summaryrefslogblamecommitdiffstats
path: root/private/ntos/rtl/alpha/mvmem.s
blob: c5ccc9a81b7c9d75b72686a6b5a8ee88586caad0 (plain) (tree)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































                                                                                 
//      TITLE("Compare, Move, Zero, and Fill Memory Support")
//++
//
// Copyright (c) 1992  Digital Equipment Corporation
//
// Module Name:
//
//    mvmem.s
//
// Abstract:
//
//    This module implements functions to compare, move, zero, and fill
//    blocks of memory. If the memory is aligned, then these functions
//    are very efficient.
//
//    N.B. These routines MUST preserve all floating state since they are
//        frequently called from interrupt service routines that normally
//        do not save or restore floating state.
//
// Author:
//
//    Joe Notarangelo  21-May-1992
//
// Environment:
//
//    User or Kernel mode.
//
// Revision History:
//
//    Monty VanderBilt 14-Feb-1996 Avoid memory loads and branch takens between 
//                                 load lock and store conditional instructions
//                                 to conform with all alpha architecture rules.
//    Monty VanderBilt 27-Feb-1996 Added RtlZeroBytes and RtlFillBytes to support
//                                 byte granularity access when necessary.
//--

#include "ksalpha.h"

        SBTTL("Compare Memory")
//++
//
// ULONG
// RtlCompareMemory (
//    IN PVOID Source1,
//    IN PVOID Source2,
//    IN ULONG Length
//    )
//
// Routine Description:
//
//    This function compares two blocks of memory and returns the number
//    of bytes that compared equal.
//
// Arguments:
//
//    Source1 (a0) - Supplies a pointer to the first block of memory to
//       compare.
//
//    Source2 (a1) - Supplies a pointer to the second block of memory to
//       compare.
//
//    Length (a2) - Supplies the length, in bytes, of the memory to be
//       compared.
//
// Return Value:
//
//    The number of bytes that compared equal is returned as the function
//    value. If all bytes compared equal, then the length of the orginal
//    block of memory is returned.
//
//--


        LEAF_ENTRY(RtlCompareMemory)

        bis     a2, zero, v0            // save length of comparison
        beq     a2, 90f                 // (JAE) quit if nothing to compare
        xor     a0, a1, t0              // check for compatible alignment
        and     t0, 0x7, t0             // low bits only
        bne     t0, CompareUnaligned    // if ne, incompatible alignment

//
// Compare memory aligned
//

CompareAligned:                         //

//
// compare memory until sources are aligned
//
        and     a0, 0x7, t0             // get low bits
        bne     t0, 10f                 // if ne, sources not aligned yet
        br      zero, 30f               // already aligned, predicted


10:
        ldq_u   t1, 0(a0)               // get unaligned quad at source 1
        ldq_u   t2, 0(a1)               // get unaligned quad at source 2

20:
        extbl   t1, t0, t4              // byte at t0 in source 1 quad
        extbl   t2, t0, t5              // byte at t0 in source 2 quad
        xor     t4, t5, t3              // t1 = t2 ?
        bne     t3, 110f                // not equal, miscompare
        subq    a2, 1, a2               // decrement bytes to compare
        beq     a2, 90f                 // if eq, compare success
        addq    t0, 1, t0               // increment pointer within quad
        cmpeq   t0, 8, t3               // t0 = 8?, if so first quadword done
        beq     t3, 20b                 // continue while t0 < 8


        addq    a0, 8, a0               // increment to next quadword
        addq    a1, 8, a1               // increment source 2 to next also
        bic     a0, 7, a0               // align source 1 quadword
        bic     a1, 7, a1               // align source 2 quadword


//
// aligned block compare, compare blocks of 64 bytes
//

30:
        srl     a2, 6, t0               // t0 = number of 64 byte blocks
        beq     t0, 50f                 // if eq, no 64 byte blocks

//
// N.B. loads from each of the sources were separated in case these
//      blocks are fighting for the cache
//
        .set    noat
40:
        ldq     t1, 0(a0)               // t1 = source 1, quad 0
        ldq     t2, 8(a0)               // t2 = source 1, quad 1
        ldq     t3, 16(a0)              // t3 = source 1, quad 2
        addq    a1, 64, a1              // increment source 2 pointer
        ldq     t4, 24(a0)              // t4 = source 1, quad 3

        ldq     t5, -64(a1)             // t5 = source 2, quad 0
        ldq     a4, -56(a1)             // a4 = source 2, quad 1
        ldq     a5, -48(a1)             // a5 = source 2, quad 2
        xor     t1, t5, $at             // quad 0 match?
        bne     $at, 200f               // if ne[false], miscompare
        ldq     t5, -40(a1)             // t5 = source 2, quad 3
        ldq     t1, 32(a0)              // t1 = source 1, quad 4
        xor     t2, a4, $at             // quad 1 match?
        bne     $at, 122f               // if ne[false], miscompare
        ldq     t2, 40(a0)              // t2 = source 1, quad 5
        xor     t3, a5, $at             // quad 2 match?
        bne     $at, 124f               // if ne[false], miscompare
        ldq     t3, 48(a0)              // t3 = source 1, quad 6
        xor     t4, t5, $at             // quad 3 match?
        bne     $at, 126f               // if ne[false], miscompare
        ldq     t4, 56(a0)              // t4 = source 1, quad 7

        ldq     t5, -32(a1)             // t5 = source 2, quad 4
        addq    a0, 64, a0              // increment source 1 pointer
        ldq     a4, -24(a1)             // a4 = source 2, quad 5
        subq    t0, 1, t0               // decrement blocks to compare
        ldq     a5, -16(a1)             // a5 = source 2, quad 6
        xor     t1, t5, $at             // quad 4 match?
        bne     $at, 130f               // if ne[false], miscompare
        ldq     t5, -8(a1)              // t5 = source 2, quad 7
        xor     t2, a4, $at             // quad 5 match?
        bne     $at, 132f               // if ne[false], miscompare
        xor     t3, a5, $at             // quad 6 match?
        bne     $at, 134f               // if ne[false], miscompare
        xor     t4, t5, $at             // quad 7 match?
        bne     $at, 136f               // if ne[false], miscompare
        subq    a2, 64, a2              // decrement bytes to compare
        bne     t0, 40b                 // if ne, more blocks to compare
        .set    at


//
// Compare quadwords
//

50:
        srl     a2, 3, t0               // t0 = number of quadwords to compare
        beq     t0, 70f                 // if eq, no quadwords to compare

        .set    noat
60:
        ldq     t1, 0(a0)               // t1 = quad from source 1
        lda     a0, 8(a0)               // increment source 1 pointer
        ldq     t2, 0(a1)               // t2 = quad from source 2
        lda     a1, 8(a1)               // increment source 2 pointer
        xor     t1, t2, $at             // are quadwords equal?
        bne     $at, 200f               // if ne, miscompare
        subq    t0, 1, t0               // decrement quads to compare
        subq    a2, 8, a2               // decrement bytes to compare
        bne     t0, 60b                 // if ne, more quads to compare

        .set    at

//
// Compare bytes in last quadword
//

//      a2 =  number of bytes to compare, less than 8, greater than zero
//      a0, a1, quad-aligned to last quadword

        beq     a2, 80f                 // if eq, all bytes compared

        .set    noat
70:
        ldq     t1, 0(a0)               // t1 = quad at source 1
        ldq     t2, 0(a1)               // t2 = quad at source 2
        bis     zero, 0xff, t0          // zap mask
        sll     t0, a2, t0              //
        zap     t1, t0, t1              // zero bytes not compared
        zap     t2, t0, t2              // same for source 2
        xor     t1, t2, $at             // compare quadwords
        bne     $at, 200f               // if ne, miscompare

        .set    at
//
// Successful compare
//      v0 already contains full length
//

80:
        ret     zero, (ra)              // return


//
// Sources have incompatible alignment
//
CompareUnaligned:


//
// Compare until source 1 (a0) is aligned
//

        and     a0, 0x7, t0             // get byte position of pointer
        beq     t0, 30f                 // if eq, already aligned

        ldq_u   t1, 0(a0)               // get unaligned quad at a0

10:
        ldq_u   t2, 0(a1)               // get unaligned quad at a1
        extbl   t1, t0, t4              // get byte to compare from source 1
        extbl   t2, a1, t2              // get byte to compare from source 2
        xor     t4, t2, t3              // do bytes match?
        bne     t3, 110f                // if ne, miscompare
        subq    a2, 1, a2               // decrement bytes to compare
        beq     a2, 90f                 // (JAE) quit if nothing left to compare
        addq    t0, 1, t0               // increment byte within source 1
        addq    a1, 1, a1               // increment source 2 pointer
        cmpeq   t0, 8, t3               // finished with source 1 quad?
        beq     t3, 10b                 // if eq[false], more to compare

        addq    a0, 7, a0               // point to next source 1 quad
        bic     a0, 7, a0               // align to quadword


