                                                    
/* Copyright (C) 1991, 1992 by Always Technology Corporation.
   This module contains information proprietary to
   Always Technology Corporation, and is be treated as confidential.
*/

#include "environ.h"
#include "rqm.h"
#include "api.h"
#include "apiscsi.h"
#include "debug.h"

#include "33c93.h"
#include "in2000.h"

#define StatMask 0xc1					// Bits of interest in FIFO status register

#define FIFOThresh 16                                   // Minimum xfer lenth for FIFOed xfers
#define FIFOPad 32                                      // How many bytes must be added to writes to push data out of FIFO
#define FIFOFillOffset 64                               // Minimum amout of room to leave at top of FIFO
#define FIFOSize 2048                                   // Total size of FIFO
#define MaxPreFill (FIFOSize / 2)

#define AuxStat HA->IOBase+INAuxOff
#define WDSelect HA->IOBase+INWDSelOff
#define WDData HA->IOBase+INWDDataOff
#define INData HA->IOBase+INDataOff

#define lengthof(x) (sizeof(x) / sizeof(x[0]))

// Prototypes:
int IN2000_ISR(ADAPTER_PTR HA);
U32 IN2000_Service(int Func, ADAPTER_PTR HA, U32 Misc);

#define SetWDReg(HA,WDReg) outb(HA->Ext->AD.IN2000U.IOMap[INWDSelOff], (WDReg))
#define ReadWDData(HA) inb(HA->Ext->AD.IN2000U.IOMap[INWDDataOff])
#define ReadWDReg(HA,reg) (SetWDReg(HA,reg), ReadWDData(HA))
#define WriteWDData(HA, val) outb(HA->Ext->AD.IN2000U.IOMap[INWDDataOff], (val))
#define WriteWDReg(HA,reg,val) SetWDReg(HA,(reg));WriteWDData(HA, val)
extern void WD33c93_ISR(ADAPTER_PTR HA);
extern void WD33C93_Init(ADAPTER_PTR HA);
extern BOOLEAN GlobalAllowSync;


typedef struct {

  U8 OwnID;
  U8 CtrlReg;
  U8 TimeOutReg;
  U8 SourceReg;

} StateBuffer;


LOCAL void
IN2000ReInit (ADAPTER_PTR HA)
{
    // Reset the chip with a reset command.  The reset is complete when
    // the interrupt register is set
    WriteWDReg(HA, WDCMDReg, WDResetCmd);

    while ((ReadWDReg(HA, WDAuxStatReg) & IntPending) == 0)
      ;
    ReadWDReg(HA, WDStatusReg); /* Clear the interrupt */

    WD33C93_Init(HA);

    HA->Ext->AD.IN2000U.CurrIntMask = INFIFOMask;
    outb(HA->IOBase+INIntMaskOff, INFIFOMask);              /* Mask off FIFO, allow 33c93 ints. */
}


LOCAL void
IN2000ResetBus (ADAPTER_PTR HA)
{
  unsigned j;

  TRACE(2, ("IN2000ResetBus(): \n"));
  HA->Ext->AD.IN2000U.CurrIntMask = INFIFOMask;
  outb(HA->Ext->AD.IN2000U.IOMap[INIntMaskOff], INFIFOMask); /* Mask off FIFO, allow 33c93 ints. */

  // Issue a SCSI bus reset; SCSI-2 says reset can any length > 25uS,
  // however, some devices lose their mind if reset is too long,
  // So, we'll try for 50uS, assumeing an 8-MHz bus:
  outb(HA->Ext->AD.IN2000U.IOMap[INResetOff], 0);	// Assert reset
  for (j=30; j; j--)				// don't make reset too short, figure 10Mhz ISA bus, 4 cycles / IO
    inb(HA->Ext->AD.IN2000U.IOMap[INFIFOOff]);	//    but too long breaks some drives
  inb(HA->Ext->AD.IN2000U.IOMap[INHWRevOff]);	// de-assert reset

  WriteWDReg(HA, WDCMDReg, WDResetCmd);		// Reset chip, intr. will re-initialize it

