summaryrefslogblamecommitdiffstats
path: root/private/ntos/nthals/halnecmp/mips/jxebsup.c
blob: a9978da60f7e5555e93a4ef926a0ce77e5a1c11e (plain) (tree)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































                                                                                                    
/*++

Copyright (c) 1990  Microsoft Corporation

Module Name:

    jxebsup.c

Abstract:

    The module provides the EISA bus support for JAZZ systems.

Author:

    Jeff Havens  (jhavens) 19-Jun-1991

Revision History:


--*/

/*
 * #if defined(DBCS)
 * M001 	1994.9.29	T.Katoh @ oa2
 *	- Bug fix
 *
 *	  Modify : Check ISR for IR7 and IR15 before Calling Device Driver
 * #endif //DBCS
 */

#include "halp.h"
#include "eisa.h"
#include "bugcodes.h"

//
// Define the context structure for use by the interrupt routine.
//

typedef
BOOLEAN
(*PSECONDARY_DISPATCH)(
    PKINTERRUPT Interrupt
    );

//
// The following is the interrupt object used for DMA controller interrupts.
// DMA controller interrupts occur when a memory parity error occurs or a
// programming error occurs to the DMA controller.
//

KINTERRUPT HalpEisaNmiInterrupt;

UCHAR EisaNMIMsg[] = "NMI: Eisa IOCHKERR board x\n";

//
// The following function is called when an EISA NMI occurs.
//

BOOLEAN
HalHandleNMI(
    IN PKINTERRUPT Interrupt,
    IN PVOID ServiceContext
    );

//
// Define save area for EISA adapter objects.
//

PADAPTER_OBJECT HalpEisaAdapter[8];

//
// Define save area for EISA interrupt mask resiters and level\edge control
// registers.
//

UCHAR HalpEisaInterrupt1Mask;
UCHAR HalpEisaInterrupt2Mask;
UCHAR HalpEisaInterrupt1Level;
UCHAR HalpEisaInterrupt2Level;

//
// Define EISA bus interrupt affinity.
//

KAFFINITY HalpEisaBusAffinity;

PADAPTER_OBJECT
HalpAllocateEisaAdapter(
    IN PDEVICE_DESCRIPTION DeviceDescriptor
    )
/*++

Routine Description:

    This function allocates an EISA adapter object according to the
    specification supplied in the device description.  The necessary device
    descriptor information is saved. If there is
    no existing adapter object for this channel then a new one is allocated.
    The saved information in the adapter object is used to set the various DMA
    modes when the channel is allocated or a map transfer is done.

Arguments:

    DeviceDescription - Supplies the description of the device which want to
        use the DMA adapter.

Return Value:

    Returns a pointer to the newly created adapter object or NULL if one
    cannot be created.

--*/

{
    PADAPTER_OBJECT adapterObject;
    PVOID adapterBaseVa;
    ULONG channelNumber;
    ULONG controllerNumber;
    DMA_EXTENDED_MODE extendedMode;
    UCHAR adapterMode;
    BOOLEAN useChannel;
    BOOLEAN eisaSystem;

    //
    // Determine if the the channel number is important.  Master cards on
    // Eisa do not use a channel number.
    //

    if (DeviceDescriptor->InterfaceType == Eisa &&
        DeviceDescriptor->Master) {

        useChannel = FALSE;
    } else {

        useChannel = TRUE;
    }

    //
    // Channel 4 cannot be used since it is used for chaining. Return null if
    // it is requested.
    //

    if ((DeviceDescriptor->DmaChannel == 4 ||
        DeviceDescriptor->DmaChannel > 7) && useChannel) {

        return(NULL);
    }

    //
    // Set the channel number number.
    //

    channelNumber = DeviceDescriptor->DmaChannel & 0x03;

    //
    // Set the adapter base address to the Base address register and controller
    // number.
    //

    if (!(DeviceDescriptor->DmaChannel & 0x04)) {

        controllerNumber = 1;
        adapterBaseVa = (PVOID) &((PEISA_CONTROL) HalpEisaControlBase)->Dma1BasePort;

    } else {

        controllerNumber = 2;
        adapterBaseVa = &((PEISA_CONTROL) HalpEisaControlBase)->Dma2BasePort;