//
// Compare 64-byte blocks
//

30:
        srl     a2, 6, t0               // t0 = number of blocks to compare
        beq     t0, 50f                 // if eq, no blocks to move

        ldq_u   t1, 0(a1)               // get source 2 unaligned quad 1

        .set    noat
40:
        ldq_u   t2, 7(a1)               // get source 2 unaligned quad 2
        addq    a0, 64, a0              // increment source 1 pointer
        ldq_u   t3, 15(a1)              // get source 2 unaligned quad 3
        extql   t1, a1, t1              // bytes from unaligned quad 1
        extqh   t2, a1, $at             // bytes from unaligned quad 2
        ldq_u   t4, 23(a1)              // get source 2 unaligned quad 4
        bis     t1, $at, t1             // t1 = quadword 1 (source 2)
        ldq_u   t5, 31(a1)              // get source 2 unaligned quad 5
        extql   t2, a1, t2              // bytes from unaligned quad 2
        extqh   t3, a1, $at             // bytes from unaligned quad 3
        ldq     a3, -64(a0)             // a3 = quadword 1 (source 1)
        bis     t2, $at, t2             // t2 = quadword 2 (source 2)
        ldq     a4, -56(a0)             // a4 = quadword 2 (source 1)
        extql   t3, a1, t3              // bytes from unaligned quad 3
        extqh   t4, a1, $at             // bytes from unaligned quad 4
        ldq     a5, -48(a0)             // a5 = quadword 3 (source 1)
        bis     t3, $at, t3             // t3 = quadword 3 (source 2)
        extql   t4, a1, t4              // bytes from unaligned quad 4
        extqh   t5, a1, $at             // bytes from unaligned quad 5
        subq    t0, 1, t0               // decrement blocks to compare
        bis     t4, $at, t4             // t4 = quadword 4 (source 2)

        xor     t1, a3, $at             // match on quadword 1?
        ldq     a3, -40(a0)             // a3 = quadword 4 (source 1)
        bne     $at, 200f               // if ne, miscompare quad 1
        xor     t2, a4, $at             // match on quadword 2?
        ldq_u   t2, 39(a1)              // get source 2 unaligned quad 6
        bne     $at, 122f               // if ne, miscompare quad 2
        xor     t3, a5, $at             // match on quadword 3?
        ldq_u   t3, 47(a1)              // get source 2 unaligned quad 7
        bne     $at, 124f               // if ne, miscompare quad 3
        xor     t4, a3, $at             // match on quadword 4?
        ldq_u   t4, 55(a1)              // get source 2 unaligned quad 8
        bne     $at, 126f               // if ne, miscompare quad 4
        ldq_u   t1, 63(a1)              // get source 2 unaligned quad 9

        ldq     a3, -32(a0)             // a3 = quadword 5 (source 1)
        extql   t5, a1, t5              // bytes from unaligned quad 5
        extqh   t2, a1, $at             // bytes from unaligned quad 6
        ldq     a4, -24(a0)             // a4 = quadword 6 (source 1)
        ldq     a5, -16(a0)             // a5 = quadword 7 (source 1)
        bis     t5, $at, t5             // t5 = quadword 5 (source 2)

        xor     t5, a3, $at             // match on quadword 5?
        ldq     a3, -8(a0)              // a3 = quadword 8 (source 1)
        bne     $at, 130f               // if ne, miscompare quad 5
        extql   t2, a1, t2              // bytes from unaligned quad 6
        extqh   t3, a1, $at             // bytes from unaligned quad 7
        extql   t3, a1, t3              // bytes from unaligned quad 7
        bis     t2, $at, t2             // t2 = quadword 6 (source 2)
        xor     t2, a4, $at             // match on quadword 6?
        bne     $at, 132f               // if ne, miscompare quad 6
        extqh   t4, a1, $at             // bytes from unaligned quad 8
        extql   t4, a1, t4              // bytes from unaligned quad 8
        bis     t3, $at, t3             // t3 = quadword 7 (source 2)
        xor     t3, a5, $at             // match on quadword 7?
        bne     $at, 134f               // if ne, miscompare quad 7
        extqh   t1, a1, $at             // bytes from unaligned quad 9
        addq    a1, 64, a1              // increment source 2 pointer
        bis     t4, $at, t4             // t4 = quadword 8 (source 2)
        xor     t4, a3, $at             // match on quadword 8?
        bne     $at, 136f               // if ne, miscompare quad 8
        subq    a2, 64, a2              // decrement number of bytes to compare
        bne     t0, 40b                 // if ne, more blocks to compare

        .set    at

//
// Compare quadwords
//


50:
        srl     a2, 3, t0               // t0 = number of quads to compare
        beq     t0, 70f                 // if eq, no quads to compare
        ldq_u   t1, 0(a1)               // get unaligned quad 1 (source 2)

        .set    noat
60:
        ldq_u   t2, 7(a1)               // get unaligned quad 2 (source 2)
        ldq     t3, 0(a0)               // t3 = quadword 1 (source 1)
        extql   t1, a1, t1              // get bytes from unaligned quad 1
        extqh   t2, a1, $at             // get bytes from unaligned quad 2
        addq    a1, 8, a1               // increment source 2 pointer
        bis     t1, $at, t1             // t1 = quadword 1 (source 2)
        xor     t1, t3, $at             // match on quadword?
        bne     $at, 200f               // if ne, miscompare
        subq    t0, 1, t0               // decrement quadwords to compare
        addq    a0, 8, a0               // increment source 1 pointer
        subq    a2, 8, a2               // decrement bytes to compare
        bis     t2, zero, t1            // save low quadword for next loop
        bne     t0, 60b                 // if ne, more quads to compare

        .set    at

//
// Compare bytes for final quadword
//

70:
        beq     a2, 90f                 // if eq, comparison complete

        ldq     t1, 0(a0)               // get quadword from source 1
        bis     zero, zero, t0          // t0 = byte position to compare

        .set    noat
80:
        ldq_u   t2, 0(a1)               // get unaligned quad from source 2
        extbl   t1, t0, t3              // t3 = byte from source 1
        extbl   t2, a1, t2              // t2 = byte from source 2
        xor     t3, t2, $at             // match on byte?
        bne     $at, 100f               // if ne, miscompare on byte
        addq    t0, 1, t0               // increment byte position
        addq    a1, 1, a1               // increment source 2 pointer
        subq    a2, 1, a2               // decrement bytes to compare
        bne     a2, 80b                 // if ne, more bytes to compare

        .set    at
//
// Successful full comparison
//

90:
        ret     zero, (ra)              // return, v0 already set


//
// Miscompare on last quadword
//

100:
        subq    v0, a2, v0              // subtract bytes not compared
        ret     zero, (ra)              // return

//
// Miscompare on first quadword, unaligned case
//
//  v0 = total bytes to compare
//  a2 = bytes remaining to compare
//

110:
        subq    v0, a2, v0              // bytes compared successfully
        ret     zero, (ra)              // return

//
// Miscompare on 64-byte block compare
//

122:
        subq    a2, 8, a2               // miscompare on quad 2
        br      zero, 200f              // finish in common code

124:
        subq    a2, 16, a2              // miscompare on quad 3
        br      zero, 200f              // finish in common code

126:
        subq    a2, 24, a2              // miscompare on quad 4
        br      zero, 200f              // finish in common code

130:
        subq    a2, 32, a2              // miscompare on quad 5
        br      zero, 200f              // finish in common code

132:
        subq    a2, 40, a2              // miscompare on quad 6
        br      zero, 200f              // finish in common code

134:
        subq    a2, 48, a2              // miscompare on quad 7
        br      zero, 200f              // finish in common code

136:
        subq    a2, 56, a2              // miscompare on quad 8
        br      zero, 200f              // finish in common code

//
// Miscompare, determine number of bytes that successfully compared
//      $at = xor of relevant quads from sources, must be non-zero
//      a2 = number of bytes left to compare
//
        .set    noat
200:
        cmpbge  zero, $at, $at          // $at = mask of non-zero bytes

