summaryrefslogblamecommitdiffstats
path: root/private/ntos/nthals/halntp/mips/j4cache.s
blob: 555a2c8c046ebd6485d5fd754efc31eeb8869920 (plain) (tree)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804











































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































                                                                                                
//      TITLE("Cache Flush")
//++
//
// Copyright (c) 1991-1993  Microsoft Corporation
//
// Module Name:
//
//    j4cache.s
//
// Abstract:
//
//    This module implements the code necessary for cache operations on
//    a MIPS R4000.
//
// Environment:
//
//    Kernel mode only.
//
//--

#include "halmips.h"

//
// Define cache operations constants.
//

#define COLOR_BITS 			(7 << PAGE_SHIFT)    // color bit (R4000 - 8kb cache)
#define COLOR_MASK 			(0x7fff)             // color mask (R4000 - 8kb cache)
#define FLUSH_BASE 			0xfffe0000           // flush base address
#define PROTECTION_BITS 		((1 << ENTRYLO_V) | (1 << ENTRYLO_D))
#define	ECACHE_PROTECTION_BITS		((1 << ENTRYLO_V) | (2 << ENTRYLO_C) | (1 << ENTRYLO_D))
#define ECACHE_CONTROL_PHYSICAL_BASE	0xD0000000
#define FLUSH_BASE_HACK			FLUSH_BASE
#define PMP_CONTROL_VIRTUAL_BASE	0xFFFFC000
#define PMP_CONTROL_PHYSICAL_BASE	0xC0000000
#define	GLOBAL_CTRL_ECE	  		0x00800080


        SBTTL("Change Color Page")
//++
//
// VOID
// HalChangeColorPage (
//    IN PVOID NewColor,
//    IN PVOID OldColor,
//    IN ULONG PageFrame
//    )
//
// Routine Description:
//
//    This function changes the color of a page if the old and new colors
//    do not match.
//
//    The algorithm used to change colors for a page is as follows:
//
//       1. Purge (hit/invalidate) the page from the instruction cache
//          using the old color.
//
//       2. Purge (hit/invalidate) the page from the data cache using
//          the old color.
//
// Arguments:
//
//    NewColor (a0) - Supplies the page aligned virtual address of the
//       new color of the page to change.
//
//    OldColor (a1) - Supplies the page aligned virtual address of the
//       old color of the page to change.
//
//    PageFrame (a2) - Supplies the page frame number of the page that
//       is changed.
//
// Return Value:
//
//    None.
//
//--

        .struct 0
        .space  3 * 4                   // fill
CpRa:   .space  4                       // saved return address
CpFrameLength:                          // length of stack frame
CpA0:   .space  4                       // (a0)
CpA1:   .space  4                       // (a1)
CpA2:   .space  4                       // (a2)
CpA3:   .space  4                       // (a3)

        NESTED_ENTRY(HalChangeColorPage, CpFrameLength, zero)

        subu    sp,sp,CpFrameLength     // allocate stack frame
        sw      ra,CpRa(sp)             // save return address

        PROLOGUE_END

        and     a0,a0,COLOR_BITS        // isolate new color bits
        and     a1,a1,COLOR_BITS        // isolate old color bits
        beq     a0,a1,10f               // if eq, colors match
        sw      a1,CpA1(sp)             // save old color bits
        sw      a2,CpA2(sp)             // save page frame

//
// Purge the instruction cache using the old page color.
//

        move    a0,a1                   // set color value
        move    a1,a2                   // set page frame number
        li      a2,PAGE_SIZE            // set length of purge
        jal     HalPurgeIcachePage      // purge instruction cache page

//
// Flush the data cache using the old page color.
//

        lw      a0,CpA1(sp)             // get old color bits
        lw      a1,CpA2(sp)             // get page frame number
        li      a2,PAGE_SIZE            // set length of purge
        jal     HalFlushDcachePage      // purge data cache page
10:     lw      ra,CpRa(sp)             // get return address
        addu    sp,sp,CpFrameLength     // deallocate stack frame
        j       ra                      // return

        .end    HalChangeColorPage

        SBTTL("Flush Data Cache Page")
//++
//
// VOID
// HalFlushDcachePage (
//    IN PVOID Color,
//    IN ULONG PageFrame,
//    IN ULONG Length
//    )
//
// Routine Description:
//
//    This function flushes (hit/writeback/invalidate) up to a page of data
//    from the data cache.
//
// Arguments:
//
//    Color (a0) - Supplies the starting virtual address and color of the
//       data that is flushed.
//
//    PageFrame (a1) - Supplies the page frame number of the page that
//       is flushed.
//
//    Length (a2) - Supplies the length of the region in the page that is
//       flushed.
//
// Return Value:
//
//    None.
//
//--


        LEAF_ENTRY(HalFlushDcachePage)

#if DBG

        lw      t0,KeDcacheFlushCount   // get address of dcache flush count
        lw      t1,0(t0)                // increment the count of flushes
        addu    t1,t1,1                 //
        sw      t1,0(t0)                // store result

#endif

        //
	// Determine if the ECache is
	// present (active) which means
	// it is enabled.
	//
        la      t0,HalpPmpExternalCachePresent
        lw	t0,0(t0)
	beq	t0,zero, noECacheFlushDcachePage

        DISABLE_INTERRUPTS(t5)          // disable interrupts

	//
	// Calculate the tlbapping values
	// and determine which half of the
	// tlb entry to use for the on-chip
	// cache.
	//
        .set    noreorder
        .set    noat
        lw      v0,KiPcr + PcAlignedCachePolicy(zero) // get cache policy
        and     a0,a0,COLOR_MASK        // isolate color and offset bits
        li      t0,FLUSH_BASE           // get base flush address
        or      t0,t0,a0                // compute color virtual address
        sll     t1,a1,ENTRYLO_PFN       // shift page frame into position
        or      t1,t1,PROTECTION_BITS   // merge protection bits
        or      t1,t1,v0                // merge cache policy
        and     a0,a0,0x1000            // isolate TB entry index
        beql    zero,a0,11f             // if eq, first entry
        move    t2,zero                 // set second page table entry
        move    t2,t1                   // set second page table entry
        move    t1,zero                 // set first page table entry
11:     mfc0    t3,wired                // get TB entry index
        lw      v0,KiPcr + PcSecondLevelDcacheFillSize(zero) // get 2nd fill size
        lw      t4,KiPcr + PcFirstLevelDcacheFillSize(zero) // get 1st fill size
        bnel    zero,v0,16f             // if ne, second level cache present
        move    t4,v0                   // set flush block size

16:

	//
	// Now calculate the tlb mapping values
	// for the ECache invalidate space and
	// use the other "unused" tlb entry.
	//
        li	t6, (ECACHE_CONTROL_PHYSICAL_BASE >> 2)
	li	t7, ((ECACHE_CONTROL_PHYSICAL_BASE >> PAGE_SHIFT) << ENTRYLO_PFN)
	or	t6, t6, t7
	li	t7, (((512*1024)-1) >> PAGE_SHIFT)
	and	t7, a1, t7
        sll	t7, t7, ENTRYLO_PFN
	or	t6, t6, t7
	li	t7, ECACHE_PROTECTION_BITS
	or	t6, t6, t7

	move	a3, zero
	beql	t1, zero, 17f
	move	t1, t6

	move	t2, t6
	addiu	a3, a3, 1
        .set    at
        .set    reorder

//
// Now we actually do the mapping
// by directly writing the TLB
//
17:

