summaryrefslogblamecommitdiffstats
path: root/private/ntos/nthals/halx86/i386/ixisasup.c
blob: cc4effc4fac0eb0a23bda5255d971151e189bbab (plain) (tree)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980



























































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































                                                                                                     
/*++


Copyright (c) 1989  Microsoft Corporation

Module Name:

    ixhwsup.c

Abstract:

    This module contains the IoXxx routines for the NT I/O system that
    are hardware dependent.  Were these routines not hardware dependent,
    they would reside in the iosubs.c module.

Author:

    Darryl E. Havens (darrylh) 11-Apr-1990

Environment:

    Kernel mode

Revision History:


--*/

#include "halp.h"
#include "eisa.h"

#ifdef ALLOC_PRAGMA
#pragma alloc_text(PAGE,HalGetAdapter)
#endif

//
// The HalpNewAdapter event is used to serialize allocations
// of new adapter objects, additions to the HalpEisaAdapter
// array, and some global values (MasterAdapterObject) and some
// adapter fields modified by HalpGrowMapBuffers.
// (AdapterObject->NumberOfMapRegisters is assumed not to be
// growable while this even is held)
//
// Note: We don't really need our own an event object for this.
//

#define HalpNewAdapter HalpBusDatabaseEvent
extern KEVENT   HalpNewAdapter;

PVOID HalpEisaControlBase;
extern KSPIN_LOCK HalpSystemHardwareLock;

//
// Define save area for EISA adapter objects.
//

PADAPTER_OBJECT HalpEisaAdapter[8];

VOID
HalpCopyBufferMap(
    IN PMDL Mdl,
    IN PTRANSLATION_ENTRY TranslationEntry,
    IN PVOID CurrentVa,
    IN ULONG Length,
    IN BOOLEAN WriteToDevice
    );

PHYSICAL_ADDRESS
HalpMapTransfer(
    IN PADAPTER_OBJECT AdapterObject,
    IN PMDL Mdl,
    IN PVOID MapRegisterBase,
    IN PVOID CurrentVa,
    IN OUT PULONG Length,
    IN BOOLEAN WriteToDevice
    );

VOID
HalpMapTransferHelper(
    IN PMDL Mdl,
    IN PVOID CurrentVa,
    IN ULONG TransferLength,
    IN PULONG PageFrame,
    IN OUT PULONG Length
    );


NTSTATUS
HalAllocateAdapterChannel(
    IN PADAPTER_OBJECT AdapterObject,
    IN PWAIT_CONTEXT_BLOCK Wcb,
    IN ULONG NumberOfMapRegisters,
    IN PDRIVER_CONTROL ExecutionRoutine
    )
/*++

Routine Description:

    This routine allocates the adapter channel specified by the adapter object.
    This is accomplished by placing the device object of the driver that wants
    to allocate the adapter on the adapter's queue.  If the queue is already
    "busy", then the adapter has already been allocated, so the device object
    is simply placed onto the queue and waits until the adapter becomes free.

    Once the adapter becomes free (or if it already is), then the driver's
    execution routine is invoked.

    Also, a number of map registers may be allocated to the driver by specifying
    a non-zero value for NumberOfMapRegisters.  Then the map register must be
    allocated from the master adapter.  Once there are a sufficient number of
    map registers available, then the execution routine is called and the
    base address of the allocated map registers in the adapter is also passed
    to the driver's execution routine.

Arguments:

    AdapterObject - Pointer to the adapter control object to allocate to the
        driver.

    Wcb - Supplies a wait context block for saving the allocation parameters.
        The DeviceObject, CurrentIrp and DeviceContext should be initalized.

    NumberOfMapRegisters - The number of map registers that are to be allocated
        from the channel, if any.

    ExecutionRoutine - The address of the driver's execution routine that is
        invoked once the adapter channel (and possibly map registers) have been
        allocated.

Return Value:

    Returns STATUS_SUCESS unless too many map registers are requested.

Notes:

    Note that this routine MUST be invoked at DISPATCH_LEVEL or above.

--*/
{

    PADAPTER_OBJECT MasterAdapter;
    BOOLEAN Busy = FALSE;
    IO_ALLOCATION_ACTION Action;
    KIRQL Irql;
    ULONG MapRegisterNumber;

    //
    // Begin by obtaining a pointer to the master adapter associated with this
    // request.
    //

    MasterAdapter = AdapterObject->MasterAdapter;

    //
    // Initialize the device object's wait context block in case this device
    // must wait before being able to allocate the adapter.
    //

    Wcb->DeviceRoutine = ExecutionRoutine;
    Wcb->NumberOfMapRegisters = NumberOfMapRegisters;

    //
    // Allocate the adapter object for this particular device.  If the
    // adapter cannot be allocated because it has already been allocated
    // to another device, then return to the caller now;  otherwise,
    // continue.
    //

    if (!KeInsertDeviceQueue( &AdapterObject->ChannelWaitQueue,
                              &Wcb->WaitQueueEntry )) {

        //
        // Save the parameters in case there are not enough map registers.
        //

        AdapterObject->NumberOfMapRegisters = NumberOfMapRegisters;
        AdapterObject->CurrentWcb = Wcb;

        //
        // The adapter was not busy so it has been allocated.  Now check
        // to see whether this driver wishes to allocate any map registers.
        // Ensure that this adapter has enough total map registers
        // to satisfy the request.
        //

        if (NumberOfMapRegisters != 0 && AdapterObject->NeedsMapRegisters) {

            //
            // Lock the map register bit map and the adapter queue in the
            // master adapter object. The channel structure offset is used as
            // a hint for the register search.
            //

            if (NumberOfMapRegisters > AdapterObject->MapRegistersPerChannel) {
                AdapterObject->NumberOfMapRegisters = 0;
                IoFreeAdapterChannel(AdapterObject);
                return(STATUS_INSUFFICIENT_RESOURCES);
            }

            Irql = KfAcquireSpinLock( &MasterAdapter->SpinLock );

            MapRegisterNumber = (ULONG)-1;

            if (IsListEmpty( &MasterAdapter->AdapterQueue)) {

               MapRegisterNumber = RtlFindClearBitsAndSet(
                    MasterAdapter->MapRegisters,
                    NumberOfMapRegisters,
                    0
                    );
            }

            if (MapRegisterNumber == -1) {

               //
               // There were not enough free map registers.  Queue this request
               // on the master adapter where is will wait until some registers
               // are deallocated.
               //