        //
        // look for the first bit cleared in $at, this is the
        //      number of the first byte which differed
        //
        bis     zero, zero, t0          // bit position to look for clear

210:
        blbc    $at, 220f               // if low clear, found difference
        srl     $at, 1, $at             // check next bit
        addq    t0, 1, t0               // count bit position checked
        br      zero, 210b

220:
        subq    v0, a2, v0              // subtract bytes yet to compare
        addq    v0, t0, v0              // add bytes that matched on last quad

        ret     zero, (ra)

        .set    at

        .end    RtlCompareMemory



        SBTTL("Move Memory")
//++
//
// VOID
// RtlMoveMemory (
//    IN PVOID Destination,
//    IN PVOID Source,
//    IN ULONG Length
//    )
//
// Routine Description:
//
//    This function moves memory either forward or backward, aligned or
//    unaligned, in 64-byte blocks, followed by 8-byte blocks, followed
//    by any remaining bytes.
//
// Arguments:
//
//    Destination (a0) - Supplies a pointer to the destination address of
//       the move operation.
//
//    Source (a1) - Supplies a pointer to the source address of the move
//       operation.
//
//    Length (a2) - Supplies the length, in bytes, of the memory to be moved.
//
// Return Value:
//
//    None.
//
//--

        LEAF_ENTRY(RtlMoveMemory)

        beq     a2, 80f                 // if eq, no bytes to move
//
// If the source address is less than the destination address and source
// address plus the length of the move is greater than the destination
// address, then the source and destination overlap such that the move
// must be performed backwards.
//

        cmpult  a0, a1, t0              // is destination less than source
        bne     t0, MoveForward         // if eq [true] no overlap possible
        addq    a1, a2, t0              // compute source ending address
        cmpult  t0, a0, t1              // is source end less than dest.
        beq     t1, MoveBackward        // if eq [false], overlap

//
// Move memory forward aligned and unaligned.
//

MoveForward:                            //
        xor     a0, a1, t0              // compare alignment bits
        and     t0, 0x7, t0             // isloate alignment comparison
        bne     t0, MoveForwardUnaligned  // if ne, incompatible alignment

//
// Move memory forward aligned.
//

MoveForwardAligned:                     //

//
// Move bytes until source and destination are quadword aligned
//

        and     a0, 0x7, t0             // t0 = unaligned bits
        bne     t0, 5f                  // if ne, not quad aligned
        br      zero, 20f               // predicted taken

5:
        ldq_u   t2, 0(a0)               // get unaligned quad from dest.
        ldq_u   t1, 0(a1)               // get unaligned quadword from source
10:
        beq     a2, 15f                 // if eq, all bytes moved
        extbl   t1, t0, t3              // t3 = byte from source
        insbl   t3, t0, t3              // t3 = byte from source, in position
        mskbl   t2, t0, t2              // clear position in dest. quad
        bis     t2, t3, t2              // merge in byte from source
        subq    a2, 1, a2               // decrement bytes to move
        addq    t0, 1, t0               // increment byte within quad
        cmpeq   t0, 8, t3               // finished the quadword?
        beq     t3, 10b                 // if eq [false], do next byte
15:
        stq_u   t2, 0(a0)               // store merged destination bytes

        addq    a0, 7, a0               // move to next quadword
        bic     a0, 7, a0               // aligned quadword

        addq    a1, 7, a1               // move to next quadword
        bic     a1, 7, a1               // aligned quadword

//
// Check for 64-byte block moves
//

20:
        srl     a2, 6, t0               // t0 = number of 64 byte blocks
        beq     t0, 40f                 // if eq no blocks to move
        and     a2, 64-1, a2            // a2 = residual bytes

30:
        ldq     t1, 0(a1)               // load 64 bytes from source
        addq    a0, 64, a0              // increment destination pointer
        ldq     v0, 56(a1)              //
        ldq     a3, 32(a1)              //
        stq     t1, -64(a0)             // write to destination
        ldq     t2, 8(a1)               //   into volatile registers
        ldq     t3, 16(a1)              //
        ldq     t4, 24(a1)              //
        subq    t0, 1, t0               // decrement number of blocks
        stq     t2, -56(a0)             //
        ldq     a4, 40(a1)              //
        stq     t3, -48(a0)             //
        ldq     a5, 48(a1)              //
        stq     t4, -40(a0)             //
        addq    a1, 64, a1              // increment source pointer
        stq     a3, -32(a0)             //
        stq     a4, -24(a0)             //
        stq     a5, -16(a0)             //
        stq     v0, -8(a0)              //
        bne     t0, 30b                 // if ne, more blocks to copy

//
// Copy quadwords
//

40:
        srl     a2, 3, t0               // t0 = number of quadwords to move
        beq     t0, 60f                 // if eq no quadwords to move
        and     a2, 8-1, a2             // a2 = residual bytes

50:
        ldq     t1, 0(a1)               // load quadword from source
        addq    a1, 8, a1               // increment source pointer
        stq     t1, 0(a0)               // store quadword to destination
        addq    a0, 8, a0               // increment destination pointer
        subq    t0, 1, t0               // decrement number of quadwords
        bne     t0, 50b                 // if ne, more quadwords to move

//
// Move final residual bytes
//

60:
        beq     a2, 80f                 // if eq, no more bytes to move
        ldq     t1, 0(a1)               // get last source quadword
        ldq     t2, 0(a0)               // get last dest. quadword
        bis     zero, zero, t0          // t0 = next byte number to move

70:
        extbl   t1, t0, t3              // extract byte from source
        insbl   t3, t0, t3              // t3 = source byte, in position
        mskbl   t2, t0, t2              // clear byte position for dest.
        bis     t2, t3, t2              // merge in source byte
        addq    t0, 1, t0               // increment byte position
        subq    a2, 1, a2               // decrement bytes to move
        bne     a2, 70b                 // if ne => more bytes to move

        stq     t2, 0(a0)               // store merged data

//
// Finish aligned MoveForward
//

80:
        ret     zero, (ra)              // return



//
// Move memory forward unaligned.
//

MoveForwardUnaligned:                   //


//
// Move bytes until the destination is aligned
//

        and     a0, 0x7, t0             // t0 = unaligned bits
        beq     t0, 100f                // if eq, destination quad aligned

        ldq_u   t2, 0(a0)               // get unaligned quad from dest

90:
        beq     a2, 95f                 // if eq no more bytes to move
        ldq_u   t1, 0(a1)               // get unaligned quad from source
        extbl   t1, a1, t1              // extract source byte
        insbl   t1, t0, t1              // t1 = source byte, in position
        mskbl   t2, t0, t2              // clear byte position in dest.
        bis     t2, t1, t2              // merge in source byte
        addq    t0, 1, t0               // increment byte position
        addq    a1, 1, a1               // increment source pointer
        subq    a2, 1, a2               // decrement bytes to move
        cmpeq   t0, 8, t3               // t0 = 8? => quad finished
        beq     t3, 90b                 // if eq [false], more bytes to move
95:
        stq_u   t2, 0(a0)               // store merged quadword
        addq    a0, 7, a0               // increment to next quad
        bic     a0, 7, a0               // align next quadword

//
// Check for 64-byte blocks to move
//

100:
        srl     a2, 6, t0               // t0 = number of blocks to move
        beq     t0, 120f                // if eq no blocks to move
        and     a2, 64-1, a2            // a2 = residual bytes to move