        .set    noreorder
        .set    noat
        mfc0    t6,entryhi              // get current PID and VPN2
        srl     t7,t0,ENTRYHI_VPN2      // isolate VPN2 of virtual address
        sll     t7,t7,ENTRYHI_VPN2      //
        and     t6,t6,0xff << ENTRYHI_PID // isolate current PID
        or      t7,t7,t6                // merge PID with VPN2 of virtual address
        mtc0    t7,entryhi              // set VPN2 and PID for probe
        mtc0    t1,entrylo0             // set first PTE value
        mtc0    t2,entrylo1             // set second PTE value
        mtc0    t3,index                // set TB index value
        nop                             // fill
        tlbwi                           // write TB entry - 3 cycle hazzard
        subu    t6,t4,1                 // compute block size minus one
        and     t7,t0,t6                // compute offset in block
        addu    a2,a2,t6                // round up to next block
        addu    a2,a2,t7                //
        nor     t6,t6,zero              // complement block size minus one
        and     a2,a2,t6                // truncate length to even number
        beq     zero,a2,31f             // if eq, no blocks to flush
        and     t8,t0,t6                // compute starting virtual address
        addu    t9,t8,a2                // compute ending virtual address
        subu    t9,t9,t4                // compute ending loop address

        //
	// Now we use the mapped
	// vaddr based on which half
	// of the tlb entry we used
	// for the ECache mapping.
	//
	move	t6, t8
	li	t7, PAGE_SIZE
        beql	a3, zero, 21f
	subu	t6, t6, t7

	addu	t6, t6, t7
	
//
// Flush the primary data cache and
// invalidate the external cache.
//
21:     cache   HIT_WRITEBACK_INVALIDATE_D,0(t8) // invalidate cache block
	nop
	sw	zero,0(t6)			 // ECache line invalidate
        addu	t6,t6,t4			 // compute next address
        bne     t8,t9,21b               	 // if ne, more blocks to invalidate
        addu    t8,t8,t4                	 // compute next block address
        .set    at
        .set    reorder

	//
	// Now we will mark the ECache page
	// invalid before exiting ...
	//
31:
	.set	noreorder
	.set	noat

#if 1

	//mtc0	zero, entrylo0
	//mtc0	zero, entrylo1
	//nop

#else
	beq	zero, a3, 22f
	nop

	mtc0	zero, entrylo1
	b	23f
	nop

22:
	mtc0	zero, entrylo0
	nop

23:

#endif

	//nop
	//nop
	//nop
	//tlbwi
	//nop
	//nop
	//nop

	.set	at
	.set	reorder

        ENABLE_INTERRUPTS(t5)           // enable interrupts

        j       ra                      // return

//
// This section of code is only executed
// if the processor is not an R4600/R4700 or
// it is an R4600/R4700 but there is no ECache.
//
noECacheFlushDcachePage:
        .set    noreorder
        .set    noat
        lw      v0,KiPcr + PcAlignedCachePolicy(zero) // get cache policy
        and     a0,a0,COLOR_MASK        // isolate color and offset bits
        li      t0,FLUSH_BASE           // get base flush address
        or      t0,t0,a0                // compute color virtual address
        sll     t1,a1,ENTRYLO_PFN       // shift page frame into position
        or      t1,t1,PROTECTION_BITS   // merge protection bits
        or      t1,t1,v0                // merge cache policy
        and     a0,a0,0x1000            // isolate TB entry index
        beql    zero,a0,10f             // if eq, first entry
        move    t2,zero                 // set second page table entry
        move    t2,t1                   // set second page table entry
        move    t1,zero                 // set first page table entry
10:     mfc0    t3,wired                // get TB entry index
        lw      v0,KiPcr + PcSecondLevelDcacheFillSize(zero) // get 2nd fill size
        lw      t4,KiPcr + PcFirstLevelDcacheFillSize(zero) // get 1st fill size
        bnel    zero,v0,15f             // if ne, second level cache present
        move    t4,v0                   // set flush block size
        .set    at
        .set    reorder

//
// Flush a page from the data cache.
//

15:     DISABLE_INTERRUPTS(t5)          // disable interrupts

        .set    noreorder
        .set    noat
        mfc0    t6,entryhi              // get current PID and VPN2
        srl     t7,t0,ENTRYHI_VPN2      // isolate VPN2 of virtual address
        sll     t7,t7,ENTRYHI_VPN2      //
        and     t6,t6,0xff << ENTRYHI_PID // isolate current PID
        or      t7,t7,t6                // merge PID with VPN2 of virtual address
        mtc0    t7,entryhi              // set VPN2 and PID for probe
        mtc0    t1,entrylo0             // set first PTE value
        mtc0    t2,entrylo1             // set second PTE value
        mtc0    t3,index                // set TB index value
        nop                             // fill
        tlbwi                           // write TB entry - 3 cycle hazzard
        subu    t6,t4,1                 // compute block size minus one
        and     t7,t0,t6                // compute offset in block
        addu    a2,a2,t6                // round up to next block
        addu    a2,a2,t7                //
        nor     t6,t6,zero              // complement block size minus one
        and     a2,a2,t6                // truncate length to even number
        beq     zero,a2,30f             // if eq, no blocks to flush
        and     t8,t0,t6                // compute starting virtual address
        addu    t9,t8,a2                // compute ending virtual address
        bne     zero,v0,40f             // if ne, second level cache present
        subu    t9,t9,t4                // compute ending loop address

//
// Flush the primary data cache only.
//

20:     cache   HIT_WRITEBACK_INVALIDATE_D,0(t8) // invalidate cache block
        bne     t8,t9,20b               // if ne, more blocks to invalidate
        addu    t8,t8,t4                // compute next block address
        .set    at
        .set    reorder

30:     ENABLE_INTERRUPTS(t5)           // enable interrupts

        j       ra                      // return

//
// Flush the primary and secondary data caches.
//

        .set    noreorder
        .set    noat
40:     cache   HIT_WRITEBACK_INVALIDATE_SD,0(t8) // invalidate cache block
        bne     t8,t9,40b               // if ne, more blocks to invalidate
        addu    t8,t8,t4                // compute next block address
        .set    at
        .set    reorder

        ENABLE_INTERRUPTS(t5)           // enable interrupts

        j       ra                      // return

        .end    HalFlushDcachePage


        SBTTL("Purge Data Cache Page")
//++
//
// VOID
// HalPurgeDcachePage (
//    IN PVOID Color,
//    IN ULONG PageFrame,
//    IN ULONG Length
//    )
//
// Routine Description:
//
//    This function purges (hit/invalidate) up to a page of data from the
//    data cache.
//
// Arguments:
//
//    Color (a0) - Supplies the starting virtual address and color of the
//       data that is purged.
//
//    PageFrame (a1) - Supplies the page frame number of the page that
//       is purged.
//
//    Length (a2) - Supplies the length of the region in the page that is
//       purged.
//
// Return Value:
//
//    None.
//
//--