               InsertTailList( &MasterAdapter->AdapterQueue,
                               &AdapterObject->AdapterQueue
                               );
               Busy = 1;

            } else {

                //
                // Calculate the map register base from the allocated map
                // register and base of the master adapter object.
                //

                AdapterObject->MapRegisterBase = ((PTRANSLATION_ENTRY)
                    MasterAdapter->MapRegisterBase + MapRegisterNumber);

                //
                // Set the no scatter/gather flag if scatter/gather not
                // supported.
                //

                if (!AdapterObject->ScatterGather) {

                    AdapterObject->MapRegisterBase = (PVOID)
                        ((ULONG) AdapterObject->MapRegisterBase | NO_SCATTER_GATHER);

                }
            }

            KfReleaseSpinLock( &MasterAdapter->SpinLock, Irql );

        } else {

            AdapterObject->MapRegisterBase = NULL;
            AdapterObject->NumberOfMapRegisters = 0;
        }

        //
        // If there were either enough map registers available or no map
        // registers needed to be allocated, invoke the driver's execution
        // routine now.
        //

        if (!Busy) {

            AdapterObject->CurrentWcb = Wcb;
            Action = ExecutionRoutine( Wcb->DeviceObject,
                                       Wcb->CurrentIrp,
                                       AdapterObject->MapRegisterBase,
                                       Wcb->DeviceContext );

            //
            // If the driver would like to have the adapter deallocated,
            // then release the adapter object.
            //

            if (Action == DeallocateObject) {

                IoFreeAdapterChannel( AdapterObject );

            } else if (Action == DeallocateObjectKeepRegisters) {

                //
                // Set the NumberOfMapRegisters  = 0 in the adapter object.
                // This will keep IoFreeAdapterChannel from freeing the
                // registers. After this it is the driver's responsiblity to
                // keep track of the number of map registers.
                //

                AdapterObject->NumberOfMapRegisters = 0;
                IoFreeAdapterChannel(AdapterObject);

            }
        }
    }

    return(STATUS_SUCCESS);

}

PVOID
HalAllocateCrashDumpRegisters(
    IN PADAPTER_OBJECT AdapterObject,
    IN PULONG NumberOfMapRegisters
    )
/*++

Routine Description:

    This routine is called during the crash dump disk driver's initialization
    to allocate a number map registers permanently.

Arguments:

    AdapterObject - Pointer to the adapter control object to allocate to the
        driver.
    NumberOfMapRegisters - Number of map registers requested. This field
        will be updated to reflect the actual number of registers allocated
        when the number is less than what was requested.

Return Value:

    Returns STATUS_SUCESS if map registers allocated.

--*/
{
    PADAPTER_OBJECT MasterAdapter;
    ULONG MapRegisterNumber;

    //
    // Begin by obtaining a pointer to the master adapter associated with this
    // request.
    //

    MasterAdapter = AdapterObject->MasterAdapter;

    //
    // Check to see whether this driver needs to allocate any map registers.
    //

    if (AdapterObject->NeedsMapRegisters) {

        //
        // Ensure that this adapter has enough total map registers to satisfy
        // the request.
        //

        if (*NumberOfMapRegisters > AdapterObject->MapRegistersPerChannel) {
            AdapterObject->NumberOfMapRegisters = 0;
            return NULL;
        }

        //
        // Attempt to allocate the required number of map registers w/o
        // affecting those registers that were allocated when the system
        // crashed.
        //

        MapRegisterNumber = (ULONG)-1;

        MapRegisterNumber = RtlFindClearBitsAndSet(
             MasterAdapter->MapRegisters,
             *NumberOfMapRegisters,
             0
             );

        if (MapRegisterNumber == (ULONG)-1) {

            //
            // Not enough free map registers were found, so they were busy
            // being used by the system when it crashed.  Force the appropriate
            // number to be "allocated" at the base by simply overjamming the
            // bits and return the base map register as the start.
            //

            RtlSetBits(
                MasterAdapter->MapRegisters,
                0,
                *NumberOfMapRegisters
                );
            MapRegisterNumber = 0;

        }

        //
        // Calculate the map register base from the allocated map
        // register and base of the master adapter object.
        //

        AdapterObject->MapRegisterBase = ((PTRANSLATION_ENTRY)
            MasterAdapter->MapRegisterBase + MapRegisterNumber);

        //
        // Set the no scatter/gather flag if scatter/gather not
        // supported.
        //

        if (!AdapterObject->ScatterGather) {

            AdapterObject->MapRegisterBase = (PVOID)
                ((ULONG) AdapterObject->MapRegisterBase | NO_SCATTER_GATHER);

        }

    } else {

        AdapterObject->MapRegisterBase = NULL;
        AdapterObject->NumberOfMapRegisters = 0;
    }

    return AdapterObject->MapRegisterBase;
}

PADAPTER_OBJECT
HalGetAdapter(
    IN PDEVICE_DESCRIPTION DeviceDescriptor,
    OUT PULONG NumberOfMapRegisters
    )

/*++

Routine Description:

    This function returns the appropriate adapter object for the device defined
    in the device description structure.  This code works for Isa and Eisa
    systems.

Arguments:

    DeviceDescriptor - Supplies a description of the deivce.

    NumberOfMapRegisters - Returns the maximum number of map registers which
        may be allocated by the device driver.

Return Value:

    A pointer to the requested adapter object or NULL if an adapter could not
    be created.