    }

    //
    // Determine if a new adapter object is necessary.  If so then allocate it.
    //

    if (useChannel && HalpEisaAdapter[DeviceDescriptor->DmaChannel] != NULL) {

        adapterObject = HalpEisaAdapter[DeviceDescriptor->DmaChannel];

    } else {

        //
        // Allocate an adapter object.
        //

        adapterObject = (PADAPTER_OBJECT) HalpAllocateAdapter(
            0,
            adapterBaseVa,
            NULL
            );

        if (adapterObject == NULL) {

            return(NULL);

        }

        if (useChannel) {

            HalpEisaAdapter[DeviceDescriptor->DmaChannel] = adapterObject;

        }

    }


    //
    // If the channel is not used then indicate the this is an Eisa bus
    // master by setting the page port  and mode to cascade even though
    // it is not used.
    //

    if (!useChannel) {
        adapterObject->PagePort = (PVOID) (~0x0);
        ((PDMA_EISA_MODE) &adapterMode)->RequestMode = CASCADE_REQUEST_MODE;
        return(adapterObject);
    }

    //
    // Setup the pointers to all the random registers.
    //

    adapterObject->ChannelNumber = (UCHAR)channelNumber;

    if (controllerNumber == 1) {

        switch ((UCHAR)channelNumber) {

        case 0:
            adapterObject->PagePort = &((PDMA_PAGE) 0)->Channel0;
            break;

        case 1:
            adapterObject->PagePort = &((PDMA_PAGE) 0)->Channel1;
            break;

        case 2:
            adapterObject->PagePort = &((PDMA_PAGE) 0)->Channel2;
            break;

        case 3:
            adapterObject->PagePort = &((PDMA_PAGE) 0)->Channel3;
            break;
        }

        //
        // Set the adapter number.
        //

        adapterObject->AdapterNumber = 1;

        //
        // Save the extended mode register address.
        //

        adapterBaseVa =
            &((PEISA_CONTROL) HalpEisaControlBase)->Dma1ExtendedModePort;

    } else {

        switch (channelNumber) {
        case 1:
            adapterObject->PagePort = &((PDMA_PAGE) 0)->Channel5;
            break;

        case 2:
            adapterObject->PagePort = &((PDMA_PAGE) 0)->Channel6;
            break;

        case 3:
            adapterObject->PagePort = &((PDMA_PAGE) 0)->Channel7;
            break;
        }

        //
        // Set the adapter number.
        //

        adapterObject->AdapterNumber = 2;

        //
        // Save the extended mode register address.
        //
        adapterBaseVa =
            &((PEISA_CONTROL) HalpEisaControlBase)->Dma2ExtendedModePort;

    }

    //
    // Initialzie the extended mode port.
    //

    *((PUCHAR) &extendedMode) = 0;
    extendedMode.ChannelNumber = (UCHAR)channelNumber;

    switch (DeviceDescriptor->DmaSpeed) {
    case Compatible:
        extendedMode.TimingMode = COMPATIBLITY_TIMING;
        break;

    case TypeA:
        extendedMode.TimingMode = TYPE_A_TIMING;
        break;

    case TypeB:
        extendedMode.TimingMode = TYPE_B_TIMING;
        break;

    case TypeC:
        extendedMode.TimingMode = BURST_TIMING;
        break;

    default:
        ObDereferenceObject( adapterObject );
        return(NULL);

    }

    switch (DeviceDescriptor->DmaWidth) {
    case Width8Bits:
        extendedMode.TransferSize = BY_BYTE_8_BITS;
        break;

    case Width16Bits:
        extendedMode.TransferSize = BY_BYTE_16_BITS;
        break;

    case Width32Bits:
        extendedMode.TransferSize = BY_BYTE_32_BITS;
        break;

    default:
        ObDereferenceObject( adapterObject );
        return(NULL);

    }

    WRITE_REGISTER_UCHAR( adapterBaseVa, *((PUCHAR) &extendedMode));

    //
    // Initialize the adapter mode register value to the correct parameters,
    // and save them in the adapter object.
    //

    adapterMode = 0;
    ((PDMA_EISA_MODE) &adapterMode)->Channel = adapterObject->ChannelNumber;

    if (DeviceDescriptor->Master) {

        ((PDMA_EISA_MODE) &adapterMode)->RequestMode = CASCADE_REQUEST_MODE;

        //
        // Set the mode, and enable the request.
        //

        if (adapterObject->AdapterNumber == 1) {

            //
            // This request is for DMA controller 1
            //

            PDMA1_CONTROL dmaControl;

            dmaControl = adapterObject->AdapterBaseVa;