}


LOCAL U32
IN2000Init (ADAPTER_PTR HA)
{
  int j;

  /* Mask off ints while we're in init. routine */
  outb(HA->IOBase+INIntMaskOff, INFIFOMask | INSBICMask);

  // Set up the I/O port map:
  for (j=0; j<= 15; j++)
    HA->Ext->AD.IN2000U.IOMap[j] = HA->IOBase + j;

  // Issue a SCSI bus reset; SCSI-2 says reset can any length > 25uS,
  // however, some devices lose their mind if reset is too long,
  // So, we'll try for 50uS, assumeing an 8-MHz bus:
  inb(HA->IOBase + INHWRevOff);			// Precautionary deassert reset
  outb(HA->IOBase + INResetOff, 0);		// Reset the board
  for (j=30; j; j--)				// don't make reset too short, figure 10Mhz ISA bus, 4 cycles / IO
    inb(HA->Ext->AD.IN2000U.IOMap[INFIFOOff]);		//    but too long breaks some drives
  inb(HA->IOBase + INHWRevOff);                           /* de-assert reset */
  APINotifyReset(HA);

  ((StateBuffer *)(HA->Ext->InitialState))->OwnID = 7;
  ((StateBuffer *)(HA->Ext->InitialState))->CtrlReg = ReadWDReg(HA, WDControlReg);
  ((StateBuffer *)(HA->Ext->InitialState))->TimeOutReg = ReadWDReg(HA, WDTimeoutReg);
  ((StateBuffer *)(HA->Ext->InitialState))->SourceReg = ReadWDReg(HA, WDSourceReg);

  HA->Ext->SBIC.WD33C93.WDSelPort = HA->IOBase;
  HA->Ext->SBIC.WD33C93.WDDataPort = HA->IOBase+1;

  HA->Ext->SBIC.WD33C93.MHz = 10;                          /* The IN-2000 uses a 10Mhz 33c93 */
  HA->Ext->SBIC.WD33C93.AsyncValue = 0x30;

  IN2000ReInit(HA);

  HA->State.Allow = 1;				// Allow request processing
  return 0;					// OK
}



int
Find_IN2000 (ADAPTER_PTR HA, unsigned *Context)
{
  static const unsigned BaseList[]=
                    {0x100, 0x110, 0x200, 0x220}; /* Bits are inverted */
  static const unsigned IRQList[]={10, 11, 14, 15};
  unsigned Switch;
  IOHandle INBase;
  int HWVers;
  unsigned Terminal = lengthof(BaseList);


  // For Chicago:
  //
  // If HA->IOBase is entered != 0, then we need to find the index of the
  // matching I/O address.  If we find one, limit the terminus of the
  // primary check below, so we check only one instance.  If we don't find
  // a match, then the primary loop below will fail to start.  Not pretty,
  // but it works.

  if (HA->IOBaseAddr != 0) {

    for (*Context = 0; *Context < lengthof(BaseList); (*Context)++)
      if (HA->IOBaseAddr == BaseList[*Context])
	break;

    Terminal = min(*Context + 1, lengthof(BaseList));

  }


  TRACE(4, ("Find_IN2000(): HA Ptr = %x,Context = %x\n", HA, *Context));
  for (; *Context < Terminal; DeregisterIO(HA, INBase), (*Context)++) {

    INBase = RegisterIO(HA, BaseList[*Context], 15, AddrSpaceIO);
    Switch = inb(INBase+INSwitchOff);
    TRACE(5,("Find_IN2000(): Switch value read was: %02x\n", Switch));
    if ((Switch & 3) != *Context)                        /* Do switch settings match? */
      continue;

    /* Check the version number port, see if it appears IN-2000-ish */
    HWVers = inb(INBase+INHWRevOff);
    TRACE(5,("Find_IN2000(): H/W version read as: %02x\n", HWVers));
    if ((HWVers < 0x20) || (HWVers > 0x29))
      continue;

    if (HWVers < MinHWVers) {

      LogMessage(HA, NILL, 0, 0, MSG_BAD_FIRMWARE, HWVers);