--*/

{
    PADAPTER_OBJECT adapterObject;
    PVOID adapterBaseVa;
    ULONG channelNumber;
    ULONG controllerNumber;
    DMA_EXTENDED_MODE extendedMode;
    UCHAR adapterMode;
    ULONG numberOfMapRegisters;
    BOOLEAN useChannel;
    ULONG maximumLength;
    UCHAR DataByte;

    PAGED_CODE();

    //
    // Make sure this is the correct version.
    //

    if (DeviceDescriptor->Version > DEVICE_DESCRIPTION_VERSION1) {
        return( NULL );
    }

#if DBG
    if (DeviceDescriptor->Version == DEVICE_DESCRIPTION_VERSION1) {
        ASSERT (DeviceDescriptor->Reserved1 == FALSE);
        ASSERT (DeviceDescriptor->Reserved2 == FALSE);
    }
#endif

    //
    // Determine if the the channel number is important.  Master cards on
    // Eisa and Mca do not use a channel number.
    //

    if (DeviceDescriptor->InterfaceType != Isa &&
        DeviceDescriptor->Master) {

        useChannel = FALSE;
    } else {

        useChannel = TRUE;
    }

    //
    // Support for ISA local bus machines:
    // If the driver is a Master but really does not want a channel since it
    // is using the local bus DMA, just don't use an ISA channel.
    //

    if (DeviceDescriptor->InterfaceType == Isa &&
        DeviceDescriptor->DmaChannel > 7) {

        useChannel = FALSE;
    }

    //
    // Determine if Eisa DMA is supported.
    //

    if (HalpBusType == MACHINE_TYPE_EISA) {

        WRITE_PORT_UCHAR(&((PEISA_CONTROL) HalpEisaControlBase)->DmaPageHighPort.Channel2, 0x55);
        DataByte = READ_PORT_UCHAR(&((PEISA_CONTROL) HalpEisaControlBase)->DmaPageHighPort.Channel2);

        if (DataByte == 0x55) {
            HalpEisaDma = TRUE;
        }

    }

    //
    // Limit the maximum length to 2 GB this is done so that the BYTES_TO_PAGES
    // macro works correctly.
    //

    maximumLength = DeviceDescriptor->MaximumLength & 0x7fffffff;

    //
    // Channel 4 cannot be used since it is used for chaining. Return null if
    // it is requested.
    //

    if (DeviceDescriptor->DmaChannel == 4 && useChannel) {
        return(NULL);
    }

    //
    // Determine the number of map registers for this device.
    //

    if (DeviceDescriptor->ScatterGather &&
        (LessThan16Mb ||
         DeviceDescriptor->InterfaceType == Eisa ||
         DeviceDescriptor->InterfaceType == PCIBus) ) {

        //
        // Since the device support scatter/Gather then map registers are not
        // required.
        //

        numberOfMapRegisters = 0;

    } else {

        //
        // Determine the number of map registers required based on the maximum
        // transfer length, up to a maximum number.
        //

        numberOfMapRegisters = BYTES_TO_PAGES(maximumLength)
            + 1;
        numberOfMapRegisters = numberOfMapRegisters > MAXIMUM_ISA_MAP_REGISTER ?
            MAXIMUM_ISA_MAP_REGISTER : numberOfMapRegisters;

        //
        // Make sure there where enough registers allocated initalize to support
        // this size relaibly.  This implies there must be to chunks equal to
        // the allocatd size. This is only a problem on Isa systems where the
        // map buffers cannot cross 64KB boundtires.
        //

        if (!HalpEisaDma &&
            numberOfMapRegisters > HalpMapBufferSize / (PAGE_SIZE * 2)) {

            numberOfMapRegisters = (HalpMapBufferSize / (PAGE_SIZE * 2));
        }

        //
        // If the device is not a master then it only needs one map register
        // and does scatter/Gather.
        //

        if (DeviceDescriptor->ScatterGather && !DeviceDescriptor->Master) {

            numberOfMapRegisters = 1;
        }
    }

    //
    // Set the channel number number.
    //

    channelNumber = DeviceDescriptor->DmaChannel & 0x03;

    //
    // Set the adapter base address to the Base address register and controller
    // number.
    //

    if (!(DeviceDescriptor->DmaChannel & 0x04)) {

        controllerNumber = 1;
        adapterBaseVa = (PVOID) &((PEISA_CONTROL) HalpEisaControlBase)->Dma1BasePort;

    } else {

        controllerNumber = 2;
        adapterBaseVa = &((PEISA_CONTROL) HalpEisaControlBase)->Dma2BasePort;

    }

    //
    // Determine if a new adapter object is necessary.  If so then allocate it.
    //

    if (useChannel && HalpEisaAdapter[DeviceDescriptor->DmaChannel] != NULL) {

        adapterObject = HalpEisaAdapter[DeviceDescriptor->DmaChannel];

        if (adapterObject->NeedsMapRegisters) {

            if (numberOfMapRegisters > adapterObject->MapRegistersPerChannel) {

                adapterObject->MapRegistersPerChannel = numberOfMapRegisters;
            }
        }

    } else {

        //
        // Serialize before allocating a new adapter
        //

        KeWaitForSingleObject (
            &HalpNewAdapter,
            WrExecutive,
            KernelMode,
            FALSE,
            NULL
            );


        //
        // Determine if a new adapter object has already been allocated.
        // If so use it, otherwise allocate a new adapter object
        //

        if (useChannel && HalpEisaAdapter[DeviceDescriptor->DmaChannel] != NULL) {

            adapterObject = HalpEisaAdapter[DeviceDescriptor->DmaChannel];

            if (adapterObject->NeedsMapRegisters) {

                if (numberOfMapRegisters > adapterObject->MapRegistersPerChannel) {

                    adapterObject->MapRegistersPerChannel = numberOfMapRegisters;
                }
            }

        } else {

            //
            // Allocate an adapter object.
            //

            adapterObject = (PADAPTER_OBJECT) HalpAllocateAdapter(
                numberOfMapRegisters,
                adapterBaseVa,
                NULL
                );

            if (adapterObject == NULL) {
                KeSetEvent (&HalpNewAdapter, 0, FALSE);
                return(NULL);
            }

            if (useChannel) {

                HalpEisaAdapter[DeviceDescriptor->DmaChannel] = adapterObject;

            }

            //
            // Set the maximum number of map registers for this channel bus on
            // the number requested and the type of device.
            //

            if (numberOfMapRegisters) {

                //
                // The speicified number of registers are actually allowed to be
                // allocated.
                //

                adapterObject->MapRegistersPerChannel = numberOfMapRegisters;

                //
                // Increase the commitment for the map registers.
                //

                if (DeviceDescriptor->Master) {

                    //
                    // Master I/O devices use several sets of map registers double
                    // their commitment.
                    //

                    MasterAdapterObject->CommittedMapRegisters +=
                        numberOfMapRegisters * 2;

                } else {

                    MasterAdapterObject->CommittedMapRegisters +=
                        numberOfMapRegisters;