            WRITE_REGISTER_UCHAR( &dmaControl->Mode, adapterMode );

            //
            // Unmask the DMA channel.
            //

            WRITE_REGISTER_UCHAR(
                &dmaControl->SingleMask,
                 (UCHAR) (DMA_CLEARMASK | adapterObject->ChannelNumber)
                 );

        } else {

            //
            // This request is for DMA controller 1
            //

            PDMA2_CONTROL dmaControl;

            dmaControl = adapterObject->AdapterBaseVa;

            WRITE_REGISTER_UCHAR( &dmaControl->Mode, adapterMode );

            //
            // Unmask the DMA channel.
            //

            WRITE_REGISTER_UCHAR(
                &dmaControl->SingleMask,
                 (UCHAR) (DMA_CLEARMASK | adapterObject->ChannelNumber)
                 );

        }

    } else if (DeviceDescriptor->DemandMode) {

        ((PDMA_EISA_MODE) &adapterMode)->RequestMode = DEMAND_REQUEST_MODE;

    } else {

        ((PDMA_EISA_MODE) &adapterMode)->RequestMode = SINGLE_REQUEST_MODE;

    }

    if (DeviceDescriptor->AutoInitialize) {

        ((PDMA_EISA_MODE) &adapterMode)->AutoInitialize = 1;

    }

    adapterObject->AdapterMode = adapterMode;

    return(adapterObject);
}

BOOLEAN
HalpCreateEisaStructures (
    VOID
    )

/*++

Routine Description:

    This routine initializes the structures necessary for EISA operations
    and connects the intermediate interrupt dispatcher. It also initializes the
    EISA interrupt controller.

Arguments:

    None.

Return Value:

    If the second level interrupt dispatcher is connected, then a value of
    TRUE is returned. Otherwise, a value of FALSE is returned.

--*/

{

    UCHAR DataByte;
    ULONG DataLong;
    KIRQL oldIrql;

#if !defined(_DUO_)

    //
    // Initialize the EISA NMI interrupt.
    //

    KeInitializeInterrupt( &HalpEisaNmiInterrupt,
                           HalHandleNMI,
                           NULL,
                           NULL,
                           EISA_NMI_LEVEL,
                           EISA_NMI_LEVEL,
                           EISA_NMI_LEVEL,
                           LevelSensitive,
                           FALSE,
                           0,
                           FALSE
                         );

    //
    // Don't fail if the interrupt cannot be connected.
    //

    KeConnectInterrupt( &HalpEisaNmiInterrupt );

    //
    // Clear the Eisa NMI disable bit.  This bit is the high order of the
    // NMI enable register.
    //

//    DataByte = 0;
    //
    // TEMPTEMP Disable the NMI because this is causing machines in the build
    // lab to fail.
    //
    DataByte = 0x80;

    WRITE_REGISTER_UCHAR(
      &((PEISA_CONTROL) HalpEisaControlBase)->NmiEnable,
      DataByte
      );

#else

    //
    // Clear the Eisa NMI disable bit.  This bit is the high order of the
    // NMI enable register.
    //

//    DataByte = 0;
    //
    // TEMPTEMP Disable the NMI because this is causing machines in the build
    // lab to fail.
    //
    DataByte = 0x80;

    WRITE_REGISTER_UCHAR(
      &((PEISA_CONTROL) HalpEisaControlBase)->NmiEnable,
      DataByte
      );

#endif

    //
    // Directly connect the EISA interrupt dispatcher to the level for
    // EISA bus interrupt.
    //
    // N.B. This vector is reserved for exclusive use by the HAL (see
    //      interrupt initialization.
    //

    PCR->InterruptRoutine[EISA_DEVICE_LEVEL] =
                                        (PKINTERRUPT_ROUTINE)HalpEisaDispatch;

    //
    // Raise the IRQL while the EISA interrupt controller is initalized.
    //

    KeRaiseIrql(EISA_DEVICE_LEVEL, &oldIrql);

    //
    // Initialize the EISA interrupt controller.  There are two cascaded
    // interrupt controllers, each of which must initialized with 4 initialize
    // control words.
    //

    DataByte = 0;
    ((PINITIALIZATION_COMMAND_1) &DataByte)->Icw4Needed = 1;
    ((PINITIALIZATION_COMMAND_1) &DataByte)->InitializationFlag = 1;