        LEAF_ENTRY(HalPurgeDcachePage)

#if DBG

        lw      t0,KeDcacheFlushCount   // get address of dcache flush count
        lw      t1,0(t0)                // increment the count of flushes
        addu    t1,t1,1                 //
        sw      t1,0(t0)                // store result

#endif

        //
	// Determine if the ECache is
	// present (active) which means
	// it is enabled.
	//
	la      t0,HalpPmpExternalCachePresent
        lw	t0,0(t0)
	beq	t0,zero, noECachePurgeDcachePage

        DISABLE_INTERRUPTS(t5)          // disable interrupts

        //
	// Calculate the tlb mapping values
	// and determine which half of the
	// tlb entry to use for the on-chip
	// cache.
	//
        .set    noreorder
        .set    noat
        lw      v0,KiPcr + PcAlignedCachePolicy(zero) // get cache policy
        and     a0,a0,COLOR_MASK        // isolate color bits
        li      t0,FLUSH_BASE           // get base flush address
        or      t0,t0,a0                // compute color virtual address
        sll     t1,a1,ENTRYLO_PFN       // shift page frame into position
        or      t1,t1,PROTECTION_BITS   // merge protection bits
        or      t1,t1,v0                // merge cache policy
        and     a0,a0,0x1000            // isolate TB entry index
        beql    zero,a0,11f             // if eq, first entry
        move    t2,zero                 // set second page table entry
        move    t2,t1                   // set second page table entry
        move    t1,zero                 // set first page table entry
11:     mfc0    t3,wired                // get TB entry index
        lw      v0,KiPcr + PcSecondLevelDcacheFillSize(zero) // get 2nd fill size
        lw      t4,KiPcr + PcFirstLevelDcacheFillSize(zero) // get 1st fill size
        bnel    zero,v0,16f             // if ne, second level cache present
        move    t4,v0                   // set purge block size

	//
	// Now calculate the tlb mapping values
	// for the ECache invalidate space and
	// use the other "unused" tlb entry.
	//
16:
	li	t6, (ECACHE_CONTROL_PHYSICAL_BASE >> 2)
	li	t7, ((ECACHE_CONTROL_PHYSICAL_BASE >> PAGE_SHIFT) << ENTRYLO_PFN)
	or	t6, t6, t7
        li	t7, (((512*1024)-1) >> PAGE_SHIFT)
	and	t7, a1, t7
        sll	t7, t7, ENTRYLO_PFN
	or	t6, t6, t7
	li	t7, ECACHE_PROTECTION_BITS
	or	t6, t6, t7
	
	move	a3, zero
	beql	t1, zero, 17f
	move	t1, t6

	move	t2, t6
	addiu	a3, a3, 1
        .set    at
        .set    reorder

//
// Now we actually do the mapping
// by directly writing the TLB
//
17:

        .set    noreorder
        .set    noat
        mfc0    t6,entryhi              // get current PID and VPN2
        srl     t7,t0,ENTRYHI_VPN2      // isolate VPN2 of virtual address
        sll     t7,t7,ENTRYHI_VPN2      //
        and     t6,t6,0xff << ENTRYHI_PID // isolate current PID
        or      t7,t7,t6                // merge PID with VPN2 of virtual address
        mtc0    t7,entryhi              // set VPN2 and PID for probe
        mtc0    t1,entrylo0             // set first PTE value
        mtc0    t2,entrylo1             // set second PTE value
        mtc0    t3,index                // set TB index value
        nop                             // fill
        tlbwi                           // write TB entry - 3 cycle hazzard
        subu    t6,t4,1                 // compute block size minus one
        and     t7,t0,t6                // compute offset in block
        addu    a2,a2,t6                // round up to next block
        addu    a2,a2,t7                //
        nor     t6,t6,zero              // complement block size minus one
        and     a2,a2,t6                // truncate length to even number
        beq     zero,a2,31f             // if eq, no blocks to purge
        and     t8,t0,t6                // compute starting virtual address
        addu    t9,t8,a2                // compute ending virtual address
        subu    t9,t9,t4                // compute ending loop address

        //
	// Now we use the mapped
	// vaddr based on which half
	// of the tlb entry we used
	// for the ECache mapping.
	//
	move	t6, t8
	li	t7, PAGE_SIZE
        beql	a3, zero, 21f
	subu	t6, t6, t7

	addu	t6, t6, t7

//
// Purge the primary data cache and
// invalidate the external cache.
//
21:	cache	HIT_INVALIDATE_D,0(t8)	// invalidate cache block
	nop
	sw	zero,0(t6)		// ECache line invalidate
        addu	t6,t6,t4		// compute next address
        bne     t8,t9,21b               // if ne, more blocks to invalidate
        addu    t8,t8,t4                // compute next block address
        .set    at
        .set    reorder

	//
	// Now we will mark the ECache page
	// invalid before exiting ...
	//
31:
	.set	noreorder
	.set	noat

#if 1

	//mtc0	zero, entrylo0
	//mtc0	zero, entrylo1
	//nop

#else

	beq	zero, a3, 22f
	nop

	mtc0	zero, entrylo1
	b	23f
	nop

22:
	mtc0	zero, entrylo0
	nop

23:

#endif

	//nop
	//nop
	//nop
	//tlbwi
	//nop
	//nop
	//nop

	.set	at
	.set	reorder

        ENABLE_INTERRUPTS(t5)           // enable interrupts

        j       ra                      // return


//
// This section of code is only executed
// if the processor is not an R4600/R4700 or
// it is an R4600/R4700 but there is no ECache.
//	
noECachePurgeDcachePage:
        .set    noreorder
        .set    noat
        lw      v0,KiPcr + PcAlignedCachePolicy(zero) // get cache policy
        and     a0,a0,COLOR_MASK        // isolate color bits
        li      t0,FLUSH_BASE           // get base flush address
        or      t0,t0,a0                // compute color virtual address
        sll     t1,a1,ENTRYLO_PFN       // shift page frame into position
        or      t1,t1,PROTECTION_BITS   // merge protection bits
        or      t1,t1,v0                // merge cache policy
        and     a0,a0,0x1000            // isolate TB entry index
        beql    zero,a0,10f             // if eq, first entry
        move    t2,zero                 // set second page table entry
        move    t2,t1                   // set second page table entry
        move    t1,zero                 // set first page table entry
10:     mfc0    t3,wired                // get TB entry index
        lw      v0,KiPcr + PcSecondLevelDcacheFillSize(zero) // get 2nd fill size
        lw      t4,KiPcr + PcFirstLevelDcacheFillSize(zero) // get 1st fill size
        bnel    zero,v0,15f             // if ne, second level cache present
        move    t4,v0                   // set purge block size
        .set    at
        .set    reorder