                }

                //
                // If the committed map registers is signicantly greater than the
                // number allocated then grow the map buffer.
                //

                if (MasterAdapterObject->CommittedMapRegisters >
                    MasterAdapterObject->NumberOfMapRegisters &&
                    MasterAdapterObject->CommittedMapRegisters -
                    MasterAdapterObject->NumberOfMapRegisters >
                    MAXIMUM_ISA_MAP_REGISTER ) {

                    HalpGrowMapBuffers(
                        MasterAdapterObject,
                        INCREMENT_MAP_BUFFER_SIZE
                        );
                }

                adapterObject->NeedsMapRegisters = TRUE;

            } else {

                //
                // No real map registers were allocated.  If this is a master
                // device, then the device can have as may registers as it wants.
                //

                adapterObject->NeedsMapRegisters = FALSE;

                if (DeviceDescriptor->Master) {

                    adapterObject->MapRegistersPerChannel = BYTES_TO_PAGES(
                        maximumLength
                        )
                        + 1;

                } else {

                    //
                    // The device only gets one register.  It must call
                    // IoMapTransfer repeatedly to do a large transfer.
                    //

                    adapterObject->MapRegistersPerChannel = 1;
                }
            }
        }

        KeSetEvent (&HalpNewAdapter, 0, FALSE);

    }

    adapterObject->IgnoreCount = FALSE;
    if (DeviceDescriptor->Version >= DEVICE_DESCRIPTION_VERSION1) {

        //
        // Move version 1 structure flags.
        // IgnoreCount is used on machines where the DMA Counter
        // is broken.  (Namely PS/1 model 1000s).  Setting this
        // bit informs the hal not to rely on the DmaCount to determine
        // how much data was DMAed.
        //

        adapterObject->IgnoreCount = DeviceDescriptor->IgnoreCount;
    }

    adapterObject->Dma32BitAddresses = DeviceDescriptor->Dma32BitAddresses;
    adapterObject->ScatterGather = DeviceDescriptor->ScatterGather;
    *NumberOfMapRegisters = adapterObject->MapRegistersPerChannel;

    if (DeviceDescriptor->Master) {

        adapterObject->MasterDevice = TRUE;

    } else {

        adapterObject->MasterDevice = FALSE;

    }

    //
    // If the channel number is not used then we are finished.  The rest of
    // the work deals with channels.
    //

    if (!useChannel) {
        return(adapterObject);
    }

    //
    // Setup the pointers to all the random registers.
    //

    adapterObject->ChannelNumber = (UCHAR) channelNumber;

    if (controllerNumber == 1) {

        switch ((UCHAR)channelNumber) {

        case 0:
            adapterObject->PagePort = (PUCHAR) &((PDMA_PAGE) 0)->Channel0;
            break;

        case 1:
            adapterObject->PagePort = (PUCHAR) &((PDMA_PAGE) 0)->Channel1;
            break;

        case 2:
            adapterObject->PagePort = (PUCHAR) &((PDMA_PAGE) 0)->Channel2;
            break;

        case 3:
            adapterObject->PagePort = (PUCHAR) &((PDMA_PAGE) 0)->Channel3;
            break;
        }

        //
        // Set the adapter number.
        //

        adapterObject->AdapterNumber = 1;

        //
        // Save the extended mode register address.
        //

        adapterBaseVa =
            &((PEISA_CONTROL) HalpEisaControlBase)->Dma1ExtendedModePort;

    } else {

        switch (channelNumber) {
        case 1:
            adapterObject->PagePort = (PUCHAR) &((PDMA_PAGE) 0)->Channel5;
            break;

        case 2:
            adapterObject->PagePort = (PUCHAR) &((PDMA_PAGE) 0)->Channel6;
            break;

        case 3:
            adapterObject->PagePort = (PUCHAR) &((PDMA_PAGE) 0)->Channel7;
            break;
        }

        //
        // Set the adapter number.
        //

        adapterObject->AdapterNumber = 2;

        //
        // Save the extended mode register address.
        //
        adapterBaseVa =
            &((PEISA_CONTROL) HalpEisaControlBase)->Dma2ExtendedModePort;

    }


    adapterObject->Width16Bits = FALSE;

    if (HalpEisaDma) {

        //
        // Initialzie the extended mode port.
        //

        *((PUCHAR) &extendedMode) = 0;
        extendedMode.ChannelNumber = (UCHAR)channelNumber;

        switch (DeviceDescriptor->DmaSpeed) {
        case Compatible:
            extendedMode.TimingMode = COMPATIBLITY_TIMING;
            break;

        case TypeA:
            extendedMode.TimingMode = TYPE_A_TIMING;
            break;

        case TypeB:
            extendedMode.TimingMode = TYPE_B_TIMING;
            break;

        case TypeC:
            extendedMode.TimingMode = BURST_TIMING;
            break;

        default:
            ObDereferenceObject( adapterObject );
            return(NULL);

        }

        switch (DeviceDescriptor->DmaWidth) {
        case Width8Bits:
            extendedMode.TransferSize = BY_BYTE_8_BITS;
            break;

        case Width16Bits:
            extendedMode.TransferSize = BY_BYTE_16_BITS;

            //
            // Note Width16bits should not be set here because there is no need
            // to shift the address and the transfer count.
            //

            break;

        case Width32Bits:
            extendedMode.TransferSize = BY_BYTE_32_BITS;
            break;

        default:
            ObDereferenceObject( adapterObject );
            return(NULL);

        }

        WRITE_PORT_UCHAR( adapterBaseVa, *((PUCHAR) &extendedMode));

    } else if (!DeviceDescriptor->Master) {


        switch (DeviceDescriptor->DmaWidth) {
        case Width8Bits:

            //
            // The channel must use controller 1.
            //

            if (controllerNumber != 1) {
                ObDereferenceObject( adapterObject );
                return(NULL);
            }

            break;

        case Width16Bits:

            //
            // The channel must use controller 2.
            //

            if (controllerNumber != 2) {
                ObDereferenceObject( adapterObject );
                return(NULL);
            }

            adapterObject->Width16Bits = TRUE;
            break;

        default:
            ObDereferenceObject( adapterObject );
            return(NULL);