    WRITE_REGISTER_UCHAR(
        &((PEISA_CONTROL) HalpEisaControlBase)->Interrupt1ControlPort0,
        DataByte
        );

    WRITE_REGISTER_UCHAR(
        &((PEISA_CONTROL) HalpEisaControlBase)->Interrupt2ControlPort0,
        DataByte
        );

    //
    // The second intitialization control word sets the iterrupt vector to
    // 0-15.
    //

    DataByte = 0;

    WRITE_REGISTER_UCHAR(
        &((PEISA_CONTROL) HalpEisaControlBase)->Interrupt1ControlPort1,
        DataByte
        );

    DataByte = 0x08;

    WRITE_REGISTER_UCHAR(
        &((PEISA_CONTROL) HalpEisaControlBase)->Interrupt2ControlPort1,
        DataByte
        );

    //
    // The thrid initialization control word set the controls for slave mode.
    // The master ICW3 uses bit position and the slave ICW3 uses a numberic.
    //

    DataByte = 1 << SLAVE_IRQL_LEVEL;

    WRITE_REGISTER_UCHAR(
        &((PEISA_CONTROL) HalpEisaControlBase)->Interrupt1ControlPort1,
        DataByte
        );

    DataByte = SLAVE_IRQL_LEVEL;

    WRITE_REGISTER_UCHAR(
        &((PEISA_CONTROL) HalpEisaControlBase)->Interrupt2ControlPort1,
        DataByte
        );

    //
    // The fourth initialization control word is used to specify normal
    // end-of-interrupt mode and not special-fully-nested mode.
    //

    DataByte = 0;
    ((PINITIALIZATION_COMMAND_4) &DataByte)->I80x86Mode = 1;

    WRITE_REGISTER_UCHAR(
        &((PEISA_CONTROL) HalpEisaControlBase)->Interrupt1ControlPort1,
        DataByte
        );

    WRITE_REGISTER_UCHAR(
        &((PEISA_CONTROL) HalpEisaControlBase)->Interrupt2ControlPort1,
        DataByte
        );


    //
    // Disable all of the interrupts except the slave.
    //

    HalpEisaInterrupt1Mask = (UCHAR)(~(1 << SLAVE_IRQL_LEVEL));

    WRITE_REGISTER_UCHAR(
        &((PEISA_CONTROL) HalpEisaControlBase)->Interrupt1ControlPort1,
        HalpEisaInterrupt1Mask
        );

    HalpEisaInterrupt2Mask = 0xFF;

    WRITE_REGISTER_UCHAR(
        &((PEISA_CONTROL) HalpEisaControlBase)->Interrupt2ControlPort1,
        HalpEisaInterrupt2Mask
        );

    //
    // Initialize the edge/level register masks to 0 which is the default
    // edge sensitive value.
    //

    HalpEisaInterrupt1Level = 0;
    HalpEisaInterrupt2Level = 0;

    //
    // Set EISA bus interrupt affinity.
    //

    HalpEisaBusAffinity = PCR->SetMember;

    //
    // Restore IRQL level.
    //

    KeLowerIrql(oldIrql);

    //
    // Initialize the DMA mode registers to a default value.
    // Disable all of the DMA channels except channel 4 which is that
    // cascade of channels 0-3.
    //

    WRITE_REGISTER_UCHAR(
        &((PEISA_CONTROL) HalpEisaControlBase)->Dma1BasePort.AllMask,
        0x0F
        );

    WRITE_REGISTER_UCHAR(
        &((PEISA_CONTROL) HalpEisaControlBase)->Dma2BasePort.AllMask,
        0x0E
        );

#if defined(_DUO_)

    //
    // Enable the EISA interrupts to the CPU.
    //

    DataLong = READ_REGISTER_ULONG(&((PDMA_REGISTERS)DMA_VIRTUAL_BASE)->InterruptEnable.Long);
    DataLong |= ENABLE_EISA_INTERRUPTS;
    WRITE_REGISTER_ULONG(&((PDMA_REGISTERS)DMA_VIRTUAL_BASE)->InterruptEnable.Long,
                             DataLong);

#endif

    return(TRUE);
}

BOOLEAN
HalpEisaDispatch(
    IN PKINTERRUPT Interrupt,
    IN PVOID ServiceContext
    )

/*++

Routine Description:

    This routine is entered as the result of an interrupt being generated
    via the vector that is directly connected to EISA device interrupt.