//
// Purge data from the data cache.
//

15:     DISABLE_INTERRUPTS(t5)          // disable interrupts

        .set    noreorder
        .set    noat
        mfc0    t6,entryhi              // get current PID and VPN2
        srl     t7,t0,ENTRYHI_VPN2      // isolate VPN2 of virtual address
        sll     t7,t7,ENTRYHI_VPN2      //
        and     t6,t6,0xff << ENTRYHI_PID // isolate current PID
        or      t7,t7,t6                // merge PID with VPN2 of virtual address
        mtc0    t7,entryhi              // set VPN2 and PID for probe
        mtc0    t1,entrylo0             // set first PTE value
        mtc0    t2,entrylo1             // set second PTE value
        mtc0    t3,index                // set TB index value
        nop                             // fill
        tlbwi                           // write TB entry - 3 cycle hazzard
        subu    t6,t4,1                 // compute block size minus one
        and     t7,t0,t6                // compute offset in block
        addu    a2,a2,t6                // round up to next block
        addu    a2,a2,t7                //
        nor     t6,t6,zero              // complement block size minus one
        and     a2,a2,t6                // truncate length to even number
        beq     zero,a2,30f             // if eq, no blocks to purge
        and     t8,t0,t6                // compute starting virtual address
        addu    t9,t8,a2                // compute ending virtual address
        bne     zero,v0,40f             // if ne, second level cache present
        subu    t9,t9,t4                // compute ending loop address

//
// Purge the primary data cache only.
//

20:	cache	HIT_INVALIDATE_D,0(t8)	// invalidate cache block
        bne     t8,t9,20b               // if ne, more blocks to invalidate
        addu    t8,t8,t4                // compute next block address
        .set    at
        .set    reorder

30:     ENABLE_INTERRUPTS(t5)           // enable interrupts

        j       ra                      // return

//
// Purge the primary and secondary data caches.
//

        .set    noreorder
        .set    noat
40:     cache   HIT_INVALIDATE_SD,0(t8) // invalidate cache block
        bne     t8,t9,40b               // if ne, more blocks to invalidate
        addu    t8,t8,t4                // compute next block address
        .set    at
        .set    reorder

        ENABLE_INTERRUPTS(t5)           // enable interrupts

        j       ra                      // return

        .end    HalPurgeDcachePage

        SBTTL("Purge Instruction Cache Page")
//++
//
// VOID
// HalPurgeIcachePage (
//    IN PVOID Color,
//    IN ULONG PageFrame,
//    IN ULONG Length
//    )
//
// Routine Description:
//
//    This function purges (hit/invalidate) up to a page of data from the
//    instruction cache.
//
// Arguments:
//
//    Color (a0) - Supplies the starting virtual address and color of the
//       data that is purged.
//
//    PageFrame (a1) - Supplies the page frame number of the page that
//       is purged.
//
//    Length (a2) - Supplies the length of the region in the page that is
//       purged.
//
// Return Value:
//
//    None.
//
//--

	LEAF_ENTRY(HalPurgeIcachePage)

#if DBG

        lw      t0,KeIcacheFlushCount   // get address of icache flush count
        lw      t1,0(t0)                // increment the count of flushes
        addu    t1,t1,1                 //
        sw      t1,0(t0)                // store result

#endif

        //
	// Determine if the ECache is
	// present (active) which means
	// it is enabled.
	//
	la      t0,HalpPmpExternalCachePresent
        lw	t0,0(t0)
	beq	t0,zero, noECachePurgeIcachePage

        DISABLE_INTERRUPTS(t5)          // disable interrupts

        //
	// Calculate the tlb mapping values
	// and determine which half of the
	// tlb entry to use for the on-chip
	// cache.
	//
        .set    noreorder
        .set    noat
        lw      v0,KiPcr + PcAlignedCachePolicy(zero) // get cache policy
        and     a0,a0,COLOR_MASK        // isolate color bits
        li      t0,FLUSH_BASE           // get base flush address
        or      t0,t0,a0                // compute color virtual address
        sll     t1,a1,ENTRYLO_PFN       // shift page frame into position
        or      t1,t1,PROTECTION_BITS   // merge protection bits
        or      t1,t1,v0                // merge cache policy
        and     a0,a0,0x1000            // isolate TB entry index
        beql    zero,a0,11f             // if eq, first entry
        move    t2,zero                 // set second page table entry
        move    t2,t1                   // set second page table entry
        move    t1,zero                 // set first page table entry
11:     mfc0    t3,wired                // get TB entry index
        lw      v0,KiPcr + PcSecondLevelIcacheFillSize(zero) // get 2nd fill size
        lw      t4,KiPcr + PcFirstLevelIcacheFillSize(zero) // get 1st fill size
        bnel    zero,v0,16f             // if ne, second level cache present
        move    t4,v0                   // set purge block size

	//
	// Now calculate the tlb mapping values
	// for the ECache invalidate space and
	// use the other "unused" tlb entry.
	//
16:

	li	t6, (ECACHE_CONTROL_PHYSICAL_BASE >> 2)
	li	t7, ((ECACHE_CONTROL_PHYSICAL_BASE >> PAGE_SHIFT) << ENTRYLO_PFN)
	or	t6, t6, t7
        li	t7, (((512*1024)-1) >> PAGE_SHIFT)
	and	t7, a1, t7
        sll	t7, t7, ENTRYLO_PFN
	or	t6, t6, t7
	li	t7, ECACHE_PROTECTION_BITS
	or	t6, t6, t7

        move	a3, zero
	beql	t1, zero, 17f
	move	t1, t6

	move	t2, t6
	addiu	a3, a3, 1
        .set    at
        .set    reorder

//
// Now we actually do the mapping
// by directly writing the TLB
//
17:

        .set    noreorder
        .set    noat
        mfc0    t6,entryhi              // get current PID and VPN2
        srl     t7,t0,ENTRYHI_VPN2      // isolate VPN2 of virtual address
        sll     t7,t7,ENTRYHI_VPN2      //
        and     t6,t6,0xff << ENTRYHI_PID // isolate current PID
        or      t7,t7,t6                // merge PID with VPN2 of virtual address
        mtc0    t7,entryhi              // set VPN2 and PID for probe
        mtc0    t1,entrylo0             // set first PTE value
        mtc0    t2,entrylo1             // set second PTE value
        mtc0    t3,index                // set TB index value
        nop                             // fill
        tlbwi                           // write TB entry - 3 cycle hazzard
        subu    t6,t4,1                 // compute block size minus one
        and     t7,t0,t6                // compute offset in block
        addu    a2,a2,t6                // round up to next block
        addu    a2,a2,t7                //
        nor     t6,t6,zero              // complement block size minus one
        and     a2,a2,t6                // truncate length to even number
        beq     zero,a2,31f             // if eq, no blocks to purge
        and     t8,t0,t6                // compute starting virtual address
        addu    t9,t8,a2                // compute ending virtual address
        subu    t9,t9,t4                // compute ending loop address