        }
    }

    //
    // Initialize the adapter mode register value to the correct parameters,
    // and save them in the adapter object.
    //

    adapterMode = 0;
    ((PDMA_EISA_MODE) &adapterMode)->Channel = adapterObject->ChannelNumber;

    if (DeviceDescriptor->Master) {

        ((PDMA_EISA_MODE) &adapterMode)->RequestMode = CASCADE_REQUEST_MODE;

        //
        // Set the mode, and enable the request.
        //

        if (adapterObject->AdapterNumber == 1) {

            //
            // This request is for DMA controller 1
            //

            PDMA1_CONTROL dmaControl;

            dmaControl = adapterObject->AdapterBaseVa;

            WRITE_PORT_UCHAR( &dmaControl->Mode, adapterMode );

            //
            // Unmask the DMA channel.
            //

            WRITE_PORT_UCHAR(
                &dmaControl->SingleMask,
                 (UCHAR) (DMA_CLEARMASK | adapterObject->ChannelNumber)
                 );

        } else {

            //
            // This request is for DMA controller 1
            //

            PDMA2_CONTROL dmaControl;

            dmaControl = adapterObject->AdapterBaseVa;

            WRITE_PORT_UCHAR( &dmaControl->Mode, adapterMode );

            //
            // Unmask the DMA channel.
            //

            WRITE_PORT_UCHAR(
                &dmaControl->SingleMask,
                 (UCHAR) (DMA_CLEARMASK | adapterObject->ChannelNumber)
                 );

        }

    } else if (DeviceDescriptor->DemandMode) {

        ((PDMA_EISA_MODE) &adapterMode)->RequestMode = DEMAND_REQUEST_MODE;

    } else {

        ((PDMA_EISA_MODE) &adapterMode)->RequestMode = SINGLE_REQUEST_MODE;

    }

    if (DeviceDescriptor->AutoInitialize) {

        ((PDMA_EISA_MODE) &adapterMode)->AutoInitialize = 1;

    }

    adapterObject->AdapterMode = adapterMode;

    return(adapterObject);
}


PHYSICAL_ADDRESS
IoMapTransfer(
    IN PADAPTER_OBJECT AdapterObject,
    IN PMDL Mdl,
    IN PVOID MapRegisterBase,
    IN PVOID CurrentVa,
    IN OUT PULONG Length,
    IN BOOLEAN WriteToDevice
    )

/*++

Routine Description:

    This routine is invoked to set up the map registers in the DMA controller
    to allow a transfer to or from a device.

Arguments:

    AdapterObject - Pointer to the adapter object representing the DMA
        controller channel that has been allocated.

    Mdl - Pointer to the MDL that describes the pages of memory that are
        being read or written.

    MapRegisterBase - The address of the base map register that has been
        allocated to the device driver for use in mapping the transfer.

    CurrentVa - Current virtual address in the buffer described by the MDL
        that the transfer is being done to or from.

    Length - Supplies the length of the transfer.  This determines the
        number of map registers that need to be written to map the transfer.
        Returns the length of the transfer which was actually mapped.

    WriteToDevice - Boolean value that indicates whether this is a write
        to the device from memory (TRUE), or vice versa.

Return Value:

    Returns the logical address that should be used bus master controllers.

--*/

{
    ULONG transferLength;
    PHYSICAL_ADDRESS returnAddress;
    PULONG pageFrame;
    ULONG pageOffset;

    //
    // If the adapter is a 32-bit bus master, take the fast path,
    // otherwise call HalpMapTransfer for the slow path
    //

    if (MapRegisterBase == NULL) {

        pageOffset = BYTE_OFFSET(CurrentVa);

        //
        // Calculate how much of the transfer is contiguous
        //
        transferLength = PAGE_SIZE - pageOffset;
        pageFrame = (PULONG)(Mdl+1);
        pageFrame += ((ULONG) CurrentVa - (ULONG) Mdl->StartVa) >> PAGE_SHIFT;

        //
        // Compute the starting address of the transfer
        //
        returnAddress.QuadPart =  (ULONGLONG)( (*pageFrame << PAGE_SHIFT) + pageOffset);

        //
        // If the transfer is not completely contained within
        // a page, call the helper to compute the appropriate
        // length.
        //
        if (transferLength < *Length) {
            HalpMapTransferHelper(Mdl, CurrentVa, transferLength, pageFrame, Length);
        }
        return(returnAddress);
    }

    return(HalpMapTransfer(AdapterObject,
                           Mdl,
                           MapRegisterBase,
                           CurrentVa,
                           Length,
                           WriteToDevice));

}


VOID
HalpMapTransferHelper(
    IN PMDL Mdl,
    IN PVOID CurrentVa,
    IN ULONG TransferLength,
    IN PULONG PageFrame,
    IN OUT PULONG Length
    )

/*++

Routine Description:

    Helper routine for bus master transfers that cross a page
    boundary.  This routine is separated out from the IoMapTransfer
    fast path in order to minimize the total instruction path
    length taken for the common network case where the entire
    buffer being mapped is contained within one page.

Arguments:

    Mdl - Pointer to the MDL that describes the pages of memory that are
        being read or written.

    CurrentVa - Current virtual address in the buffer described by the MDL
        that the transfer is being done to or from.

    TransferLength = Supplies the current transferLength

    PageFrame - Supplies a pointer to the starting page frame of the transfer

    Length - Supplies the length of the transfer.  This determines the
        number of map registers that need to be written to map the transfer.
        Returns the length of the transfer which was actually mapped.

Return Value:

    None.  *Length will be updated

--*/

{
    do {
        if (*PageFrame + 1 != *(PageFrame + 1)) {
            break;
        }
        TransferLength += PAGE_SIZE;
        PageFrame++;

    } while ( TransferLength < *Length );


    //
    // Limit the Length to the maximum TransferLength.
    //

    if (TransferLength < *Length) {
        *Length = TransferLength;
    }
}


PHYSICAL_ADDRESS
HalpMapTransfer(
    IN PADAPTER_OBJECT AdapterObject,
    IN PMDL Mdl,
    IN PVOID MapRegisterBase,
    IN PVOID CurrentVa,
    IN OUT PULONG Length,
    IN BOOLEAN WriteToDevice
    )

/*++

Routine Description:

    This routine is invoked to set up the map registers in the DMA controller
    to allow a transfer to or from a device.

Arguments:

    AdapterObject - Pointer to the adapter object representing the DMA
        controller channel that has been allocated.