      TRACE(1,("Version of the IN-2000 SPROM at I/O address %x is %02x.  Please"
              " call Always\nfor upgrade instructions.  Board is being "
              "ignored.\n\n", INBase, HWVers));
      continue;

    }

    if (Switch & 0x04)
      HA->IRQNumber = IRQList[(Switch >> 3) & 0x3];
    else {

      LogMessage(HA, NILL, 0, 0, MSG_NO_INT_ENABLE, BaseList[*Context]);
      TRACE(1,("IN-2000 at I/O %xh must have its interrupts enabled."
              "  Board is being ignored.\n\n", INBase));
      continue;

    }

    HA->IOBase = INBase;
    HA->IOBaseAddr = BaseList[*Context];
    HA->IOAddrLen = 15;
    HA->SCSI_ID = 7;
    HA->Service = IN2000_Service;
    HA->ISR = IN2000_ISR;
    HA->Name = "IN-2000";

#if defined(WINNT)
    // Test the DOS 5/Sync. switch (8);  On, supports DOS 5 & synchronous
    HA->Supports.Synchronous = ((Switch & 0x20) == 0);	// Support sync. if switch 8 is on
#else
    HA->Supports.Synchronous = GlobalAllowSync; // Support sync. if switch 8 is on
#endif

    HA->Supports.Identify = TRUE;
    HA->Physical.BusType = BT_ISA;

    (*Context)++;                                       // Found one, so inc. for next entry
    return 1;

  }
  return 0;
}


void
SetUpXfer (ADAPTER_PTR HA, IO_REQ_PTR Req, unsigned Dir)
{
  unsigned i;

  HA->Ext->AD.IN2000U.CBuff = (char FAR *)&(((char FAR *)(ReqDataPtr(Req)))[(unsigned)(HA->ReqCurrentIndex)]);
  HA->Ext->AD.IN2000U.CRemain = HA->ReqCurrentCount;
  HA->Ext->AD.IN2000U.CurrDir = (Dir == SCSIIn) ? IN2000DataIn : IN2000DataOut;
  TRACE(5,("SetUpXfer(): %ld (0x%lx) bytes to transfered to/from 0x%08lx\n", HA->Ext->AD.IN2000U.CRemain, HA->Ext->AD.IN2000U.CRemain, HA->Ext->AD.IN2000U.CBuff));
  outb(HA->Ext->AD.IN2000U.IOMap[INFIFOResetOff], 1); /* Reset the FIFO */

  if (HA->ReqCurrentCount >= FIFOThresh) {

    TRACE(5,("SetUpXfer(): Setting up for FIFO xfer\n"));
    if (Dir == SCSIIn) {

      TRACE(5,("SetUpXfer(): Setting FIFO direction to read\n"));
      outb(HA->Ext->AD.IN2000U.IOMap[INDirOff], 1);  /* set read mode */
      HA->Ext->AD.IN2000U.CurrIntMask =
        (HA->Ext->AD.IN2000U.CRemain >= (FIFOSize-FIFOFillOffset)) ? 0 : INFIFOMask;

    }

    i =  (ReadWDReg(HA, WDControlReg) & ~DMAModeMask) | DMABus;
    do {
      WriteWDReg(HA, WDControlReg, i);
    } while (i != ReadWDReg(HA, WDControlReg));

    if (Dir != SCSIIn) {                                // Doing DATA OUT

      /* The IN-2000 FIFO mechinism requires pre-loading on write
         operations.  At least 32 bytes must be pre-loaded, or else
         data loss may occur.  Upon transfering the final bytes to the
         FIFO, it must be padded by writing 32 bytes of junk, to move
         the valid data up from the first 32 byte "twilight-zone".  This
         will be done in the FIFO fill routine.
      */

      i = (unsigned)min(HA->ReqCurrentCount, (U32)MaxPreFill);      // Don't overfill FIFO