        //
	// Now we use the mapped
	// vaddr based on which half
	// of the tlb entry we used
	// for the ECache mapping.
	//
	move	t6, t8
	li	t7, PAGE_SIZE
        beql	a3, zero, 21f
	subu	t6, t6, t7

	addu	t6, t6, t7

//
// Purge the primary instruction cache and
// invalidate the external cache.
//
21:     cache   HIT_INVALIDATE_I,0(t8)  // invalidate cache block
	nop
	sw	zero,0(t6)		// ECache line invalidate
        addu	t6,t6,t4		// compute next address
        bne     t8,t9,21b               // if ne, more blocks to invalidate
        addu    t8,t8,t4                // compute next block address
        .set    at
        .set    reorder

	//
	// Now we will mark the ECache page
	// invalid before exiting ...
	//
31:

	ENABLE_INTERRUPTS(t5)           // enable interrupts

        j       ra                      // return

//
// This section of code is only executed
// if the processor is not an R4600/R4700 or
// it is an R4600/R4700 but there is no ECache.
//
noECachePurgeIcachePage:
        .set    noreorder
        .set    noat
        lw      v0,KiPcr + PcAlignedCachePolicy(zero) // get cache policy
        and     a0,a0,COLOR_MASK        // isolate color bits
        li      t0,FLUSH_BASE           // get base flush address
        or      t0,t0,a0                // compute color virtual address
        sll     t1,a1,ENTRYLO_PFN       // shift page frame into position
        or      t1,t1,PROTECTION_BITS   // merge protection bits
        or      t1,t1,v0                // merge cache policy
        and     a0,a0,0x1000            // isolate TB entry index
        beql    zero,a0,10f             // if eq, first entry
        move    t2,zero                 // set second page table entry
        move    t2,t1                   // set second page table entry
        move    t1,zero                 // set first page table entry
10:     mfc0    t3,wired                // get TB entry index
        lw      v0,KiPcr + PcSecondLevelIcacheFillSize(zero) // get 2nd fill size
        lw      t4,KiPcr + PcFirstLevelIcacheFillSize(zero) // get 1st fill size
        bnel    zero,v0,15f             // if ne, second level cache present
        move    t4,v0                   // set purge block size
        .set    at
        .set    reorder

//
// Purge data from the instruction cache.
//

15:     DISABLE_INTERRUPTS(t5)          // disable interrupts

        .set    noreorder
        .set    noat
        mfc0    t6,entryhi              // get current PID and VPN2
        srl     t7,t0,ENTRYHI_VPN2      // isolate VPN2 of virtual address
        sll     t7,t7,ENTRYHI_VPN2      //
        and     t6,t6,0xff << ENTRYHI_PID // isolate current PID
        or      t7,t7,t6                // merge PID with VPN2 of virtual address
        mtc0    t7,entryhi              // set VPN2 and PID for probe
        mtc0    t1,entrylo0             // set first PTE value
        mtc0    t2,entrylo1             // set second PTE value
        mtc0    t3,index                // set TB index value
        nop                             // fill
        tlbwi                           // write TB entry - 3 cycle hazzard
        subu    t6,t4,1                 // compute block size minus one
        and     t7,t0,t6                // compute offset in block
        addu    a2,a2,t6                // round up to next block
        addu    a2,a2,t7                //
        nor     t6,t6,zero              // complement block size minus one
        and     a2,a2,t6                // truncate length to even number
        beq     zero,a2,30f             // if eq, no blocks to purge
        and     t8,t0,t6                // compute starting virtual address
        addu    t9,t8,a2                // compute ending virtual address
        bne     zero,v0,40f             // if ne, second level cache present
        subu    t9,t9,t4                // compute ending loop address

//
// Purge the primary instruction cache only.
//

20:     cache   HIT_INVALIDATE_I,0(t8)  // invalidate cache block
        bne     t8,t9,20b               // if ne, more blocks to invalidate
        addu    t8,t8,t4                // compute next block address
        .set    at
        .set    reorder

30:     ENABLE_INTERRUPTS(t5)           // enable interrupts

        j       ra                      // return

//
// Purge the primary and secondary instruction caches.
//

        .set    noreorder
        .set    noat
40:     cache   HIT_INVALIDATE_SI,0(t8) // invalidate cache block
        bne     t8,t9,40b               // if ne, more blocks to invalidate
        addu    t8,t8,t4                // compute next block address
        .set    at
        .set    reorder

        ENABLE_INTERRUPTS(t5)           // enable interrupts

        j       ra                      // return

        .end    HalPurgeIcachePage

        SBTTL("Sweep Data Cache")
//++
//
// VOID
// HalpSweepDcache (
//    VOID
//    )
//
// Routine Description:
//
//    This function sweeps (index/writeback/invalidate) the entire data cache.
//
// Arguments:
//
//    a0	contains the virtual address of the ECache invalidate
//		register (if enabled); otherwise, it is NULL.
//
// Return Value:
//
//    None.
//
//--

	LEAF_ENTRY(HalpSweepDcache)

#if DBG

        lw      t0,KeDcacheFlushCount   // get address of dcache flush count
        lw      t1,0(t0)                // increment the count of flushes
        addu    t1,t1,1                 //
        sw      t1,0(t0)                // store result

#endif

	//
	// Determine if ECache is active
	//
	.set	noreorder
	.set	noat
	beq	a0, zero, noECacheSweepDcache
	nop

	//
	// Get vaddr of ECache invalidate register
	//
	lw	t2, HalpExtPmpControl
	.set	at
	.set	reorder

//////////////////////////////////////////////////////////////////////////
//
// This section is executed only
// if the sweep routine was called
// via HalFlushIoBuffer()
//
//////////////////////////////////////////////////////////////////////////
ECacheSweepDcache:

	DISABLE_INTERRUPTS(t5)

       	lw      t0,KiPcr + PcFirstLevelDcacheSize(zero) // get data cache size
        lw      t1,KiPcr + PcFirstLevelDcacheFillSize(zero) // get block size
        li      a0,KSEG0_BASE           // set starting index value
        addu    a1,a0,t0                // compute ending cache address
        subu    a1,a1,t1                // compute ending block address

	//
	// Determine if this is an R4600/R4700
	// and if so then we need to deal
	// with the two-way set associativity.
	//
        .set    noreorder
        .set    noat
        mfc0	t3, prid
	nop
	nop
	nop
	li	t0, 2
	srl	t3, t3, 12
	bne	t3, t0, 60f
	nop
        .set    at
        .set    reorder

//
// Sweep the primary data cache (R4600/R4700 only).
//

        .set    noreorder
        .set    noat
50:     cache   INDEX_WRITEBACK_INVALIDATE_D,0(a0) // writeback/invalidate on index
	nop                             // fill
        cache   INDEX_WRITEBACK_INVALIDATE_D,8192(a0) // writeback/invalidate on index
        bne     a0,a1,50b               // if ne, more to invalidate
        addu    a0,a0,t1                // compute address of next block
        .set    at
        .set    reorder

	//
	// Invalidate the ECache
	//
	lb	t1, 0(t2)				// External PMP Control
	ori	t1, t1, 1
	sb	t1, 0(t2)
	andi	t1, t1, 0xFE
	sb	t1, 0(t2)
	ori	t1, t1, 1
	sb	t1, 0(t2)
	lb	zero, 0(t2)				// External cache INVALIDATED