    Mdl - Pointer to the MDL that describes the pages of memory that are
        being read or written.

    MapRegisterBase - The address of the base map register that has been
        allocated to the device driver for use in mapping the transfer.

    CurrentVa - Current virtual address in the buffer described by the MDL
        that the transfer is being done to or from.

    Length - Supplies the length of the transfer.  This determines the
        number of map registers that need to be written to map the transfer.
        Returns the length of the transfer which was actually mapped.

    WriteToDevice - Boolean value that indicates whether this is a write
        to the device from memory (TRUE), or vice versa.

Return Value:

    Returns the logical address that should be used bus master controllers.

--*/

{
    BOOLEAN useBuffer;
    ULONG transferLength;
    ULONG logicalAddress;
    PHYSICAL_ADDRESS returnAddress;
    ULONG index;
    PULONG pageFrame;
    PUCHAR bytePointer;
    UCHAR adapterMode;
    UCHAR dataByte;
    PTRANSLATION_ENTRY translationEntry;
    ULONG pageOffset;
    KIRQL   Irql;

    pageOffset = BYTE_OFFSET(CurrentVa);

    //
    // Calculate how much of the transfer is contiguous.
    //

    transferLength = PAGE_SIZE - pageOffset;
    pageFrame = (PULONG)(Mdl+1);
    pageFrame += ((ULONG) CurrentVa - (ULONG) Mdl->StartVa) >> PAGE_SHIFT;
    logicalAddress = (*pageFrame << PAGE_SHIFT) + pageOffset;

    //
    // If the buffer is contigous and does not cross a 64 K bountry then
    // just extend the buffer.  The 64 K bountry restriction does not apply
    // to Eisa systems.
    //

    if (HalpEisaDma) {

        while( transferLength < *Length ){

            if (*pageFrame + 1 != *(pageFrame + 1)) {
                    break;
            }

            transferLength += PAGE_SIZE;
            pageFrame++;

        }

    } else {

        while( transferLength < *Length ){

            if (*pageFrame + 1 != *(pageFrame + 1) ||
               (*pageFrame & ~0x0f) != (*(pageFrame + 1) & ~0x0f)) {
                    break;
            }

            transferLength += PAGE_SIZE;
            pageFrame++;
        }
    }

    //
    // Limit the transferLength to the requested Length.
    //

    transferLength = transferLength > *Length ? *Length : transferLength;

    ASSERT(MapRegisterBase != NULL);

    //
    // Strip no scatter/gather flag.
    //

    translationEntry = (PTRANSLATION_ENTRY) ((ULONG) MapRegisterBase & ~NO_SCATTER_GATHER);

    if ((ULONG) MapRegisterBase & NO_SCATTER_GATHER
                && transferLength < *Length) {

        logicalAddress = translationEntry->PhysicalAddress + pageOffset;
        translationEntry->Index = COPY_BUFFER;
        index = 0;
        transferLength = *Length;
        useBuffer = TRUE;

    } else {

        //
        // If there are map registers, then update the index to indicate
        // how many have been used.
        //

        useBuffer = FALSE;
        index = translationEntry->Index;
        translationEntry->Index += ADDRESS_AND_SIZE_TO_SPAN_PAGES(
            CurrentVa,
            transferLength
            );
    }

    //
    // It must require memory to be at less than 16 MB.  If the
    // logical address is greater than 16MB then map registers must be used
    //

    if (logicalAddress+transferLength >= MAXIMUM_PHYSICAL_ADDRESS) {

        logicalAddress = (translationEntry + index)->PhysicalAddress +
            pageOffset;
        useBuffer = TRUE;

        if ((ULONG) MapRegisterBase & NO_SCATTER_GATHER) {

            translationEntry->Index = COPY_BUFFER;
            index = 0;

        }

    }

    //
    // Copy the data if necessary.
    //

    if (useBuffer  &&  WriteToDevice) {
        HalpCopyBufferMap(
            Mdl,
            translationEntry + index,
            CurrentVa,
            *Length,
            WriteToDevice
            );
    }

    //
    // Return the length.
    //

    *Length = transferLength;

    //
    // We only support 32 bits, but the return is 64.  Just
    // zero extend
    //

    returnAddress.LowPart = logicalAddress;
    returnAddress.HighPart = 0;

    //
    // If no adapter was specificed then there is no more work to do so
    // return.
    //

    if (AdapterObject == NULL || AdapterObject->MasterDevice) {

        return(returnAddress);
    }

    //
    // Determine the mode based on the transfer direction.
    //

    adapterMode = AdapterObject->AdapterMode;
    if (WriteToDevice) {
        ((PDMA_EISA_MODE) &adapterMode)->TransferType = (UCHAR) WRITE_TRANSFER;
    } else {
        ((PDMA_EISA_MODE) &adapterMode)->TransferType = (UCHAR) READ_TRANSFER;

        if (AdapterObject->IgnoreCount) {
            //
            // When the DMA is over there will be no way to tell how much
            // data was transfered, so the entire transfer length will be
            // copied.  To ensure that no stale data is returned to the
            // caller zero the buffer before hand.
            //

            RtlZeroMemory (
                (PUCHAR) translationEntry[index].VirtualAddress + pageOffset,
                transferLength
                );
        }
    }

    bytePointer = (PUCHAR) &logicalAddress;

    if (AdapterObject->Width16Bits) {

        //
        // If this is a 16 bit transfer then adjust the length and the address
        // for the 16 bit DMA mode.
        //

        transferLength >>= 1;

        //
        // In 16 bit DMA mode the low 16 bits are shifted right one and the
        // page register value is unchanged. So save the page register value
        // and shift the logical address then restore the page value.
        //

        dataByte = bytePointer[2];
        logicalAddress >>= 1;
        bytePointer[2] = dataByte;

    }


    //
    // grab the spinlock for the system DMA controller
    //

    Irql = KfAcquireSpinLock( &AdapterObject->MasterAdapter->SpinLock );

    //
    // Determine the controller number based on the Adapter number.
    //

    if (AdapterObject->AdapterNumber == 1) {

        //
        // This request is for DMA controller 1
        //

        PDMA1_CONTROL dmaControl;

        dmaControl = AdapterObject->AdapterBaseVa;