    N.B. This interrupt is directly connected and therefore, no argument
         values are defined.

Arguments:

    None.

Return Value:

    Returns the value returned from the second level routine.

--*/

{

    PULONG dispatchCode;
    USHORT interruptVector;
    PKINTERRUPT interruptObject;
    BOOLEAN returnValue;

#if defined(_DUO_)

    PUSHORT Acknowledge = (PUSHORT)&DMA_CONTROL->EisaInterruptAcknowledge.Long;

    //
    // Read the interrupt vector.
    //

    interruptVector = READ_REGISTER_USHORT(Acknowledge);

#else

    PUCHAR Acknowledge = (PUCHAR)&DMA_CONTROL->InterruptAcknowledge.Long;

    //
    // Read the interrupt vector.
    //

    interruptVector = READ_REGISTER_UCHAR(Acknowledge);

#endif

    //
    // If the vector is nonzero, then it is either an EISA interrupt
    // of an NMI interrupt. Otherwise, the interrupt is no longer
    // present.
    //

    if (interruptVector != 0) {

        //
        // If the interrupt vector is 0x8000 then the interrupt is an NMI.
        // Otherwise, dispatch the interrupt to the appropriate interrupt
        // handler.
        //

        if (interruptVector != 0x8000) {

            //
            // Mask the upper bits off since the vector is only a byte and
            // dispatch to the secondary interrupt service routine.
            //

            interruptVector &= 0xff;
/* Start M001 */
#if defined(DBCS)

            // When INT OutPut Pin is Low Level, CPU Carry Out INTACK Cycle. Pic is
            // behave as if IR7 is Occured. This is a spurious interrupt!!.
            // So Check ISR. If ISR Not 0. It is Authentic Interrupt !!

            if(interruptVector == 7 || interruptVector==15){

                PVOID IsrPortAddr;
                UCHAR IsrValue;

#define OCW3_READ_ISR 0x0B	
#define OCW3_READ_IRR 0x0A	

                //
                // Master or Slave ?
                //
                IsrPortAddr = (interruptVector == 7) ? 
                    &((PEISA_CONTROL) HalpEisaControlBase)->Interrupt1ControlPort0:
                    &((PEISA_CONTROL) HalpEisaControlBase)->Interrupt2ControlPort0;
		
                // SetUp to ISR Regsiter
                WRITE_REGISTER_UCHAR( IsrPortAddr, OCW3_READ_ISR );
                // Read ISR Register
                IsrValue=READ_REGISTER_UCHAR( IsrPortAddr );
                // Resume to IRR Register
                WRITE_REGISTER_UCHAR( IsrPortAddr,  OCW3_READ_IRR);

                if(!IsrValue){
                    // This is a spurious interrupt!!. No Call Driver.
                    goto NocallDriver;
                }
            }

            dispatchCode = (PULONG)(PCR->InterruptRoutine[EISA_VECTORS + interruptVector]);
            interruptObject = CONTAINING_RECORD(dispatchCode,
                                                KINTERRUPT,
                                                DispatchCode);

            returnValue = ((PSECONDARY_DISPATCH)interruptObject->DispatchAddress)(interruptObject);

NocallDriver:

#else //!DBCS

            dispatchCode = (PULONG)(PCR->InterruptRoutine[EISA_VECTORS + interruptVector]);
            interruptObject = CONTAINING_RECORD(dispatchCode,
                                                KINTERRUPT,
                                                DispatchCode);

            returnValue = ((PSECONDARY_DISPATCH)interruptObject->DispatchAddress)(interruptObject);

#endif //DBCS
/* End M001 */
            //
            // Dismiss the interrupt in the EISA interrupt controllers.
            //
            // If this is a cascaded interrupt then the interrupt must be
            // dismissed in both controllers.
            //

            if (interruptVector & 0x08) {
                WRITE_REGISTER_UCHAR(&((PEISA_CONTROL) HalpEisaControlBase)->Interrupt2ControlPort0,
                                     NONSPECIFIC_END_OF_INTERRUPT);
            }

            WRITE_REGISTER_UCHAR(&((PEISA_CONTROL) HalpEisaControlBase)->Interrupt1ControlPort0,
                                   NONSPECIFIC_END_OF_INTERRUPT);

        } else {
            returnValue = HalHandleNMI(NULL, NULL);
        }

    } else {
        returnValue = FALSE;
    }

    return returnValue;
}

VOID
HalpDisableEisaInterrupt(
    IN ULONG Vector
    )

/*++

Routine Description:

    This function Disables the EISA bus specified EISA bus interrupt.