        ldq_u   t1, 0(a1)               // t1 = first unaligned quad

110:
                                        // get source data and merge it
                                        //  as we go
        ldq_u   t2, 7(a1)               // t2 = second unaligned quad
        extql   t1, a1, t1              // extract applicable bytes from t1
        extqh   t2, a1, v0              // extract applicable bytes from t2
        bis     t1, v0, t1              // t1 = quad #1
        ldq_u   t3, 15(a1)              // t3 = third unaligned quad
        extql   t2, a1, t2              // extract applicable bytes from t2
        extqh   t3, a1, v0              // extract applicable bytes from t3
        stq     t1, 0(a0)               // store quad #1
        bis     t2, v0, t2              // t2 = quad #2
        ldq_u   t4, 23(a1)              // t4 = fourth unaligned quad
        extql   t3, a1, t3              // extract applicable bytes from t3
        extqh   t4, a1, v0              // extract applicable bytes from t4
        stq     t2, 8(a0)               // store quad #2
        bis     t3, v0, t3              // t3 = quad #3
        ldq_u   t5, 31(a1)              // t5 = fifth unaligned quad
        extql   t4, a1, t4              // extract applicable bytes from t4
        extqh   t5, a1, v0              // extract applicable bytes from t5
        stq     t3, 16(a0)              // store quad #3
        bis     t4, v0, t4              // t4 = quad #4
        ldq_u   a3, 39(a1)              // a3 = sixth unaligned quad
        extql   t5, a1, t5              // extract applicable bytes from t5
        extqh   a3, a1, v0              // extract applicable bytes from a3
        stq     t4, 24(a0)              // store quad #4
        bis     t5, v0, t5              // t5 = quad #5
        ldq_u   a4, 47(a1)              // a4 = seventh unaligned quad
        extql   a3, a1, a3              // extract applicable bytes from a3
        extqh   a4, a1, v0              // extract applicable bytes from a4
        stq     t5, 32(a0)              // store quad #5
        bis     a3, v0, a3              // a3 = quad #6
        ldq_u   a5, 55(a1)              // a5 = eighth unaligned quad
        extql   a4, a1, a4              // extract applicable bytes from a4
        extqh   a5, a1, v0              // extract applicable bytes from a5
        stq     a3, 40(a0)              // store quad #6
        bis     a4, v0, a4              // a4 = quad #7
        ldq_u   t1, 63(a1)              // t1 = ninth unaligned = 1st of next
        extql   a5, a1, a5              // extract applicable bytes from a5
        extqh   t1, a1, v0              // extract applicable bytes from t1
        stq     a4, 48(a0)              // store quad #7
        bis     a5, v0, a5              // a5 = quad #8
        addq    a1, 64, a1              // increment source pointer
        stq     a5, 56(a0)              // store quad #8
        addq    a0, 64, a0              // increment destination pointer
        subq    t0, 1, t0               // decrement number of blocks
        bne     t0, 110b                // if ne, more blocks to move

//
// Move unaligned source quads to aligned destination quads
//

120:
        srl     a2, 3, t0               // t0 = number of quads to move
        beq     t0, 140f                // if eq no quads to move
        and     a2, 8-1, a2             // a2 = residual bytes


        ldq_u   t1, 0(a1)               // t1 = first unaligned quad
130:
        ldq_u   t2, 7(a1)               // t2 = second unaligned quad
        addq    a0, 8, a0               // increment destination pointer
        extql   t1, a1, t1              // extract applicable bytes from t1
        extqh   t2, a1, v0              // extract applicable bytes from t2
        bis     t1, v0, t1              // t1 = quadword of data
        stq     t1, -8(a0)              // store data to destination
        addq    a1, 8, a1               // increment source pointer
        subq    t0, 1, t0               // decrement quads to move
        bis     t2, zero, t1            // t1 = first of next unaligned pair
        bne     t0, 130b                // if ne, more quads to move

//
// Move remaining bytes to final quadword
//


140:
        beq     a2, 160f                // if eq no more bytes to move
        ldq     t2, 0(a0)               // t2 = destination quadword
        bis     zero, zero, t3          // t3 = position for next insertion

150:
        ldq_u   t1, 0(a1)               // get unaligned source quad
        extbl   t1, a1, t1              // t1 = source byte
        insbl   t1, t3, t1              // t1 = source byte, in position
        mskbl   t2, t3, t2              // clear byte in destination
        bis     t2, t1, t2              // merge in source byte
        addq    a1, 1, a1               // increment source pointer
        subq    a2, 1, a2               // decrement bytes to move
        addq    t3, 1, t3               // increment destination position
        bne     a2, 150b                // more bytes to move

        stq     t2, 0(a0)               // store merged data

//
// Finish unaligned MoveForward
//

160:
        ret     zero, (ra)              // return


//
// Move memory backward.
//

MoveBackward:                           //

        addq    a0, a2, a0              // compute ending destination address
        addq    a1, a2, a1              // compute ending source address
        subq    a0, 1, a0               // point to last destination byte
        subq    a1, 1, a1               // point to last source byte
        xor     a0, a1, t0              // compare alignment bits
        and     t0, 0x7, t0             // isolate alignment comparison
        bne     t0, MoveBackwardUnaligned   // if ne, incompatible alignment

//
// Move memory backward aligned.
//

MoveBackwardAligned:                    //

//
// Move bytes until source and destination are quadword aligned
//

        and     a0, 0x7, t0             // t0 = unaligned bits
        cmpeq   t0, 7, t1               // last byte position 7?
        beq     t1, 5f                  // if eq [false], not quad aligned
        subq    a0, 7, a0               // point to beginning of last quad
        subq    a1, 7, a1               // point to beginning of last quad
        br      zero, 30f               // predicted taken

5:
        ldq_u   t1, 0(a0)               // get unaligned quad from dest.
        ldq_u   t2, 0(a1)               // get unaligned quad from source

10:
        beq     a2, 20f                 // if eq, all bytes moved
        extbl   t2, t0, t3              // t3 = byte from source
        insbl   t3, t0, t3              // t3 = byte from source, in position
        mskbl   t1, t0, t1              // clear position in destination
        bis     t1, t3, t1              // merge in byte from source
        subq    a2, 1, a2               // decrement bytes to move
        subq    t0, 1, t0               // decrement byte within quadword
        cmplt   t0, zero, t3            // finished the quadword?
        beq     t3, 10b                 // if eq [false], do next byte

20:
        stq_u   t1, 0(a0)               // store merged destination bytes

        subq    a0, 8, a0               // move to previous quadword
        bic     a0, 7, a0               // aligned quadword

        subq    a1, 8, a1               // move to previous quadword
        bic     a1, 7, a1               // aligned quadword

//
// Check for 64-byte block moves
//

30:

        srl     a2, 6, t0               // t0 = number of 64 byte blocks
        beq     t0, 50f                 // if eq, no blocks to move
        and     a2, 64-1, a2            // a2 = residual bytes

40:
        ldq     t1, 0(a1)               // load 64 bytes from source into
        subq    a0, 64, a0              // decrement destination pointer
        ldq     v0, -56(a1)             //
        ldq     a3, -32(a1)             //
        stq     t1, 64(a0)              // write to destination
        ldq     t2, -8(a1)              //   into volatile registers
        ldq     a5, -48(a1)             //
        ldq     a4, -40(a1)             //
        stq     t2, 56(a0)              //
        ldq     t3, -16(a1)             //
        ldq     t4, -24(a1)             //
        subq    a1, 64, a1              // decrement source pointer
        stq     t3, 48(a0)              //
        stq     t4, 40(a0)              //
        stq     a3, 32(a0)              //
        subq    t0, 1, t0               // decrement number of blocks
        stq     a4, 24(a0)              //
        stq     a5, 16(a0)              //
        stq     v0, 8(a0)               //
        bne     t0, 40b                 // if ne, more blocks to copy

//
// Copy quadwords
//

50:
        srl     a2, 3, t0               // t0 = number of quadwords to move
        beq     t0, 70f                 // if eq no quadwords to move
        and     a2, 8-1, a2             // a2 = residual bytes

60:
        ldq     t1, 0(a1)               // load quadword from source
        subq    a1, 8, a1               // decrement source pointer
        stq     t1, 0(a0)               // store quadword to destination
        subq    a0, 8, a0               // decrement destination pointer
        subq    t0, 1, t0               // decrement quadwords to move
        bne     t0, 60b                 // if ne, more quadwords to move

//
// Move final residual bytes
//

70:
        beq     a2, 90f                 // if eq, no more bytes to move
        ldq     t1, 0(a1)               // get last source quadword
        ldq     t2, 0(a0)               // get last destination quadword
        bis     zero, 7, t0             // t0 = next byte number to move

80:
        extbl   t1, t0, t3              // extract byte from source
        insbl   t3, t0, t3              // t3 = source byte, in position
        mskbl   t2, t0, t2              // clear byte position for dest.
        bis     t2, t3, t2              // merge in source byte
        subq    t0, 1, t0               // decrement byte position
        subq    a2, 1, a2               // decrement bytes to move
        bne     a2, 80b                 // if ne, more bytes to move

        stq     t2, 0(a0)               // write destination data
//
// Finish aligned MoveBackward
//

90:

        ret     zero, (ra)              // return


//
// Move memory backward unaligned.
//

MoveBackwardUnaligned:                  //


//
// Move bytes until the destination is aligned
//

        and     a0, 0x7, t0             // t0 = unaligned bits
        cmpeq   t0, 7, t1               // last byte of a quadword
        beq     t1, 95f                 // if eq[false], not aligned
        subq    a0, 7, a0               // align pointer to beginning of quad
        br      zero, 120f              //

95:
        ldq_u   t2, 0(a0)               // get unaligned quad from dest.