        WRITE_PORT_UCHAR( &dmaControl->ClearBytePointer, 0 );

        WRITE_PORT_UCHAR( &dmaControl->Mode, adapterMode );

        WRITE_PORT_UCHAR(
            &dmaControl->DmaAddressCount[AdapterObject->ChannelNumber]
            .DmaBaseAddress,
            bytePointer[0]
            );

        WRITE_PORT_UCHAR(
            &dmaControl->DmaAddressCount[AdapterObject->ChannelNumber]
            .DmaBaseAddress,
            bytePointer[1]
            );

        WRITE_PORT_UCHAR(
            ((PUCHAR) &((PEISA_CONTROL) HalpEisaControlBase)->DmaPageLowPort) +
            (ULONG)AdapterObject->PagePort,
            bytePointer[2]
            );

        if (HalpEisaDma) {

            //
            // Write the high page register with zero value. This enable a special mode
            // which allows ties the page register and base count into a single 24 bit
            // address register.
            //

            WRITE_PORT_UCHAR(
                ((PUCHAR) &((PEISA_CONTROL) HalpEisaControlBase)->DmaPageHighPort) +
                (ULONG)AdapterObject->PagePort,
                0
                );
        }

        //
        // Notify DMA chip of the length to transfer.
        //

        WRITE_PORT_UCHAR(
            &dmaControl->DmaAddressCount[AdapterObject->ChannelNumber]
            .DmaBaseCount,
            (UCHAR) ((transferLength - 1) & 0xff)
            );

        WRITE_PORT_UCHAR(
            &dmaControl->DmaAddressCount[AdapterObject->ChannelNumber]
            .DmaBaseCount,
            (UCHAR) ((transferLength - 1) >> 8)
            );


        //
        // Set the DMA chip to read or write mode; and unmask it.
        //

        WRITE_PORT_UCHAR(
            &dmaControl->SingleMask,
             (UCHAR) (DMA_CLEARMASK | AdapterObject->ChannelNumber)
             );

    } else {

        //
        // This request is for DMA controller 2
        //

        PDMA2_CONTROL dmaControl;

        dmaControl = AdapterObject->AdapterBaseVa;

        WRITE_PORT_UCHAR( &dmaControl->ClearBytePointer, 0 );

        WRITE_PORT_UCHAR( &dmaControl->Mode, adapterMode );

        WRITE_PORT_UCHAR(
            &dmaControl->DmaAddressCount[AdapterObject->ChannelNumber]
            .DmaBaseAddress,
            bytePointer[0]
            );

        WRITE_PORT_UCHAR(
            &dmaControl->DmaAddressCount[AdapterObject->ChannelNumber]
            .DmaBaseAddress,
            bytePointer[1]
            );

        WRITE_PORT_UCHAR(
            ((PUCHAR) &((PEISA_CONTROL) HalpEisaControlBase)->DmaPageLowPort) +
            (ULONG)AdapterObject->PagePort,
            bytePointer[2]
            );

        if (HalpEisaDma) {

            //
            // Write the high page register with zero value. This enable a special mode
            // which allows ties the page register and base count into a single 24 bit
            // address register.
            //

            WRITE_PORT_UCHAR(
                ((PUCHAR) &((PEISA_CONTROL) HalpEisaControlBase)->DmaPageHighPort) +
                (ULONG)AdapterObject->PagePort,
                0
                );
        }

        //
        // Notify DMA chip of the length to transfer.
        //

        WRITE_PORT_UCHAR(
            &dmaControl->DmaAddressCount[AdapterObject->ChannelNumber]
            .DmaBaseCount,
            (UCHAR) ((transferLength - 1) & 0xff)
            );

        WRITE_PORT_UCHAR(
            &dmaControl->DmaAddressCount[AdapterObject->ChannelNumber]
            .DmaBaseCount,
            (UCHAR) ((transferLength - 1) >> 8)
            );


        //
        // Set the DMA chip to read or write mode; and unmask it.
        //

        WRITE_PORT_UCHAR(
            &dmaControl->SingleMask,
             (UCHAR) (DMA_CLEARMASK | AdapterObject->ChannelNumber)
             );

    }
    KfReleaseSpinLock (&AdapterObject->MasterAdapter->SpinLock, Irql);
    return(returnAddress);
}

BOOLEAN
IoFlushAdapterBuffers(
    IN PADAPTER_OBJECT AdapterObject,
    IN PMDL Mdl,
    IN PVOID MapRegisterBase,
    IN PVOID CurrentVa,
    IN ULONG Length,
    IN BOOLEAN WriteToDevice
    )

/*++

Routine Description:

    This routine flushes the DMA adapter object buffers.  For the Jazz system
    its clears the enable flag which aborts the dma.

Arguments:

    AdapterObject - Pointer to the adapter object representing the DMA
        controller channel.

    Mdl - A pointer to a Memory Descriptor List (MDL) that maps the locked-down
        buffer to/from which the I/O occured.

    MapRegisterBase - A pointer to the base of the map registers in the adapter
        or DMA controller.

    CurrentVa - The current virtual address in the buffer described the the Mdl
        where the I/O operation occurred.

    Length - Supplies the length of the transfer.

    WriteToDevice - Supplies a BOOLEAN value that indicates the direction of
        the data transfer was to the device.

Return Value:

    TRUE - No errors are detected so the transfer must succeed.

--*/

{
    PTRANSLATION_ENTRY translationEntry;
    PULONG pageFrame;
    ULONG transferLength;
    ULONG partialLength;
    BOOLEAN masterDevice;

    masterDevice = AdapterObject == NULL || AdapterObject->MasterDevice ?
        TRUE : FALSE;

    //
    // If this is a slave device, then stop the DMA controller.
    //

    if (!masterDevice) {

        //
        // Mask the DMA request line so that DMA requests cannot occur.
        //

        if (AdapterObject->AdapterNumber == 1) {

            //
            // This request is for DMA controller 1
            //

            PDMA1_CONTROL dmaControl;

            dmaControl = AdapterObject->AdapterBaseVa;

            WRITE_PORT_UCHAR(
                &dmaControl->SingleMask,
                (UCHAR) (DMA_SETMASK | AdapterObject->ChannelNumber)
                );

        } else {

            //
            // This request is for DMA controller 2
            //

            PDMA2_CONTROL dmaControl;

            dmaControl = AdapterObject->AdapterBaseVa;