Arguments:

    Vector - Supplies the vector of the ESIA interrupt that is Disabled.

Return Value:

     None.

--*/

{

    //
    // Calculate the EISA interrupt vector.
    //

    Vector -= EISA_VECTORS;

    //
    // Determine if this vector is for interrupt controller 1 or 2.
    //

    if (Vector & 0x08) {

        //
        // The interrupt is in controller 2.
        //

        Vector &= 0x7;

        HalpEisaInterrupt2Mask |= (UCHAR) 1 << Vector;
        WRITE_REGISTER_UCHAR(
            &((PEISA_CONTROL) HalpEisaControlBase)->Interrupt2ControlPort1,
            HalpEisaInterrupt2Mask
            );

    } else {

        //
        // The interrupt is in controller 1.
        //

        Vector &= 0x7;

        HalpEisaInterrupt1Mask |= (ULONG) 1 << Vector;
        WRITE_REGISTER_UCHAR(
            &((PEISA_CONTROL) HalpEisaControlBase)->Interrupt1ControlPort1,
            HalpEisaInterrupt1Mask
            );

    }

}

VOID
HalpEisaMapTransfer(
    IN PADAPTER_OBJECT AdapterObject,
    IN ULONG Offset,
    IN ULONG Length,
    IN BOOLEAN WriteToDevice
    )

/*++

Routine Description:

    This function programs the EISA DMA controller for a transfer.

Arguments:

    Adapter - Supplies the DMA adapter object to be programed.

    Offset - Supplies the logical address to use for the transfer.

    Length - Supplies the length of the transfer in bytes.

    WriteToDevice - Indicates the direction of the transfer.

Return Value:

    None.

--*/

{
    PUCHAR BytePtr;
    UCHAR adapterMode;

    BytePtr = (PUCHAR) &Offset;

    ASSERT(Offset >= 0x100000);

    adapterMode = AdapterObject->AdapterMode;

    //
    // Check to see if this request is for a master I/O card.
    //

    if (((PDMA_EISA_MODE) &adapterMode)->RequestMode == CASCADE_REQUEST_MODE) {

        //
        // Set the mode, Disable the request and return.
        //

        if (AdapterObject->AdapterNumber == 1) {

            //
            // This request is for DMA controller 1
            //

            PDMA1_CONTROL dmaControl;

            dmaControl = AdapterObject->AdapterBaseVa;

            WRITE_REGISTER_UCHAR( &dmaControl->Mode, adapterMode );

            //
            // Unmask the DMA channel.
            //

            WRITE_REGISTER_UCHAR(
                &dmaControl->SingleMask,
                 (UCHAR) (DMA_CLEARMASK | AdapterObject->ChannelNumber)
                 );

        } else {

            //
            // This request is for DMA controller 1
            //

            PDMA2_CONTROL dmaControl;

            dmaControl = AdapterObject->AdapterBaseVa;

            WRITE_REGISTER_UCHAR( &dmaControl->Mode, adapterMode );

            //
            // Unmask the DMA channel.
            //

            WRITE_REGISTER_UCHAR(
                &dmaControl->SingleMask,
                 (UCHAR) (DMA_CLEARMASK | AdapterObject->ChannelNumber)
                 );

        }

        return;
    }


    //
    // Determine the mode based on the transfer direction.
    //

    ((PDMA_EISA_MODE) &adapterMode)->TransferType = WriteToDevice ?
        WRITE_TRANSFER :  READ_TRANSFER;

    //
    // Determine the controller number based on the Adapter base va.
    //

    if (AdapterObject->AdapterNumber == 1) {

        //
        // This request is for DMA controller 1
        //

        PDMA1_CONTROL dmaControl;

        dmaControl = AdapterObject->AdapterBaseVa;

        WRITE_REGISTER_UCHAR( &dmaControl->ClearBytePointer, 0 );

        WRITE_REGISTER_UCHAR( &dmaControl->Mode, adapterMode );

        WRITE_REGISTER_UCHAR(
            &dmaControl->DmaAddressCount[AdapterObject->ChannelNumber]
            .DmaBaseAddress,
            BytePtr[0]
            );