100:
        beq     a2, 110f                // if eq, no more bytes to move
        ldq_u   t1, 0(a1)               // get unaligned quad from source
        extbl   t1, a1, t1              // extract source byte
        insbl   t1, t0, t1              // t1 = source byte in position
        mskbl   t2, t0, t2              // clear byte position in dest.
        bis     t2, t1, t2              // merge source byte
        subq    t0, 1, t0               // decrement byte position
        subq    a1, 1, a1               // decrement source pointer
        subq    a2, 1, a2               // decrement number of bytes to move
        cmplt   t0, zero, t3            // t0 < 0? => quad finished
        beq     t3, 100b                // if eq [false], more bytes to move

110:
        stq_u   t2, 0(a0)               // store merged quadword

        subq    a0, 8, a0               // decrement dest. to previous quad
        bic     a0, 7, a0               // align previous quadword

//
// Check for 64-byte blocks to move
//

120:

        srl     a2, 6, t0               // t0 = number of blocks to move
        subq    a1, 7, a1               // point to beginning of last quad
        beq     t0, 140f                // if eq no blocks to move
        and     a2, 64-1, a2            // a2 = residual bytes to move

        ldq_u   t1, 7(a1)               // t1 = first unaligned quad

130:
                                        // get source data and merge it
                                        //  as we go
        ldq_u   t2, 0(a1)               // t2 = second unaligned quad
        extqh   t1, a1, t1              // extract applicable bytes from t1
        extql   t2, a1, v0              // extract applicable bytes from t2
        bis     t1, v0, t1              // t1 = quad #1
        ldq_u   t3, -8(a1)              // t3 = third unaligned quad
        extqh   t2, a1, t2              // extract applicable bytes from t2
        extql   t3, a1, v0              // extract applicable bytes from t3
        stq     t1, 0(a0)               // store quad #1
        bis     t2, v0, t2              // t2 = quad #2
        ldq_u   t4, -16(a1)             // t4 = fourth unaligned quad
        extqh   t3, a1, t3              // extract applicable bytes from t3
        extql   t4, a1, v0              // extract applicable bytes from t4
        stq     t2, -8(a0)              // store quad #2
        bis     t3, v0, t3              // t3 = quad #3
        ldq_u   t5, -24(a1)             // t5 = fifth unaligned quad
        extqh   t4, a1, t4              // extract applicable bytes from t4
        extql   t5, a1, v0              // extract applicable bytes from t5
        stq     t3, -16(a0)             // store quad #3
        bis     t4, v0, t4              // t4 = quad #4
        ldq_u   a3, -32(a1)             // a3 = sixth unaligned quad
        extqh   t5, a1, t5              // extract applicable bytes from t5
        extql   a3, a1, v0              // extract applicable bytes from a3
        stq     t4, -24(a0)             // store quad #4
        bis     t5, v0, t5              // t5 = quad #5
        ldq_u   a4, -40(a1)             // a4 = seventh unaligned quad
        extqh   a3, a1, a3              // extract applicable bytes from a3
        extql   a4, a1, v0              // extract applicable bytes from a4
        stq     t5, -32(a0)             // store quad #5
        bis     a3, v0, a3              // a3 = quad #6
        ldq_u   a5, -48(a1)             // a5 = eighth unaligned quad
        extqh   a4, a1, a4              // extract applicable bytes from a4
        extql   a5, a1, v0              // extract applicable bytes from a5
        stq     a3, -40(a0)             // store quad #6
        bis     a4, v0, a4              // a4 = quad #7
        ldq_u   t1, -56(a1)             // t1 = ninth unaligned = 1st of next
        extqh   a5, a1, a5              // extract applicable bytes from a5
        extql   t1, a1, v0              // extract applicable bytes from t1
        stq     a4, -48(a0)             // store quad #7
        bis     a5, v0, a5              // a5 = quad #8
        subq    a1, 64, a1              // increment source pointer
        stq     a5, -56(a0)             // store quad #8
        subq    a0, 64, a0              // increment destination pointer
        subq    t0, 1, t0               // decrement number of blocks
        bne     t0, 130b                // if ne, more blocks to move


//
// Move unaligned source quads to aligned destination quads
//

140:
        srl     a2, 3, t0               // t0 = number of quads to move
        beq     t0, 160f                // if eq no quads to move
        and     a2, 8-1, a2             // a2 = residual bytes

        ldq_u   t1, 7(a1)               // t1 = first unaligned quad

150:
        ldq_u   t2, 0(a1)               // t2 = second unaligned quad
        subq    a0, 8, a0               // decrement destination pointer
        extqh   t1, a1, t1              // extract applicable bytes from t1
        extql   t2, a1, v0              // extract applicable bytes from t2
        bis     t1, v0, t1              // t1 = quadword of data
        stq     t1, 8(a0)               // store data to destination
        subq    a1, 8, a1               // decrement source pointer
        subq    t0, 1, t0               // decrement quads to move
        bis     t2, zero, t1            // t1 = first of next unaligned pair
        bne     t0, 150b                // if ne, more quads to move

//
// Move remaining bytes to final quadword
//

160:
        beq     a2, 180f                // if eq, no more bytes to move
        ldq     t2, 0(a0)               // t2 = destination quadword
        bis     zero, 7, t0             // t0 = position for next insertion

170:
        subq    a1, 1, a1               // decrement source pointer
        ldq_u   t1, 8(a1)               // get unaligned source quad
        extbl   t1, a1, t1              // t1 = source byte
        insbl   t1, t0, t1              // t1 = source byte, in position
        mskbl   t2, t0, t2              // clear byte position
        bis     t2, t1, t2              // merge in source byte
        subq    t0, 1, t0               // decrement byte position for dest.
        subq    a2, 1, a2               // decrement bytes to move
        bne     a2, 170b                // if ne, more bytes to move

        stq     t2, 0(a0)               //

//
// Finish unaligned MoveBackward
//

180:
        ret     zero, (ra)              // return

        .end    RtlMoveMemory

        SBTTL("Zero Memory")
//++
//
// VOID
// RtlZeroMemory (
//    IN PVOID Destination,
//    IN ULONG Length
//    )
//
// Routine Description:
//
//    This function zeros memory by first aligning the destination address to
//    a quadword boundary, and then zeroing 64-byte blocks, followed by 8-byte
//    blocks, followed by any remaining bytes.
//
// Arguments:
//
//    Destination (a0) - Supplies a pointer to the memory to zero.
//
//    Length (a1) - Supplies the length, in bytes, of the memory to be zeroed.
//
// Return Value:
//
//    None.
//
//--

        LEAF_ENTRY(RtlZeroMemory)

        bis     zero, zero, a2          // set fill pattern
        br      zero, RtlpFillMemory    //


        SBTTL("Fill Memory")
//++
//
// VOID
// RtlFillMemory (
//    IN PVOID Destination,
//    IN ULONG Length,
//    IN UCHAR Fill
//    )
//
// Routine Description:
//
//    This function fills memory by first aligning the destination address to
//    a longword boundary, and then filling 32-byte blocks, followed by 4-byte
//    blocks, followed by any remaining bytes.
//
// Arguments:
//
//    Destination (a0) - Supplies a pointer to the memory to fill.
//
//    Length (a1) - Supplies the length, in bytes, of the memory to be filled.
//
//    Fill (a2) - Supplies the fill byte.
//
//    N.B. The alternate entry memset expects the length and fill arguments
//         to be reversed.  It also returns the Destination pointer
//
// Return Value:
//
//    None.
//
//--

        ALTERNATE_ENTRY(memset)

        bis     a0, zero, v0            // set return value
        bis     a1, zero, a3            // swap length and fill arguments
        bis     a2, zero, a1            //
        bis     a3, zero, a2            //

        ALTERNATE_ENTRY(RtlFillMemory)

        and     a2, 0xff, a2            // clear excess bits
        sll     a2, 8, t0               // duplicate fill byte
        bis     a2, t0, a2              // generate fill word
        sll     a2, 16, t0              // duplicate fill word
        bis     a2, t0, a2              // generate fill longword
        sll     a2, 32, t0              // duplicate fill longword
        bis     a2, t0, a2              // generate fill quadword

.align 3                                // ensure quadword aligned target
//
// Fill memory with the pattern specified in register a2.
//