	ENABLE_INTERRUPTS(t5)

        j	ra

//
// Sweep the primary data cache (except R4600/R4700).
//
	.set    noreorder
        .set    noat
60:     cache   INDEX_WRITEBACK_INVALIDATE_D,0(a0) // writeback/invalidate on index
        bne     a0,a1,60b               // if ne, more to invalidate
        addu    a0,a0,t1                // compute address of next block
        .set	at
	.set	reorder

	//
	// Invalidate the ECache
	//
	lb	t1, 0(t2)				// External PMP Control
	ori	t1, t1, 1
	sb	t1, 0(t2)
	andi	t1, t1, 0xFE
	sb	t1, 0(t2)
	ori	t1, t1, 1
	sb	t1, 0(t2)
	lb	zero, 0(t2)				// External cache INVALIDATED

	ENABLE_INTERRUPTS(t5)

        j	ra

//////////////////////////////////////////////////////////////
//
// This section of code is executed
// there is no ECache active ...
//
//////////////////////////////////////////////////////////////
noECacheSweepDcache:

       	lw      t0,KiPcr + PcFirstLevelDcacheSize(zero) // get data cache size
        lw      t1,KiPcr + PcFirstLevelDcacheFillSize(zero) // get block size
        li      a0,KSEG0_BASE           // set starting index value
        addu    a1,a0,t0                // compute ending cache address
        subu    a1,a1,t1                // compute ending block address

	//
	// Determine if this is an R4600/R4700
	// and if so then we need to deal
	// with the two-way set associativity.
	//
        .set    noreorder
        .set    noat
        mfc0	t3, prid
	nop
	nop
	nop
	li	t0, 2
	srl	t3, t3, 12
	bne	t3, t0, 10f
	nop
        .set    at
        .set    reorder

//
// Sweep the primary data cache (R4600/R4700 only).
//

	DISABLE_INTERRUPTS(t5)

        .set    noreorder
        .set    noat
50:     cache   INDEX_WRITEBACK_INVALIDATE_D,0(a0) // writeback/invalidate on index
	nop                             // fill
        cache   INDEX_WRITEBACK_INVALIDATE_D,8192(a0) // writeback/invalidate on index
        bne     a0,a1,50b               // if ne, more to invalidate
        addu    a0,a0,t1                // compute address of next block
        .set    at
        .set    reorder

	ENABLE_INTERRUPTS(t5)

        j       ra                      // return

//
// Sweep the primary data cache (except R4600/R4700).
//

10:
	DISABLE_INTERRUPTS(t5)

	.set    noreorder
        .set    noat
11:     cache   INDEX_WRITEBACK_INVALIDATE_D,0(a0) // writeback/invalidate on index
        bne     a0,a1,11b               // if ne, more to invalidate
        addu    a0,a0,t1                // compute address of next block
        .set    at
        .set    reorder

        lw      t0,KiPcr + PcSecondLevelDcacheSize(zero) // get data cache size
        lw      t1,KiPcr + PcSecondLevelDcacheFillSize(zero) // get block size
        beq     zero,t1,40f             // if eq, no second level cache
        li      a0,KSEG0_BASE           // set starting index value
        addu    a1,a0,t0                // compute ending cache address
        subu    a1,a1,t1                // compute ending block address

//
// Sweep the secondary data cache (except R4600/R4700).
//

        .set    noreorder
        .set    noat
20:     cache   INDEX_WRITEBACK_INVALIDATE_SD,0(a0) // writeback/invalidate on index
        bne     a0,a1,20b               // if ne, more to invalidate
        addu    a0,a0,t1                // compute address of next block
        .set    at
        .set    reorder

40:
	ENABLE_INTERRUPTS(t5)

	j       ra                      // return

        .end    HalpSweepDcache

        SBTTL("Sweep Data Cache Range")
//++
//
// VOID
// HalSweepDcacheRange (
//    IN PVOID BaseAddress,
//    IN ULONG Length
//    )
//
// Routine Description:
//
//    This function sweeps (index/writeback/invalidate) the specified range
//    of virtual addresses from the primary data cache.
//
// Arguments:
//
//    BaseAddress (a0) - Supplies the base address of the range that is swept
//        from the data cache.
//
//    Length (a1) - Supplies the length of the range that is swept from the
//        data cache.
//
// Return Value:
//
//    None.
//
//--

        LEAF_ENTRY(HalSweepDcacheRange)

#if DBG

        lw      t0,KeDcacheFlushCount   // get address of dcache flush count
        lw      t1,0(t0)                // increment the count of flushes
        addu    t1,t1,1                 //
        sw      t1,0(t0)                // store result conditionally

#endif

        and     a0,a0,COLOR_MASK        // isolate color and offset bits
        or      a0,a0,KSEG0_BASE        // convert to physical address
        lw      t0,KiPcr + PcFirstLevelDcacheFillSize(zero) // get block size
        addu    a1,a0,a1                // compute ending cache address
        subu    a1,a1,t0                // compute ending block address

	//
	// Determine if this is an R4600/R4700
	// and if so then we need to deal
	// with the two-way set associativity.
	//
        .set    noreorder
        .set    noat
        mfc0	t1, prid
	nop
	nop
	nop
	li	t2, 2
	srl	t1, t1, 12
	bne	t1, t2, 20f
	nop
        .set    at
        .set    reorder

//
// Sweep the primary data cache (only R4600/R4700).
//

	DISABLE_INTERRUPTS(t5)

	.set    noreorder
        .set    noat
10:     cache   INDEX_WRITEBACK_INVALIDATE_D,0(a0) 	// writeback/invalidate on index
	nop
	cache	INDEX_WRITEBACK_INVALIDATE_D,8192(a0)	// do other set on Orion
	bne     a0,a1,10b               		// if ne, more to invalidate
        addu    a0,a0,t0                		// compute address of next block
        .set    at
        .set    reorder

	ENABLE_INTERRUPTS(t5)

	j	ra

//
// Sweep the primary data cache (except R4600/R4700).
//
	.set    noreorder
        .set    noat
20:     cache   INDEX_WRITEBACK_INVALIDATE_D,0(a0) // writeback/invalidate on index
        bne     a0,a1,20b               // if ne, more to invalidate
        addu    a0,a0,t0                // compute address of next block
        .set    at
        .set    reorder

        j       ra                      // return

        .end    HalSweepDcacheRange

        SBTTL("Sweep Instruction Cache")
//++
//
// VOID
// HalpSweepIcache (
//    VOID
//    )
//
// Routine Description:
//
//    This function sweeps (index/invalidate) the entire instruction cache.
//
// Arguments:
//
//    a0	contains the virtual address of the ECache invalidate
//		register (if enabled); otherwise, it is NULL.
//
// Return Value:
//
//    None.
//
//--

	LEAF_ENTRY(HalpSweepIcache)

#if DBG

        lw      t0,KeIcacheFlushCount   // get address of icache flush count
        lw      t1,0(t0)                // increment the count of flushes
        addu    t1,t1,1                 //
        sw      t1,0(t0)                // store result