        WRITE_REGISTER_UCHAR(
            &dmaControl->DmaAddressCount[AdapterObject->ChannelNumber]
            .DmaBaseAddress,
            BytePtr[1]
            );

        WRITE_REGISTER_UCHAR(
            ((PUCHAR) &((PEISA_CONTROL) HalpEisaControlBase)->DmaPageLowPort) +
            (ULONG)AdapterObject->PagePort,
            BytePtr[2]
            );

        //
        // Write the high page register with zero value. This enable a special mode
        // which allows ties the page register and base count into a single 24 bit
        // address register.
        //

        WRITE_REGISTER_UCHAR(
            ((PUCHAR) &((PEISA_CONTROL) HalpEisaControlBase)->DmaPageHighPort) +
            (ULONG)AdapterObject->PagePort,
            0
            );


        //
        // Notify DMA chip of the length to transfer.
        //

        WRITE_REGISTER_UCHAR(
            &dmaControl->DmaAddressCount[AdapterObject->ChannelNumber]
            .DmaBaseCount,
            (UCHAR) ((Length - 1) & 0xff)
            );

        WRITE_REGISTER_UCHAR(
            &dmaControl->DmaAddressCount[AdapterObject->ChannelNumber]
            .DmaBaseCount,
            (UCHAR) ((Length - 1) >> 8)
            );


        //
        // Set the DMA chip to read or write mode; and unmask it.
        //

        WRITE_REGISTER_UCHAR(
            &dmaControl->SingleMask,
             (UCHAR) (DMA_CLEARMASK | AdapterObject->ChannelNumber)
             );

    } else {

        //
        // This request is for DMA controller 1
        //

        PDMA2_CONTROL dmaControl;

        dmaControl = AdapterObject->AdapterBaseVa;

        WRITE_REGISTER_UCHAR( &dmaControl->ClearBytePointer, 0 );

        WRITE_REGISTER_UCHAR( &dmaControl->Mode, adapterMode );

        WRITE_REGISTER_UCHAR(
            &dmaControl->DmaAddressCount[AdapterObject->ChannelNumber]
            .DmaBaseAddress,
            BytePtr[0]
            );

        WRITE_REGISTER_UCHAR(
            &dmaControl->DmaAddressCount[AdapterObject->ChannelNumber]
            .DmaBaseAddress,
            BytePtr[1]
            );

        WRITE_REGISTER_UCHAR(
            ((PUCHAR) &((PEISA_CONTROL) HalpEisaControlBase)->DmaPageLowPort) +
            (ULONG)AdapterObject->PagePort,
            BytePtr[2]
            );

        //
        // Write the high page register with zero value. This enable a special mode
        // which allows ties the page register and base count into a single 24 bit
        // address register.
        //

        WRITE_REGISTER_UCHAR(
            ((PUCHAR) &((PEISA_CONTROL) HalpEisaControlBase)->DmaPageHighPort) +
            (ULONG)AdapterObject->PagePort,
            0
            );


        //
        // Notify DMA chip of the length to transfer.
        //

        WRITE_REGISTER_UCHAR(
            &dmaControl->DmaAddressCount[AdapterObject->ChannelNumber]
            .DmaBaseCount,
            (UCHAR) ((Length - 1) & 0xff)
            );

        WRITE_REGISTER_UCHAR(
            &dmaControl->DmaAddressCount[AdapterObject->ChannelNumber]
            .DmaBaseCount,
            (UCHAR) ((Length - 1) >> 8)
            );


        //
        // Set the DMA chip to read or write mode; and unmask it.
        //

        WRITE_REGISTER_UCHAR(
            &dmaControl->SingleMask,
             (UCHAR) (DMA_CLEARMASK | AdapterObject->ChannelNumber)
             );
    }

}

VOID
HalpEnableEisaInterrupt(
    IN ULONG Vector,
    IN KINTERRUPT_MODE InterruptMode
    )

/*++

Routine Description:

    This function enables the EISA bus specified EISA bus interrupt and sets
    the level/edge register to the requested value.

Arguments:

    Vector - Supplies the vector of the ESIA interrupt that is enabled.

    InterruptMode - Supplies the mode of the interrupt; LevelSensitive or
        Latched.

Return Value:

     None.