RtlpFillMemory:                         //

//
// Align destination to quadword
//

        beq     a1, 80f                 // anything to fill? (paranoia)
        and     a0, 8-1, t0             // t0 = unaligned bits
        bne     t0, 5f                  // if ne, then not quad aligned
        br      zero, 20f               // if eq, then quad aligned

5:
        ldq_u   t1, 0(a0)               // get unaligned quadword
                                        //   for first group of bytes
10:
        beq     a1, 15f                 // if eq no more bytes to fill
        insbl   a2, t0, t2              // get fill byte into position
        mskbl   t1, t0, t1              // clear byte for fill
        bis     t1, t2, t1              // put in fill byte
        addq    t0, 1, t0               // increment to next byte position
        subq    a1, 1, a1               // decrement bytes to fill
        cmpeq   t0, 8, t2               // t0 = 8?
        beq     t2, 10b                 // if eq [false] more bytes to do

15:
        stq_u   t1, 0(a0)               // store modified bytes
        addq    a0, 7, a0               // move a0 to next quadword
        bic     a0, 7, a0               // align a0 to quadword

//
// Check for 64-byte blocks
//

20:
        srl     a1, 6, t0               // t0 = number of 64 byte blocks
        beq     t0, 40f                 // if eq then no 64 byte blocks
        and     a1, 64-1, a1            // a1 = residual bytes to fill

30:
        stq     a2, 0(a0)               // store 64 bytes
        stq     a2, 8(a0)               //
        stq     a2, 16(a0)              //
        stq     a2, 24(a0)              //
        stq     a2, 32(a0)              //
        stq     a2, 40(a0)              //
        stq     a2, 48(a0)              //
        stq     a2, 56(a0)              //

        subq    t0, 1, t0               // decrement blocks remaining
        addq    a0, 64, a0              // increment destination pointer
        bne     t0, 30b                 // more blocks to write



//
// Fill aligned quadwords
//

40:
        srl     a1, 3, t0               // t0 = number of quadwords
        bne     t0, 55f                 // if ne quadwords left to fill
        br      zero, 60f               // if eq no quadwords left

55:
        and     a1, 8-1, a1             // a1 = residual bytes to fill

50:
        stq     a2, 0(a0)               // store quadword
        subq    t0, 1, t0               // decrement quadwords remaining
        addq    a0, 8, a0               // next quadword
        bne     t0, 50b                 // more quadwords to write


//
// Fill bytes for last quadword
//

60:
        bne     a1, 65f                 // if ne bytes remain to be filled
        br      zero, 80f               // if eq no more bytes to fill

65:
        ldq     t1, 0(a0)               // get last quadword
        bis     zero, zero, t0          // t0 = byte position to start fill

70:
        beq     a1, 75f                 // if eq, no more bytes to fill
        insbl   a2, t0, t2              // get fill byte into position
        mskbl   t1, t0, t1              // clear fill byte position
        bis     t1, t2, t1              // insert fill byte
        addq    t0, 1, t0               // increment byte within quad
        subq    a1, 1, a1               // decrement bytes to fill
        cmpeq   t0, 8, t3               // t0 = 8? => finished quad
        beq     t3, 70b                 // if eq [false] more bytes to fill

75:
        stq     t1, 0(a0)               // write merged quadword

//
// Finish up
//

80:
        ret     zero, (ra)              // return


        .end    RtlZeroMemory

        SBTTL("Fill Memory Ulong")
//++
//
// VOID
// RtlFillMemoryUlong (
//    IN PVOID Destination,
//    IN ULONG Length,
//    IN ULONG Pattern
//    )
//
// Routine Description:
//
//    This function fills memory with the specified longowrd pattern by
//    filling 64-byte blocks followed by 8-byte blocks and finally
//    4-byte blocks.
//
//    N.B. This routine assumes that the destination address is aligned
//         on a longword boundary and that the length is an even multiple
//         of longwords.
//
// Arguments:
//
//    Destination (a0) - Supplies a pointer to the memory to fill.
//
//    Length (a1) - Supplies the length, in bytes, of the memory to be filled.
//
//    Pattern (a2) - Supplies the fill pattern.
//
// Return Value:
//
//    None.
//
//--

        LEAF_ENTRY(RtlFillMemoryUlong)

        bic     a1, 3, a1               // make sure length is an even number
                                        // of longwords
        sll     a2, 32, a3              // a3 = long pattern in upper 32 bits
        srl     a3, 32, t0              // clear upper bits, pattern in lower 32
        bis     a3, t0, a3              // a3 = quad version of fill pattern

//
// Make destination address quad-aligned
//

        and     a0, 4, t0               // is a0 quad aligned?
        beq     t0, 10f                 // if eq, then a0 quad aligned
        stl     a2, 0(a0)               // fill first longword
        addq    a0, 4, a0               // quad align a0
        subq    a1, 4, a1               // bytes remaining to store

//
// Check for 64-byte blocks to fill
//

10:
        srl     a1, 6, t0               // t0 = # 64-byte blocks to fill
        beq     t0, 30f                 // if eq no 64 byte blocks
        and     a1, 64-1, a1            // a1 = residual bytes

20:
        stq     a3, 0(a0)               // store 64 bytes
        stq     a3, 8(a0)               //
        stq     a3, 16(a0)              //
        stq     a3, 24(a0)              //
        stq     a3, 32(a0)              //
        stq     a3, 40(a0)              //
        stq     a3, 48(a0)              //
        stq     a3, 56(a0)              //
        subq    t0, 1, t0               // t0 = blocks remaining
        addq    a0, 64, a0              // increment address pointer
        bne     t0, 20b                 // if ne more blocks to fill

//
// Fill 8 bytes at a time while we can, a1 = bytes remaining
//

30:
        srl     a1, 3, t0               // t0 = # quadwords to fill
        beq     t0, 50f                 // if eq no quadwords left
        and     a1, 8-1, a1             // a1 = residual bytes
40:
        stq     a3, 0(a0)               // store quadword
        subq    t0, 1, t0               // t0 = quadwords remaining
        addq    a0, 8, a0               // increment address pointer
        bne     t0, 40b                 // if ne more quadwords to fill

//
// Fill last 4 bytes
//

50:
        beq     a1, 60f                 // if eq no longwords remain
        stl     a2, 0(a0)               // fill last longword

//
// Finish up
//

60:
        ret     zero, (ra)              // return to caller


        .end    RtlFillMemoryUlong

        SBTTL("Copy Memory With Byte Granularity")
//++
//
// VOID
// RtlCopyBytes (
//    IN PVOID Destination,
//    IN PVOID Source,
//    IN ULONG Length
//    )
//
// Routine Description:
//
//    This function copies non-overlapping memory, aligned or unaligned, in
//    64-byte blocks, followed by 8-byte blocks, followed by any remaining
//    bytes.  Unlike RtlCopyMemory or RtlMoveMemory the copy is done such
//    that byte granularity is assured for all platforms.
//
// Arguments:
//
//    Destination (a0) - Supplies a pointer to the destination address of
//       the move operation.
//
//    Source (a1) - Supplies a pointer to the source address of the move
//       operation.
//
//    Length (a2) - Supplies the length, in bytes, of the memory to be moved.
//
// Return Value:
//
//    None.
//
//--

        LEAF_ENTRY(RtlCopyBytes)

//
// Move memory forward aligned and unaligned.
//

        xor     a0, a1, t0              // compare alignment bits
        and     t0, 0x7, t0             // isolate alignment comparison
        bne     t0, CopyForwardUnaligned // if ne, incompatible alignment

//
// Source and Destination buffers have the same alignment. Move
// bytes until done or source and destination are quadword aligned
//

        and     a0, 0x7, t0             // t0 = unaligned bits
        bne     t0, 5f                  // if ne, not quad aligned
        br      zero, 20f               // predicted taken
5:
        bis     zero, zero, t1          // t4 = destination byte zap mask
        bis     zero, 1, t2
        sll     t2, t0, t2              // t2 = next bit to set in zap mask
10:
        beq     a2, 15f                 // if eq, all bits set
        bis     t1, t2, t1              // set bit in zap mask
        sll     t2, 1, t2               // set next higher bit for zap mask
        subq    a2, 1, a2               // decrement bytes to move
        addq    t0, 1, t0               // increment byte within quad
        cmpeq   t0, 8, t3               // finished the quadword?
        beq     t3, 10b                 // if eq [false], do next byte
15:
        ldq_u   t2, 0(a1)               // get unaligned quadword from source
        zapnot  t2, t1, t2              // clear source bytes
        bic     a0, 7, a3               // a3 = quadword base of destination
retry1:
        ldq_l   t0, 0(a3)               // load destination quadword
        zap     t0, t1, t0              // clear destination bytes
        or      t0, t2, t0              // merge in bytes from source
        stq_c   t0, 0(a3)               // store merged quadword conditional
        beq     t0, retry1f             // if eq, retry failed interlock

        addq    a0, 7, a0               // move to next quadword
        bic     a0, 7, a0               // aligned quadword

        addq    a1, 7, a1               // move to next quadword
        bic     a1, 7, a1               // aligned quadword