      TRACE(5,("SetUpXfer(): Preloading %d bytes for write.\n", i));
      repoutsw(HA->Ext->AD.IN2000U.IOMap[INDataOff], (U16 FAR *)HA->Ext->AD.IN2000U.CBuff, (i+1)/2); // Pre-fill FIFO
      HA->Ext->AD.IN2000U.CBuff += i;                        // Offset buffer ptr by amount written
      HA->Ext->AD.IN2000U.CRemain -= i;                      // Decrement remaining count

      if (HA->Ext->AD.IN2000U.CRemain)                       // is there more stuff after this?
        HA->Ext->AD.IN2000U.CurrIntMask = 0;                 // Then don't mask FIFO ints
      else {                                            // If not, send pad characters

        TRACE(5, ("SetupXfer(): Padding FIFO\n"));
        for (i=(FIFOPad / 2); i; i--)
          outw(HA->Ext->AD.IN2000U.IOMap[INDataOff], (U16)i);
        HA->Ext->AD.IN2000U.CurrIntMask = INFIFOMask;        // Block FIFO ints

      }

    }

  } else {

    TRACE(5, ("SetupXfer(): Using byte I/O\n"));
    i = (ReadWDReg(HA, WDControlReg) & ~DMAModeMask) | DMAPIO;
    do {
      WriteWDReg(HA, WDControlReg, i);
    } while (i != ReadWDReg(HA, WDControlReg));

  }

  TRACE(5,("SetUpXfer(): SetUpXfer complete\n"));

}


U8 REGPARMS
FIFOStat (const IOHandle Port)
{
#ifdef ASMIO

  asm {
    mov dx, word ptr Port
    in al, dx
    }
InAgain:
  asm {
    mov ah, al
    in al, dx
    sub ah, al
    jnz InAgain
    }
    return _AX;          /* AH is already zeroed for unsigned promotion */
#else

  int i;
  U8 Stat1, Stat2;

  Stat2 = inb(Port) & StatMask;
  do {

    Stat1 = Stat2;

    for (i=3; i; i--)
      Stat2 &= inb(Port);				// Find which bits are stable for 4 reads

    Stat2 &= StatMask;					// Most sig. two bits, and int bit are interesting

  } while (Stat1 != Stat2);

  return Stat1;
#endif
}


void
EmptyFIFO (ADAPTER_PTR HA)
{
  union {
    U32 l;
    unsigned char b[4];
  } Count;
  unsigned InFIFO, i;

/*
  Update the pointers; First get the number of bytes
  the SCSI chip thinks remain to be transfered.  Then compare
  to the number of bytes the HA structure says remain.  The
  differance is the number of bytes in the FIFO.

  In the case of read data, we need to read the bytes out of
  the FIFO.  The number of bytes in the FIFO is the number
  of bytes the structure says we've read, minus what the SCSI
  chip has sent to the FIFO.  The buffer pointer is then
  incremented, and the remaining count is decremented by that
  amount.

  For write data, the number of bytes in the FIFO is the amount
  the SCSI chip has yet to write, minus what the driver has yet
  to send to the FIFO.  The data in the FIFO is dropped, the
  buffer pointer is set back, and the remaining count is
  incremented.
*/

  if ((HA->Ext->AD.IN2000U.CurrDir == IN2000DataIn) && (HA->Ext->AD.IN2000U.CRemain == 0)) {

    HA->ReqCurrentIndex += HA->ReqCurrentCount;
    HA->ReqCurrentCount = 0;

  } else {

#if defined(NATIVE32)

    Count.l = (U32)ReadWDReg(HA, WDCountReg);
    Count.l = (Count.l * 256) + (U32)ReadWDData(HA);
    Count.l = (Count.l * 256) + (U32)ReadWDData(HA);

#else

    Count.b[3] = 0;
    Count.b[2] = ReadWDReg(HA, WDCountReg);
    Count.b[1] = ReadWDData(HA);
    Count.b[0] = ReadWDData(HA);