#endif

	//
	// Determine if ECache is active
	//
	.set	noreorder
	.set	noat
	beq	a0, zero, noECacheSweepIcache
	nop

        //
	// Get vaddr of ECache invalidate register
	//
	lw	t2, HalpExtPmpControl
	.set	at
	.set	reorder

//
// Invalidate the External Cache
//
ECacheSweepIcache:

	DISABLE_INTERRUPTS(t5)          // disable interrupts

	lb	t1, 4(t2)				
	ori	t1, t1, 1
	sb	t1, 4(t2)
	andi	t1, t1, 0xFE
	sb	t1, 4(t2)
	ori	t1, t1, 1
	sb	t1, 4(t2)
	lb	zero, 4(t2)				// ECache INVALIDATED


	lw      t0,KiPcr + PcFirstLevelIcacheSize(zero) // get instruction cache size
        lw      t1,KiPcr + PcFirstLevelIcacheFillSize(zero) // get fill size
        li      a0,KSEG0_BASE           // set starting index value
        addu    a1,a0,t0                // compute ending cache address
        subu    a1,a1,t1                // compute ending block address

	//
 	// Determine if this is an R4600/R4700
	// and if so then we need to deal
	// with the two-way set associativity.
	//
        .set    noreorder
        .set    noat
        mfc0	t3, prid
	nop
	nop
	nop
	li	t2, 2
	srl	t3, t3, 12
	bne	t3, t2, 60f
	nop
        .set    at
        .set    reorder

//
// Sweep the primary instruction cache (R4600/R4700 only).
//

	.set	noreorder
	.set	noat
50:     cache   INDEX_INVALIDATE_I,0(a0) // invalidate cache line
	nop                             // fill
        cache   INDEX_INVALIDATE_I,8192(a0) // writeback/invalidate on index
        bne     a0,a1,50b               // if ne, more to invalidate
        addu    a0,a0,t1                // compute address of next block
        .set	at
	.set	reorder

	ENABLE_INTERRUPTS(t5)           // enable interrupts

	j	ra

//
// Sweep the primary instruction cache (except R4600/R4700).
//
	.set    noreorder
        .set    noat
60:     cache   INDEX_INVALIDATE_I,0(a0) // invalidate cache line
        bne     a0,a1,60b               // if ne, more to invalidate
        addu    a0,a0,t1                // compute address of next block
        .set	at
	.set	reorder

	ENABLE_INTERRUPTS(t5)

	j	ra

//
// No ECache section
//
noECacheSweepIcache:

       	//
	// Determine if this is an R4600/R4700
	// and if so then we need to deal
	// with the two-way set associativity.
	//
        .set    noreorder
        .set    noat
        mfc0	t3, prid
	nop
	nop
	nop
	li	t2, 2
	srl	t3, t3, 12
	bne	t3, t2, 60f
	nop
        .set    at
        .set    reorder

//
// Sweep the primary instruction cache (R4600/R4700 only).
//
	lw      t0,KiPcr + PcFirstLevelIcacheSize(zero) // get instruction cache size
        lw      t1,KiPcr + PcFirstLevelIcacheFillSize(zero) // get fill size
        li      a0,KSEG0_BASE           // set starting index value
        addu    a1,a0,t0                // compute ending cache address
        subu    a1,a1,t1                // compute ending block address

        DISABLE_INTERRUPTS(t0)          // disable interrupts

        .set    noreorder
        .set    noat
50:     cache   INDEX_INVALIDATE_I,0(a0) // invalidate cache line
	nop                             // fill
        cache   INDEX_INVALIDATE_I,8192(a0) // writeback/invalidate on index
        bne     a0,a1,50b               // if ne, more to invalidate
        addu    a0,a0,t1                // compute address of next block
        .set    at
        .set    reorder

        ENABLE_INTERRUPTS(t0)           // enable interrupts

	j	ra

//
// Sweep the secondary instruction cache (except R4600/R4700).
//
60:
	DISABLE_INTERRUPTS(t5)

	lw      t0,KiPcr + PcSecondLevelIcacheSize(zero) // get instruction cache size
        lw      t1,KiPcr + PcSecondLevelIcacheFillSize(zero) // get fill size
        beq     zero,t1,20f             // if eq, no second level cache
        li      a0,KSEG0_BASE           // set starting index value
        addu    a1,a0,t0                // compute ending cache address
        subu    a1,a1,t1                // compute ending block address

        .set    noreorder
        .set    noat
10:     cache   INDEX_INVALIDATE_SI,0(a0) // invalidate cache line
        bne     a0,a1,10b               // if ne, more to invalidate
        addu    a0,a0,t1                // compute address of next block
        .set    at
        .set    reorder

//
// Sweep the primary instruction cache (except R4600/R4700).
//
20:     lw      t0,KiPcr + PcFirstLevelIcacheSize(zero) // get instruction cache size
        lw      t1,KiPcr + PcFirstLevelIcacheFillSize(zero) // get fill size
        li      a0,KSEG0_BASE           // set starting index value
        addu    a1,a0,t0                // compute ending cache address
        subu    a1,a1,t1                // compute ending block address

        .set    noreorder
        .set    noat
40:     cache   INDEX_INVALIDATE_I,0(a0) // invalidate cache line
        bne     a0,a1,40b               // if ne, more to invalidate
        addu    a0,a0,t1                // compute address of next block
        .set    at
        .set    reorder

	ENABLE_INTERRUPTS(t5)

	j       ra                      // return

        .end    HalpSweepIcache


        SBTTL("Sweep Instruction Cache Range")
//++
//
// VOID
// HalSweepIcacheRange (
//    IN PVOID BaseAddress,
//    IN ULONG Length
//    )
//
// Routine Description:
//
//    This function sweeps (index/invalidate) the specified range of addresses
//    from the instruction cache.
//
// Arguments:
//
//    BaseAddress (a0) - Supplies the base address of the range that is swept
//        from the instruction cache.
//
//    Length (a1) - Supplies the length of the range that is swept from the
//        instruction cache.
//
// Return Value:
//
//    None.
//
//--

        LEAF_ENTRY(HalSweepIcacheRange)

#if DBG

        lw      t0,KeIcacheFlushCount   // get address of icache flush count
        lw      t1,0(t0)                // increment the count of flushes
        addu    t1,t1,1                 //
        sw      t1,0(t0)                // store result

#endif

        and     a0,a0,COLOR_MASK        // isolate color and offset bits
        or      a0,a0,KSEG0_BASE        // convert to physical address
        lw      t0,KiPcr + PcFirstLevelIcacheFillSize(zero) // get fill size
        addu    a1,a0,a1                // compute ending cache address
        subu    a1,a1,t0                // compute ending block address

	//
	// Determine if this is an R4600/R4700
	// and if so then we need to deal
	// with the two-way set associativity.
	//
        .set    noreorder
        .set    noat
        mfc0	t3, prid
	nop
	nop
	nop
	li	t2, 2
	srl	t3, t3, 12
	bne	t3, t2, 20f
	nop
        .set    at
        .set    reorder