//
// Check for 64-byte block moves
//

20:
        srl     a2, 6, t0               // t0 = number of 64 byte blocks
        beq     t0, 40f                 // if eq no blocks to move
        and     a2, 64-1, a2            // a2 = residual bytes

30:
        ldq     t1, 0(a1)               // load 64 bytes from source
        addq    a0, 64, a0              // increment destination pointer
        ldq     v0, 56(a1)              //
        ldq     a3, 32(a1)              //
        stq     t1, -64(a0)             // write to destination
        ldq     t2, 8(a1)               //   into volatile registers
        ldq     t3, 16(a1)              //
        ldq     t4, 24(a1)              //
        subq    t0, 1, t0               // decrement number of blocks
        stq     t2, -56(a0)             //
        ldq     a4, 40(a1)              //
        stq     t3, -48(a0)             //
        ldq     a5, 48(a1)              //
        stq     t4, -40(a0)             //
        addq    a1, 64, a1              // increment source pointer
        stq     a3, -32(a0)             //
        stq     a4, -24(a0)             //
        stq     a5, -16(a0)             //
        stq     v0, -8(a0)              //
        bne     t0, 30b                 // if ne, more blocks to copy

//
// Copy quadwords
//

40:
        srl     a2, 3, t0               // t0 = number of quadwords to move
        beq     t0, 60f                 // if eq no quadwords to move
        and     a2, 8-1, a2             // a2 = residual bytes

50:
        ldq     t1, 0(a1)               // load quadword from source
        addq    a1, 8, a1               // increment source pointer
        stq     t1, 0(a0)               // store quadword to destination
        addq    a0, 8, a0               // increment destination pointer
        subq    t0, 1, t0               // decrement number of quadwords
        bne     t0, 50b                 // if ne, more quadwords to move

//
// Move final residual bytes
//

60:
        beq     a2, 80f                 // if eq, no more bytes to move
        mov     a2, t0                  // t0 = number of bytes to move
        mov     -1, t1                  // t1 = bit mask
        sll     t0, 3, t0               // # of bytes to # of bits
        srl     t1, t0, t1              // clear t0 bits
        sll     t1, t0, t0              // move it back
        ldq     t1, 0(a1)               // get last source quadword
        bic     t1, t0, t1              // clear bytes not copied
        not     t0, t0                  // complement to clear destination
retry2:
        ldq_l   t2, 0(a0)               // get last destination quadword locked
        bic     t2, t0, t2              // clear bytes to be copied
        bis     t2, t1, t2              // move bytes from source
        stq_c   t2, 0(a0)               // store merged quadword conditional
        beq     t2, retry2f             // if eq, retry failed interlock

//
// Finish aligned MoveForward
//

80:
        ret     zero, (ra)              // return

//
// Move memory forward unaligned.
//

CopyForwardUnaligned:                   //

//
// Move bytes until the destination is aligned
//

        and     a0, 0x7, t0             // t0 = unaligned bits
        beq     t0, 100f                // if eq, destination quad aligned
        bis     zero, zero, t1          // t4 = destination byte zap mask
        bis     zero, 1, t2
        sll     t2, t0, t2              // t2 = next bit to set in zap mask
        mov     zero, t4                // assemble destination bytes here
90:
        beq     a2, 95f                 // if eq no more bytes to move
        bis     t1, t2, t1              // set bit in zap mask
        sll     t2, 1, t2               // set next higher bit for zap mask
        ldq_u   t5, 0(a1)               // get unaligned quad from source
        extbl   t5, a1, t5              // extract source byte
        insbl   t5, t0, t5              // t5 = source byte, in position
        or      t4, t5, t4              // merge in source byte
        addq    t0, 1, t0               // increment byte position
        addq    a1, 1, a1               // increment source pointer
        subq    a2, 1, a2               // decrement bytes to move
        cmpeq   t0, 8, t3               // t0 = 8? => quad finished
        beq     t3, 90b                 // if eq [false], more bytes to move
95:
        bic     a0, 0x7, a3             // a3 = quadword base of destination
retry3:
        ldq_l   t0, 0(a3)               // load destination quadword
        zap     t0, t1, t0              // clear destination bytes
        or      t0, t4, t0              // merge in bytes from source
        stq_c   t0, 0(a3)               // store merged quadword conditional
        beq     t0, retry3f             // if eq, retry failed interlock

        addq    a0, 7, a0               // increment to next quad
        bic     a0, 7, a0               // align next quadword

//
// Check for 64-byte blocks to move
//

100:
        srl     a2, 6, t0               // t0 = number of blocks to move
        beq     t0, 120f                // if eq no blocks to move
        and     a2, 64-1, a2            // a2 = residual bytes to move

        ldq_u   t1, 0(a1)               // t1 = first unaligned quad
110:
                                        // get source data and merge it
                                        //  as we go
        ldq_u   t2, 7(a1)               // t2 = second unaligned quad
        extql   t1, a1, t1              // extract applicable bytes from t1
        extqh   t2, a1, v0              // extract applicable bytes from t2
        bis     t1, v0, t1              // t1 = quad #1
        ldq_u   t3, 15(a1)              // t3 = third unaligned quad
        extql   t2, a1, t2              // extract applicable bytes from t2
        extqh   t3, a1, v0              // extract applicable bytes from t3
        stq     t1, 0(a0)               // store quad #1
        bis     t2, v0, t2              // t2 = quad #2
        ldq_u   t4, 23(a1)              // t4 = fourth unaligned quad
        extql   t3, a1, t3              // extract applicable bytes from t3
        extqh   t4, a1, v0              // extract applicable bytes from t4
        stq     t2, 8(a0)               // store quad #2
        bis     t3, v0, t3              // t3 = quad #3
        ldq_u   t5, 31(a1)              // t5 = fifth unaligned quad
        extql   t4, a1, t4              // extract applicable bytes from t4
        extqh   t5, a1, v0              // extract applicable bytes from t5
        stq     t3, 16(a0)              // store quad #3
        bis     t4, v0, t4              // t4 = quad #4
        ldq_u   a3, 39(a1)              // a3 = sixth unaligned quad
        extql   t5, a1, t5              // extract applicable bytes from t5
        extqh   a3, a1, v0              // extract applicable bytes from a3
        stq     t4, 24(a0)              // store quad #4
        bis     t5, v0, t5              // t5 = quad #5
        ldq_u   a4, 47(a1)              // a4 = seventh unaligned quad
        extql   a3, a1, a3              // extract applicable bytes from a3
        extqh   a4, a1, v0              // extract applicable bytes from a4
        stq     t5, 32(a0)              // store quad #5
        bis     a3, v0, a3              // a3 = quad #6
        ldq_u   a5, 55(a1)              // a5 = eighth unaligned quad
        extql   a4, a1, a4              // extract applicable bytes from a4
        extqh   a5, a1, v0              // extract applicable bytes from a5
        stq     a3, 40(a0)              // store quad #6
        bis     a4, v0, a4              // a4 = quad #7
        ldq_u   t1, 63(a1)              // t1 = ninth unaligned = 1st of next
        extql   a5, a1, a5              // extract applicable bytes from a5
        extqh   t1, a1, v0              // extract applicable bytes from t1
        stq     a4, 48(a0)              // store quad #7
        bis     a5, v0, a5              // a5 = quad #8
        addq    a1, 64, a1              // increment source pointer
        stq     a5, 56(a0)              // store quad #8
        addq    a0, 64, a0              // increment destination pointer
        subq    t0, 1, t0               // decrement number of blocks
        bne     t0, 110b                // if ne, more blocks to move