#endif

    TRACE(4,("EmptyFIFO(): Value of Xfer count registers: 0x%08lx\n", Count.l));

    if (HA->Ext->AD.IN2000U.CurrDir == IN2000DataIn) {

      // Get number we have untransfered, minus what the chip has left untransfered
      // to give the number held in the FIFO:
      InFIFO = (unsigned)(HA->Ext->AD.IN2000U.CRemain - Count.l);

      TRACE(4,("EmptyFIFO(): CRemain=0x%08lx, in FIFO to read: %04x\n", HA->Ext->AD.IN2000U.CRemain, InFIFO));

      if (InFIFO > 0) {

        TRACE(5, ("EmptyFIFO(): final read %d bytes\n", InFIFO));
        repinsw(HA->Ext->AD.IN2000U.IOMap[INDataOff], (U16 FAR *)HA->Ext->AD.IN2000U.CBuff, (InFIFO+1)/2);

      }
    }

    // When the transfer was set up, the count registers where loaded with
    // ReqCurrCount(); now the counters reflect the number of bytes untransfered
    // Increment the index by (StartBytesToXfer - RemainBytesToXfer); and save
    // away the new remaining count:
    HA->ReqCurrentIndex += HA->ReqCurrentCount - Count.l;
    HA->ReqCurrentCount = Count.l;
    TRACE(4,("EmptyFIFO(): New remaining count: %ld(dec)\n", HA->ReqCurrentCount));

  }

  TRACE(5,("EmptyFIFO(): Reseting xfer mode.\n"));
  HA->Ext->AD.IN2000U.CurrIntMask |= INFIFOMask; /* Block the FIFO ints */
  outb(HA->Ext->AD.IN2000U.IOMap[INFIFOResetOff], 1); /* Reset the FIFO */

  i = (ReadWDReg(HA, WDControlReg) & 0x1f);
  do {                                 /* Clear WD Bus mode */
    WriteWDReg(HA, WDControlReg, i);
  } while (ReadWDReg(HA, WDControlReg) != i);

  HA->Ext->AD.IN2000U.CurrDir = IN2000NoData;
  HA->Ext->AD.IN2000U.CRemain = 0;

}


void
FIFO_ISR (ADAPTER_PTR HA)
{
  unsigned S;

#if defined(KEEP_STATS)
  HA->DataInterrupts++;
#endif

  // Stay in here as long as there is no 33C93 interrupt (bit 0), and there is
  // at least 512 bytes in the FIFO (0xc0), and there is data remaining.
  // FIFOStat is called to repeatedly read the FIFO status port, since it
  // may be unstable for a single read.

  while (!((S = FIFOStat(HA->Ext->AD.IN2000U.IOMap[INFIFOOff])) & 1)
  && (S & 0xc0) && HA->Ext->AD.IN2000U.CRemain) {

    TRACE(5, ("IN2000_ISR(): FIFO status port read as %x\n", S));

    // Value read from port (bits 1-7) is number of bytes / 16;  Bit one is the
    // WD interrupt pending bit; so the count is effectively already multiplied
    // by two.  Multiply it again by 8 to get the number of bytes in FIFO
//    S = (S & 0xc0) * 8;
    S = 512;

    if (HA->Ext->AD.IN2000U.CurrDir == IN2000DataIn) {

//      if ((U32)S > HA->Ext->AD.IN2000U.CRemain) {
//
//	TRACE(0, ("FIFO_ISR(): FIFO says %ld, expected remaining is %ld\n", S, HA->Ext->AD.IN2000U.CRemain));
//	S = (unsigned)HA->Ext->AD.IN2000U.CRemain;
//
//      }
      S = (unsigned)min(S, HA->Ext->AD.IN2000U.CRemain);
      TRACE(4, ("FIFO_ISR(): reading %d bytes to %lx\n", S, HA->Ext->AD.IN2000U.CBuff));

#if !defined(ASMIO)

      repinsw(HA->Ext->AD.IN2000U.IOMap[INDataOff], HA->Ext->AD.IN2000U.CBuff, S/2);