//
// Sweep the primary instruction cache (only R4600/R4700)
//

	DISABLE_INTERRUPTS(t5)          	// disable interrupts

	.set    noreorder
        .set    noat
10:     cache   INDEX_INVALIDATE_I,0(a0) 	// invalidate cache line
	nop
	cache	INDEX_INVALIDATE_I,8192(a0)	// do other set on Orion
	bne     a0,a1,10b               	// if ne, more to invalidate
        addu    a0,a0,t0                	// compute address of next block
        .set    at
        .set    reorder

	ENABLE_INTERRUPTS(t5)           	// enable interrupts

	j	ra

//
// Sweep the primary instruction cache (except R4600/R4700)
//
	.set    noreorder
        .set    noat
20:     cache   INDEX_INVALIDATE_I,0(a0) // invalidate cache line
        bne     a0,a1,20b               // if ne, more to invalidate
        addu    a0,a0,t0                // compute address of next block
        .set    at
        .set    reorder

        j       ra                      // return

        .end    HalSweepIcacheRange

        SBTTL("Zero Page")
//++
//
// VOID
// HalZeroPage (
//    IN PVOID NewColor,
//    IN PVOID OldColor,
//    IN ULONG PageFrame
//    )
//
// Routine Description:
//
//    This function zeros a page of memory.
//
//    The algorithm used to zero a page is as follows:
//
//       1. Purge (hit/invalidate) the page from the instruction cache
//          using the old color iff the old color is not the same as
//          the new color.
//
//       2. Purge (hit/invalidate) the page from the data cache using
//          the old color iff the old color is not the same as the new
//          color.
//
//       3. Create (create/dirty/exclusive) the page in the data cache
//          using the new color.
//
//       4. Write zeros to the page using the new color.
//
// Arguments:
//
//    NewColor (a0) - Supplies the page aligned virtual address of the
//       new color of the page that is zeroed.
//
//    OldColor (a1) - Supplies the page aligned virtual address of the
//       old color of the page that is zeroed.
//
//    PageFrame (a2) - Supplies the page frame number of the page that
//       is zeroed.
//
// Return Value:
//
//    None.
//
//--

        .struct 0
        .space  3 * 4                   // fill
ZpRa:   .space  4                       // saved return address
ZpFrameLength:                          // length of stack frame
ZpA0:   .space  4                       // (a0)
ZpA1:   .space  4                       // (a1)
ZpA2:   .space  4                       // (a2)
ZpA3:   .space  4                       // (a3)

        NESTED_ENTRY(HalZeroPage, ZpFrameLength, zero)

        subu    sp,sp,ZpFrameLength     // allocate stack frame
        sw      ra,ZpRa(sp)             // save return address

        PROLOGUE_END

        and     a0,a0,COLOR_BITS        // isolate new color bits
        and     a1,a1,COLOR_BITS        // isolate old color bits
        sw      a0,ZpA0(sp)             // save new color bits
        sw      a2,ZpA2(sp)             // save page frame

//
// If the old page color is not equal to the new page color, then change
// the color of the page.
//

        beq     a0,a1,10f               // if eq, colors match
        jal     KeChangeColorPage       // chagne page color

//
// Create dirty exclusive cache blocks and zero the data.
//

10:     lw      a3,ZpA0(sp)             // get new color bits
        lw      a1,ZpA2(sp)             // get page frame number

        .set    noreorder
        .set    noat
        lw      v0,KiPcr + PcAlignedCachePolicy(zero) // get cache polciy
        li      t0,FLUSH_BASE           // get base flush address
        or      t0,t0,a3                // compute new color virtual address
        sll     t1,a1,ENTRYLO_PFN       // shift page frame into position
        or      t1,t1,PROTECTION_BITS   // merge protection bits
        or      t1,t1,v0                // merge cache policy
        and     a3,a3,0x1000            // isolate TB entry index
        beql    zero,a3,20f             // if eq, first entry
        move    t2,zero                 // set second page table entry
        move    t2,t1                   // set second page table entry
        move    t1,zero                 // set first page table entry
20:     mfc0    t3,wired                // get TB entry index
        lw      t4,KiPcr + PcFirstLevelDcacheFillSize(zero) // get 1st fill size
        lw      v0,KiPcr + PcSecondLevelDcacheFillSize(zero) // get 2nd fill size
        .set    at
        .set    reorder

        DISABLE_INTERRUPTS(t5)          // disable interrupts

        .set    noreorder
        .set    noat
        mfc0    t6,entryhi              // get current PID and VPN2
        srl     t7,t0,ENTRYHI_VPN2      // isolate VPN2 of virtual address
        sll     t7,t7,ENTRYHI_VPN2      //
        and     t6,t6,0xff << ENTRYHI_PID // isolate current PID
        or      t7,t7,t6                // merge PID with VPN2 of virtual address
        mtc0    t7,entryhi              // set VPN2 and PID for probe
        mtc0    t1,entrylo0             // set first PTE value
        mtc0    t2,entrylo1             // set second PTE value
        mtc0    t3,index                // set TB index value
        nop                             // fill
        tlbwi                           // write TB entry - 3 cycle hazzard
        addu    t9,t0,PAGE_SIZE         // compute ending address of block
        dmtc1   zero,f0                 // set write pattern
        bne     zero,v0,50f             // if ne, second level cache present
        and     t8,t4,0x10              // test if 16-byte cache block

//
// Zero page in primary data cache only.
//

30:     sdc1    f0,0(t0)                // zero 64-byte block
        sdc1    f0,8(t0)                //
        sdc1    f0,16(t0)               //
        sdc1    f0,24(t0)               //
        sdc1    f0,32(t0)               //
        sdc1    f0,40(t0)               //
        sdc1    f0,48(t0)               //
        addu    t0,t0,64                // advance to next 64-byte block
        bne     t0,t9,30b               // if ne, more to zero
        sdc1    f0,-8(t0)               //

        .set    at
        .set    reorder

        ENABLE_INTERRUPTS(t5)           // enable interrupts

        lw      ra,ZpRa(sp)             // get return address
        addu    sp,sp,ZpFrameLength     // deallocate stack frame
        j       ra                      // return

//
// Zero page in primary and secondary data caches.
//

        .set    noreorder
        .set    noat

50:     sdc1    f0,0(t0)                // zero 64-byte block
        sdc1    f0,8(t0)                //
        sdc1    f0,16(t0)               //
        sdc1    f0,24(t0)               //
        sdc1    f0,32(t0)               //
        sdc1    f0,40(t0)               //
        sdc1    f0,48(t0)               //
        addu    t0,t0,64                // advance to next 64-byte block
        bne     t0,t9,50b               // if ne, more to zero
        sdc1    f0,-8(t0)               //

        .set    at
        .set    reorder

        ENABLE_INTERRUPTS(t5)           // enable interrupts

        lw      ra,ZpRa(sp)             // get return address
        addu    sp,sp,ZpFrameLength     // deallocate stack frame
        j       ra                      // return

        .end    HalZeroPage