//
// Move unaligned source quads to aligned destination quads
//

120:
        srl     a2, 3, t0               // t0 = number of quads to move
        beq     t0, 140f                // if eq no quads to move
        and     a2, 8-1, a2             // a2 = residual bytes


        ldq_u   t1, 0(a1)               // t1 = first unaligned quad
130:
        ldq_u   t2, 7(a1)               // t2 = second unaligned quad
        addq    a0, 8, a0               // increment destination pointer
        extql   t1, a1, t1              // extract applicable bytes from t1
        extqh   t2, a1, v0              // extract applicable bytes from t2
        bis     t1, v0, t1              // t1 = quadword of data
        stq     t1, -8(a0)              // store data to destination
        addq    a1, 8, a1               // increment source pointer
        subq    t0, 1, t0               // decrement quads to move
        bis     t2, zero, t1            // t1 = first of next unaligned pair
        bne     t0, 130b                // if ne, more quads to move

//
// Move remaining bytes to final quadword
//

140:    
        beq     a2, 160f                // if eq no more bytes to move

        mov     zero, t3                // t3 = position for next insertion
        mov     zero, t4                // assemble destination bytes here
        mov     a2, t0                  // t0 = number of bytes to move
        mov     -1, t1                  // t1 = bit mask
        sll     t0, 3, t0               // # of bytes to # of bits
        srl     t1, t0, t1              // clear t0 bits
        sll     t1, t0, t0              // move it back
        not     t0, t0                  // complement for destination clear mask
150:
        ldq_u   t1, 0(a1)               // get unaligned source quad
        extbl   t1, a1, t1              // t1 = source byte
        insbl   t1, t3, t1              // t1 = source byte, in position
        bis     t4, t1, t4              // merge in source byte
        addq    a1, 1, a1               // increment source pointer
        subq    a2, 1, a2               // decrement bytes to move
        addq    t3, 1, t3               // increment destination position
        bne     a2, 150b                // more bytes to move
retry4:
        ldq_l   t2, 0(a0)               // get last destination quadword locked
        bic     t2, t0, t2              // clear bytes to be copied
        bis     t2, t4, t2              // move bytes from source
        stq_c   t2, 0(a0)               // store merged quadword conditional
        beq     t2, retry4f             // if eq, retry failed interlock
           
//
// Finish unaligned MoveForward
//

160:
        ret     zero, (ra)              // return

//
// Out of line branches for failed store conditional.
// Don't need to restore anything, just try again.
//

retry1f:
        br      retry1
retry2f:
        br      retry2
retry3f:
        br      retry3
retry4f:
        br      retry4

        .end    RtlCopyBytes

        SBTTL("Zero Bytes")
//++
//
// VOID
// RtlZeroBytes (
//    IN PVOID Destination,
//    IN ULONG Length
//    )
//
// Routine Description:
//
//    This function zeros memory by first aligning the destination address to
//    a quadword boundary, and then zeroing 64-byte blocks, followed by 8-byte
//    blocks, followed by any remaining bytes. Unlike RtlZeroMemory the copy is
//    done such that byte granularity is assured for all platforms.
//
// Arguments:
//
//    Destination (a0) - Supplies a pointer to the memory to zero.
//
//    Length (a1) - Supplies the length, in bytes, of the memory to be zeroed.
//
// Return Value:
//
//    None.
//
//--

        LEAF_ENTRY(RtlZeroBytes)

        bis     zero, zero, a2          // set fill pattern
        br      zero, RtlpFillBytes     //


        SBTTL("Fill Bytes")
//++
//
// VOID
// RtlFillBytes (
//    IN PVOID Destination,
//    IN ULONG Length,
//    IN UCHAR Fill
//    )
//
// Routine Description:
//
//    This function fills memory by first aligning the destination address to
//    a longword boundary, and then filling 32-byte blocks, followed by 4-byte
//    blocks, followed by any remaining bytes. Unlike RtlFillMemory the copy is
//    done such that byte granularity is assured for all platforms.
//
// Arguments:
//
//    Destination (a0) - Supplies a pointer to the memory to fill.
//
//    Length (a1) - Supplies the length, in bytes, of the memory to be filled.
//
//    Fill (a2) - Supplies the fill byte.
//
//    N.B. The alternate entry memset expects the length and fill arguments
//         to be reversed.  It also returns the Destination pointer
//
// Return Value:
//
//    None.
//
//--

        ALTERNATE_ENTRY(RtlFillBytes)

        and     a2, 0xff, a2            // clear excess bits
        sll     a2, 8, t0               // duplicate fill byte
        bis     a2, t0, a2              // generate fill word
        sll     a2, 16, t0              // duplicate fill word
        bis     a2, t0, a2              // generate fill longword
        sll     a2, 32, t0              // duplicate fill longword
        bis     a2, t0, a2              // generate fill quadword

.align 3                                // ensure quadword aligned target
//
// Fill memory with the pattern specified in register a2.
//

RtlpFillBytes:                          //

//
// Align destination to quadword
//

        beq     a1, 80f                 // anything to fill? (paranoia)
        and     a0, 8-1, t0             // t0 = unaligned bits
        bne     t0, 5f                  // if ne, then not quad aligned
        br      zero, 20f               // if eq, then quad aligned

5:
        bis     zero, zero, t1          // t4 = destination byte zap mask
        bis     zero, 1, t2
        sll     t2, t0, t2              // t2 = next bit to set in zap mask
10:
        beq     a1, 15f                 // if eq, all bits set
        bis     t1, t2, t1              // set bit in zap mask
        sll     t2, 1, t2               // set next higher bit for zap mask
        subq    a1, 1, a1               // decrement bytes to fill
        addq    t0, 1, t0               // increment byte within quad
        cmpeq   t0, 8, t3               // finished the quadword?
        beq     t3, 10b                 // if eq [false], do next byte
15:
        zapnot  a2, t1, t2              // clear fill bytes
        bic     a0, 7, a3               // a3 = quadword base of destination
retry5:
        ldq_l   t0, 0(a3)               // load destination quadword
        zap     t0, t1, t0              // clear destination bytes
        or      t0, t2, t0              // merge in fill bytes
        stq_c   t0, 0(a3)               // store merged quadword conditional
        beq     t0, retry5f            // if eq, retry failed interlock

        addq    a0, 7, a0               // move a0 to next quadword
        bic     a0, 7, a0               // align a0 to quadword

//
// Check for 64-byte blocks
//

20:
        srl     a1, 6, t0               // t0 = number of 64 byte blocks
        beq     t0, 40f                 // if eq then no 64 byte blocks
        and     a1, 64-1, a1            // a1 = residual bytes to fill

30:
        stq     a2, 0(a0)               // store 64 bytes
        stq     a2, 8(a0)               //
        stq     a2, 16(a0)              //
        stq     a2, 24(a0)              //
        stq     a2, 32(a0)              //
        stq     a2, 40(a0)              //
        stq     a2, 48(a0)              //
        stq     a2, 56(a0)              //

        subq    t0, 1, t0               // decrement blocks remaining
        addq    a0, 64, a0              // increment destination pointer
        bne     t0, 30b                 // more blocks to write



//
// Fill aligned quadwords
//

40:
        srl     a1, 3, t0               // t0 = number of quadwords
        bne     t0, 55f                 // if ne quadwords left to fill
        br      zero, 60f               // if eq no quadwords left

55:
        and     a1, 8-1, a1             // a1 = residual bytes to fill

50:
        stq     a2, 0(a0)               // store quadword
        subq    t0, 1, t0               // decrement quadwords remaining
        addq    a0, 8, a0               // next quadword
        bne     t0, 50b                 // more quadwords to write

//
// Fill bytes for last quadword
//

60:
        beq     a1, 80f                 // if eq no more bytes to fill

        mov     a1, t0                  // t0 = number of bytes to move
        mov     -1, t1                  // t1 = bit mask
        sll     t0, 3, t0               // # of bytes to # of bits
        srl     t1, t0, t1              // clear t0 bits
        sll     t1, t0, t0              // move it back
        bic     a2, t0, t1              // clear fill bytes not copied
        not     t0, t0                  // complement to clear destination
retry6:
        ldq_l   t2, 0(a0)               // get last destination quadword locked
        bic     t2, t0, t2              // clear bytes to be copied
        bis     t2, t1, t2              // move bytes from source
        stq_c   t2, 0(a0)               // store merged quadword conditional
        beq     t2, retry6f             // if eq, retry failed interlock

//
// Finish up
//

80:
        ret     zero, (ra)              // return

//
// Out of line branches for failed store conditional.
// Don't need to restore anything, just try again.
//

retry5f:
        br      retry5
retry6f:
        br      retry6

        .end    RtlZeroBytes