#else /* ASMIO */

#if sizeof(HA) == 4            /* far HA ptr */
        asm {
          mov ax, di
          les bx, HA
          mov dx, es:[bx].IOBase
          les di, es:[bx].AD.IN2000U.CBuff
          }
#else                         /* near HA ptr */
        asm {
          mov ax, di
          mov bx, HA
          mov dx, [bx].IOBase
          les di, [bx].AD.IN2000U.CBuff
          }
#endif
        asm {
          add dx, INDataOff
          mov cx, S
          shr cx, 1
          cld
          rep insw
          mov di, ax
        }

#endif /* ASMIO */

    } else {

      // Leave 16 bytes (FIFOFillOffset) in FIFO for write flush (see below):
      S = (unsigned)min(min(S - FIFOFillOffset, FIFOSize/2), HA->Ext->AD.IN2000U.CRemain);

      TRACE(5, ("FIFO_ISR(): Writing next %d chunk from %lx\n", S, HA->Ext->AD.IN2000U.CBuff));
      repoutsw(HA->Ext->AD.IN2000U.IOMap[INDataOff], (U16 FAR *)HA->Ext->AD.IN2000U.CBuff, S/2);

    }

    HA->Ext->AD.IN2000U.CBuff += S;
    HA->Ext->AD.IN2000U.CRemain -= S;
    TRACE(5, ("FIFO_ISR(): New remaining is %ld (0x%lx)\n", HA->Ext->AD.IN2000U.CRemain, HA->Ext->AD.IN2000U.CRemain));
//    if (HA->Ext->AD.IN2000U.CRemain)
//      for(S=16; S && ((inb(HA->Ext->AD.IN2000U.IOMap[INFIFOOff]) & 0xc1) == 0); S--) ;
  }

  /* The FIFO logic on the IN-2000 requires writing FIFOPad bytes of garbage
     into the FIFO to push the end of the valid data out.  This flush
     occurs here:
  */

  if (HA->Ext->AD.IN2000U.CRemain == 0) {                    /* Don't expect any more FIFO ints */

    HA->Ext->AD.IN2000U.CurrIntMask |= INFIFOMask;           /* Block the FIFO ints */
    if (HA->Ext->AD.IN2000U.CurrDir == IN2000DataOut) {      // Pad the FIFO

      for (S=(FIFOPad / 2); S; S--)
        outw(HA->Ext->AD.IN2000U.IOMap[INDataOff], (U16)S);

    }
  }
}


int
IN2000_ISR (ADAPTER_PTR HA)
{
  unsigned char Stat, Taken = 0;

  TRACE(5, ("IN2000_ISR(): \n"));
  outb(HA->Ext->AD.IN2000U.IOMap[INIntMaskOff], INFIFOMask | INSBICMask);

  HA->Ext->AD.IN2000U.LastPollHadIntPending = FALSE;

  while (((Stat = inb(HA->Ext->AD.IN2000U.IOMap[INFIFOOff])) & 1)
  || ((Stat & 0xc0) && (HA->Ext->AD.IN2000U.CRemain != 0))) {

    Taken = 1;
    TRACE(5, ("IN2000_ISR(): FIFOStatus is : %x\n", Stat));
    if ( !(Stat & 1) )
      FIFO_ISR(HA);

    while(inb(HA->Ext->AD.IN2000U.IOMap[INFIFOOff]) & 0x1)
      WD33c93_ISR(HA);

  }

  outb(HA->Ext->AD.IN2000U.IOMap[INIntMaskOff], HA->Ext->AD.IN2000U.CurrIntMask);
  return Taken;
}


void
IN2000_Initiate (ADAPTER_PTR HA, IO_REQ_PTR Req, const int StartLevel)
{
#if defined(COMPOUND_CMD)
  unsigned char C;
#endif

  TRACE(5, ("IN2000_Initiate(): initiating\n"));

  critical(HA);                                 // Block interrupts for now

  HA->ReqCurrentCount = 0;                      // Next DXFER phase will cause a GetXferSegment()
  HA->ReqCurrentIndex = 0;

  HA->Ext->SBIC.WD33C93.State = WD_NO_STATE;         // Currently not in any state

  WriteWDReg(HA, WDDestIDReg, ReqTargetID(Req)); // Set the ID of the target

  HA->State.Busy = 1;                           // Mark flag for adapter in use

  if (HA->DevInfo[ReqTargetID(Req)].Flags.UseSync) {    // Do we use sync. xfers on this device?