            WRITE_PORT_UCHAR(
                &dmaControl->SingleMask,
                (UCHAR) (DMA_SETMASK | AdapterObject->ChannelNumber)
                );

        }

    }

    if (MapRegisterBase == NULL) {
        return(TRUE);
    }

    //
    // Determine if the data needs to be copied to the orginal buffer.
    // This only occurs if the data tranfer is from the device, the
    // MapReisterBase is not NULL and the transfer spans a page.
    //

    if (!WriteToDevice) {

        //
        // Strip no scatter/gather flag.
        //

        translationEntry = (PTRANSLATION_ENTRY) ((ULONG) MapRegisterBase & ~NO_SCATTER_GATHER);

        //
        // If this is not a master device, then just transfer the buffer.
        //

        if ((ULONG) MapRegisterBase & NO_SCATTER_GATHER) {

            if (translationEntry->Index == COPY_BUFFER) {

                if (!masterDevice && !AdapterObject->IgnoreCount) {
                    //
                    // Copy only the bytes that have actually been transfered.
                    //
                    //

                    Length -= HalReadDmaCounter(AdapterObject);
                }

                //
                // The adapter does not support scatter/gather copy the buffer.
                //

                HalpCopyBufferMap(
                    Mdl,
                    translationEntry,
                    CurrentVa,
                    Length,
                    WriteToDevice
                    );

            }

        } else {

            //
            // Cycle through the pages of the transfer to determine if there
            // are any which need to be copied back.
            //

            transferLength = PAGE_SIZE - BYTE_OFFSET(CurrentVa);
            partialLength = transferLength;
            pageFrame = (PULONG)(Mdl+1);
            pageFrame += ((ULONG) CurrentVa - (ULONG) Mdl->StartVa) >> PAGE_SHIFT;

            while( transferLength <= Length ){

                if (*pageFrame >= BYTES_TO_PAGES(MAXIMUM_PHYSICAL_ADDRESS)) {

                    HalpCopyBufferMap(
                        Mdl,
                        translationEntry,
                        CurrentVa,
                        partialLength,
                        WriteToDevice
                        );

                }

                (PCCHAR) CurrentVa += partialLength;
                partialLength = PAGE_SIZE;

                //
                // Note that transferLength indicates the amount which will be
                // transfered after the next loop; thus, it is updated with the
                // new partial length.
                //

                transferLength += partialLength;
                pageFrame++;
                translationEntry++;
            }

            //
            // Process the any remaining residue.
            //

            partialLength = Length - transferLength + partialLength;
            if (partialLength && *pageFrame >= BYTES_TO_PAGES(MAXIMUM_PHYSICAL_ADDRESS)) {

                HalpCopyBufferMap(
                    Mdl,
                    translationEntry,
                    CurrentVa,
                    partialLength,
                    WriteToDevice
                    );

            }
        }
    }

    //
    // Strip no scatter/gather flag.
    //

    translationEntry = (PTRANSLATION_ENTRY) ((ULONG) MapRegisterBase & ~NO_SCATTER_GATHER);

    //
    // Clear index in map register.
    //

    translationEntry->Index = 0;

    return TRUE;
}

ULONG
HalReadDmaCounter(
    IN PADAPTER_OBJECT AdapterObject
    )
/*++

Routine Description:

    This function reads the DMA counter and returns the number of bytes left
    to be transfered.

Arguments:

    AdapterObject - Supplies a pointer to the adapter object to be read.

Return Value:

    Returns the number of bytes still be be transfered.

--*/

{
    ULONG count;
    ULONG high;
    KIRQL Irql;

    //
    // Grab the spinlock for the system DMA controller.
    //

    Irql = KfAcquireSpinLock( &AdapterObject->MasterAdapter->SpinLock );

    //
    // Determine the controller number based on the Adapter number.
    //

    if (AdapterObject->AdapterNumber == 1) {

        //
        // This request is for DMA controller 1
        //

        PDMA1_CONTROL dmaControl;

        dmaControl = AdapterObject->AdapterBaseVa;

        WRITE_PORT_UCHAR( &dmaControl->ClearBytePointer, 0 );


        //
        // Initialize count to a value which will not match.
        //

        count = 0xFFFF00;

        //
        // Loop until the same high byte is read twice.
        //

        do {

            high = count;

            WRITE_PORT_UCHAR( &dmaControl->ClearBytePointer, 0 );

            //
            // Read the current DMA count.
            //

            count = READ_PORT_UCHAR(
                &dmaControl->DmaAddressCount[AdapterObject->ChannelNumber]
                .DmaBaseCount
                );

            count |= READ_PORT_UCHAR(
                &dmaControl->DmaAddressCount[AdapterObject->ChannelNumber]
                .DmaBaseCount
                ) << 8;

        } while ((count & 0xFFFF00) != (high & 0xFFFF00));

    } else {

        //
        // This request is for DMA controller 2
        //

        PDMA2_CONTROL dmaControl;

        dmaControl = AdapterObject->AdapterBaseVa;

        WRITE_PORT_UCHAR( &dmaControl->ClearBytePointer, 0 );

        //
        // Initialize count to a value which will not match.
        //

        count = 0xFFFF00;

        //
        // Loop until the same high byte is read twice.
        //

        do {

            high = count;

            WRITE_PORT_UCHAR( &dmaControl->ClearBytePointer, 0 );

            //
            // Read the current DMA count.
            //

            count = READ_PORT_UCHAR(
                &dmaControl->DmaAddressCount[AdapterObject->ChannelNumber]
                .DmaBaseCount
                );

            count |= READ_PORT_UCHAR(
                &dmaControl->DmaAddressCount[AdapterObject->ChannelNumber]
                .DmaBaseCount
                ) << 8;

        } while ((count & 0xFFFF00) != (high & 0xFFFF00));


    }

    //
    // Release the spinlock for the system DMA controller.
    //

    KfReleaseSpinLock( &AdapterObject->MasterAdapter->SpinLock, Irql );

    //
    // The DMA counter has a bias of one and can only be 16 bit long.
    //

    count = (count + 1) & 0xFFFF;

    //
    // If this is a 16 bit dma the multiply the count by 2.
    //

    if (AdapterObject->Width16Bits) {

        count *= 2;

    }

    return(count);
}