--*/

{

    //
    // Calculate the EISA interrupt vector.
    //

    Vector -= EISA_VECTORS;

    //
    // Determine if this vector is for interrupt controller 1 or 2.
    //

    if (Vector & 0x08) {

        //
        // The interrupt is in controller 2.
        //

        Vector &= 0x7;

        HalpEisaInterrupt2Mask &= (UCHAR) ~(1 << Vector);
        WRITE_REGISTER_UCHAR(
            &((PEISA_CONTROL) HalpEisaControlBase)->Interrupt2ControlPort1,
            HalpEisaInterrupt2Mask
            );

       //
       // Set the level/edge control register.
       //

       if (InterruptMode == LevelSensitive) {

           HalpEisaInterrupt2Level |= (UCHAR) (1 << Vector);

       } else {

           HalpEisaInterrupt2Level &= (UCHAR) ~(1 << Vector);

       }

       WRITE_REGISTER_UCHAR(
            &((PEISA_CONTROL) HalpEisaControlBase)->Interrupt2EdgeLevel,
            HalpEisaInterrupt2Level
            );

    } else {

        //
        // The interrupt is in controller 1.
        //

        Vector &= 0x7;

        HalpEisaInterrupt1Mask &= (UCHAR) ~(1 << Vector);
        WRITE_REGISTER_UCHAR(
            &((PEISA_CONTROL) HalpEisaControlBase)->Interrupt1ControlPort1,
            HalpEisaInterrupt1Mask
            );

       //
       // Set the level/edge control register.
       //

       if (InterruptMode == LevelSensitive) {

           HalpEisaInterrupt1Level |= (UCHAR) (1 << Vector);

       } else {

           HalpEisaInterrupt1Level &= (UCHAR) ~(1 << Vector);

       }

       WRITE_REGISTER_UCHAR(
            &((PEISA_CONTROL) HalpEisaControlBase)->Interrupt1EdgeLevel,
            HalpEisaInterrupt1Level
            );
    }

}

BOOLEAN
HalHandleNMI(
    IN PKINTERRUPT Interrupt,
    IN PVOID ServiceContext
    )
/*++

Routine Description:

   This function is called when an EISA NMI occurs.  It print the appropriate
   status information and bugchecks.

Arguments:

   Interrupt - Supplies a pointer to the interrupt object

   ServiceContext - Bug number to call bugcheck with.

Return Value:

   Returns TRUE.

--*/
{
    UCHAR   StatusByte;
    UCHAR   EisaPort;
    ULONG   port;

    StatusByte = READ_PORT_UCHAR(&((PEISA_CONTROL) HalpEisaControlBase)->NmiStatus);

    if (StatusByte & 0x80) {
        HalDisplayString ("NMI: Parity Check / Parity Error\n");
    }

    if (StatusByte & 0x40) {
        HalDisplayString ("NMI: Channel Check / IOCHK\n");
    }

     //
     // This is an Eisa machine, check for extnded nmi information...
     //

     StatusByte = READ_PORT_UCHAR(&((PEISA_CONTROL) HalpEisaControlBase)->ExtendedNmiResetControl);

     if (StatusByte & 0x80) {
         HalDisplayString ("NMI: Fail-safe timer\n");
     }

     if (StatusByte & 0x40) {
         HalDisplayString ("NMI: Bus Timeout\n");
     }

     if (StatusByte & 0x20) {
         HalDisplayString ("NMI: Software NMI generated\n");
     }

     //
     // Look for any Eisa expansion board.  See if it asserted NMI.
     //

     for (EisaPort = 0; EisaPort <= 0xf; EisaPort++) {
         port = (EisaPort << 12) + 0xC80;
         port += (ULONG) HalpEisaControlBase;
         WRITE_PORT_UCHAR ((PUCHAR) port, 0xff);
         StatusByte = READ_PORT_UCHAR ((PUCHAR) port);

         if ((StatusByte & 0x80) == 0) {
             //
             // Found valid Eisa board,  Check to see if it's
             // if IOCHKERR is asserted.
             //

             StatusByte = READ_PORT_UCHAR ((PUCHAR) port+4);
             if (StatusByte & 0x2) {
                 EisaNMIMsg[25] = (EisaPort > 9 ? 'A'-10 : '0') + EisaPort;
                 HalDisplayString (EisaNMIMsg);
             }
         }
     }

    KeBugCheck(NMI_HARDWARE_FAILURE);
    return(TRUE);
}