    WriteWDReg(HA, WDSyncReg, HA->DevInfo[ReqTargetID(Req)].HASync1); // Then write the Sync. values

  } else {

    WriteWDReg(HA, WDSyncReg, HA->Ext->SBIC.WD33C93.AsyncValue); // Alright then, async. values

  }

  // enable reselection
  WriteWDReg(HA, WDSourceReg, EnableRSel);

  SCSIMakeIdentify(HA, ReqTargetLUN(Req), (BOOLEAN)(ReqAllowDisconnect(Req) && HA->CurrDev->Flags.Allow_Disc));          // Then build Identify with disconnect

#if defined(COMPOUND_CMD)

  // WD Compound commands only know group 0, 1, & 5 CDBs:
  C = ReqCDB(Req)[0] & 0xe0;
  if ((HA->Ext->MO_Count > 1) || !(C <= 0x10 || C == 0x50)) {

    WriteWDReg(HA, WDCMDReg, WDSelATNCmd);              // Select with attention
    TRACE(3, ("IN2000_Initiate(): Using discreet commands\n"));

  } else {

    TRACE(3, ("IN2000_Initiate(): Using compound commands\n"));

    WriteWDReg(HA, WDControlReg, EnableIDI);
    WriteWDReg(HA, WDTarLUNReg, ReqTargetLUN(Req) | ((BOOLEAN)(ReqAllowDisconnect(Req) && HA->CurrDev->Flags.Allow_Disc)) ? 0x40 : 0);       // Set ID of target LUN

    if ((HA->ReqCurrentCount >= FIFOThresh) && (ReqDataIn(Req) || ReqDataOut(Req))) {

      TRACE(4, ("IN2000_Initiate(): Early prepare for data xfer; Preparing for %ld byte xfer\n", HA->ReqCurrentCount));
      HA->State.DataXfer = 1;
      HA->Ext->SBIC.WD33C93.State |= WD_BLOCK_XFER;

      HA->Ext->AD.IN2000U.CurrIntMask = 0;
      SetUpXfer(HA, HA->CurrReq, ReqDataIn(Req));
      outb(HA->Ext->SBIC.WD33C93.WDSelPort, WDCountReg);
      outb(HA->Ext->SBIC.WD33C93.WDDataPort, (((char FAR *)&ReqCurrCount(HA->CurrReq))[2]));
      outb(HA->Ext->SBIC.WD33C93.WDDataPort, (((char FAR *)&ReqCurrCount(HA->CurrReq))[1]));
      outb(HA->Ext->SBIC.WD33C93.WDDataPort, (((char FAR *)&ReqCurrCount(HA->CurrReq))[0]));

    } else {

      HA->Ext->AD.IN2000U.CurrIntMask = INFIFOMask;
      outb(HA->Ext->SBIC.WD33C93.WDSelPort, WDCountReg);
      outb(HA->Ext->SBIC.WD33C93.WDDataPort, 0);
      outb(HA->Ext->SBIC.WD33C93.WDDataPort, 0);
      outb(HA->Ext->SBIC.WD33C93.WDDataPort, 0);

    }

    if (StartLevel <= 1)
      outb(HA->Ext->AD.IN2000U.IOMap[INIntMaskOff], HA->Ext->AD.IN2000U.CurrIntMask);

    SetWDReg(HA, WDCDBReg);                             // Send the CDB
    repoutsb(WDData, ReqCDB(Req), ReqCDBLen(Req));
    HA->Ext->SBIC.WD33C93.State |= WD_COMPOUND_CMD;          // Flag the use of LEVEL II commands

    WriteWDReg(HA, WDCMDReg, WDSelATNXCmd);             // Start select & xfer w/ attention

  }

#else

  WriteWDReg(HA, WDCMDReg, WDSelATNCmd);                // Select with attention

#endif

  HA->ReqStarting = StartLevel;
  inb(HA->Ext->AD.IN2000U.IOMap[INLEDOnOff]);		// Turn on LED
  uncritical(HA);					// OK, allow ints again

  TRACE(5, ("IN2000_Initiate(): initiating complete\n"));

}


U32
IN2000_Service (int Func, ADAPTER_PTR HA, U32 Misc)
{
  int j;

  switch (Func) {

  case HA_INITIALIZE:

    return IN2000Init(HA);
    break;


  case HA_START:

    TRACE(2, ("IN2000_Service(): Got HA_START command\n"));
    HA->State.Allow = 1;
    StartNext(HA, 1);
    break;


  case HA_STOP:

    TRACE(2, ("IN2000_Service(): Got HA_STOP command\n"));
    HA->State.Allow = 0;
    break;


  case HA_TICKLE:

    if (!(HA->State.Busy) && (HA->State.Allow)) {

      TRACE(5, ("IN2000_Service(): Tickling adapter\n"));
      StartNext(HA,1);

    } else {

      TRACE(5, ("IN2000_Service(): Tickle ignored; Busy = %d, Allow = %d\n", HA->State.Busy, HA->State.Allow));

    }

    break;


  case HA_TIMER:

    j = inb(HA->Ext->AD.IN2000U.IOMap[INFIFOOff]) & StatMask;
    if (HA->Ext->AD.IN2000U.LastPollHadIntPending && j ) {

      if (IN2000_ISR(HA)) {

	LogMessage(HA, HA->CurrReq, 0, 0, MSG_NO_INTERRUPTS, __LINE__);
	TRACE(0, ("IN2000_Service(): Serviced interrupt on timer\n"));

      }

    } else
      HA->Ext->AD.IN2000U.LastPollHadIntPending = j;
    break;


  case HA_LED:

    if ((int)Misc) inb(HA->Ext->AD.IN2000U.IOMap[INLEDOnOff]);
    else inb(HA->Ext->AD.IN2000U.IOMap[INLEDOffOff]);
    break;


  case HA_INITIATE:

    IN2000_Initiate(HA, HA->CurrReq, (unsigned)Misc);
    break;


  case HA_DATA_SETUP:

    SetUpXfer(HA, HA->CurrReq, (unsigned)Misc);
    if (HA->ReqCurrentCount < FIFOThresh)
      return HAServiceResponse_UseByteIO;
    else
      return HA->Ext->AD.IN2000U.CRemain;
//    break;


  case HA_DATA_CMPLT:

    if (HA->Ext->AD.IN2000U.CurrDir != IN2000NoData)
      EmptyFIFO(HA);
    break;

  case HA_RESET_BUS:

    IN2000ResetBus(HA);
    break;


  case HA_REVERT_STATE:

    // Restore the board back to its preveous state.  This is used by
    // Netware / Chicago to switch back to BIOS mode.
    WriteWDReg(HA, WDOwnIDReg, ((StateBuffer *)(HA->Ext->InitialState))->OwnID);

    critical(HA);

    // Reset chip, then wait for reset complete interrupt.  This causes the chip
    // to accept the set ID.
    WriteWDReg(HA, WDCMDReg, WDResetCmd);

    while ((ReadWDReg(HA, WDAuxStatReg) & IntPending) == 0)
      ;
    ReadWDReg(HA, WDStatusReg);		// Clear the interrupt

    uncritical(HA);

    WriteWDReg(HA, WDControlReg, ((StateBuffer *)(HA->Ext->InitialState))->CtrlReg);
    WriteWDReg(HA, WDTimeoutReg, ((StateBuffer *)(HA->Ext->InitialState))->TimeOutReg);
    WriteWDReg(HA, WDSourceReg, ((StateBuffer *)(HA->Ext->InitialState))->SourceReg);
    break;


  case HA_RESTORE_STATE:

    IN2000ReInit(HA);
    IN2000ResetBus(HA);
    break;


  case HA_POWER_MODE:


    break;

  }

  return 0;
}