summaryrefslogtreecommitdiffstats
path: root/private/crt32/misc/alpha/divide.s
blob: cff0254e76f45da39da7a53526fc753dfdb07d12 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
//      TITLE("Slow Integer Division and Remainder")
//++
//
// Copyright (c) 1992  Digital Equipment Corporation
//
// Module Name:
//
//    divide.s
//
// Abstract:
//
//    This module implements integer division and remainder routines that are
//    called by assembler pseudo-ops.
//
// Author:
//
//    Ken Lesniak (lesniak) 15-Jun-1990
//    Thomas Van Baak (tvb) 13-Jun-1992
//
// Environment:
//
//    Any mode.
//
// Revision History:
//
//--

#include "ksalpha.h"

//
// Implementation Notes:
//
//    There are no Alpha machine instructions for performing integer division
//    (divl, divlu, divq, divqu) or remainder (reml, remlu, remq, remqu). The
//    machine instructions generated for these assembler pseudo instructions
//    are dependent on the operands.
//
//    Division and remainder by constant values are replaced with a sequence
//    of instructions that depend on the data type and the value of the
//    constant. Shifting or reciprocal multiplication are used in most cases
//    to generate the result.
//
//    Division and remainder by non-constant values are replaced with a
//    procedure call to a library routine to perform the operation. This file
//    contains those routines.
//
//    This code is adapted from the Alpha/OSF versions by Ken Lesniak and are
//    based on a simple shift/subtract algorithm. Higher performance versions
//    are available and so these functions are now obsolete.
//
//    Longword register arguments are explicitly converted to canonical form
//    because these functions, with their non-standard calling sequence, act
//    more like instructions than procedure calls. Longword instructions do
//    not require canonical longword operands, but standard procedures with
//    longword register arguments, may assume the caller has passed canonical
//    longwords.
//

//
// Define common stack frame for all the functions in this file.
//

        .struct 0

DiS0:   .space  8                       // save register s0
DiS1:   .space  8                       // save register s1

DiS2:   .space  8                       // save register s2
DiS3:   .space  8                       // save register s3

DiTy:   .space  8                       // save register t11
DiTr:   .space  8                       // save register t9

DiRa:   .space  8                       // save register ra
        .space  8                       // ensure 16-byte stack alignment

DiFrameLength:                          // length of stack frame

//
// Define non-standard calling standard arguments.
//
// These have been changed more than once so until they are permanent,
// symbolic names will be used instead of conventional register names.
//

#define Tr      t9                      // return address
#define Tx      t10                     // dividend and result
#define Ty      t11                     // divisor

        SBTTL("Signed Long Integer Division")
//++
//
// LONG
// __divl (
//    IN LONG Dividend,
//    IN LONG Divisor
//    )
//
// Routine Description:
//
//    This function divides a signed 32-bit integer by a signed 32-bit integer
//    and returns the signed 32-bit integer result.
//
// Arguments:
//
//    Dividend (t10) - Supplies the dividend (numerator) value.
//
//    Divisor (t11) - Supplies the divisor (denominator) value.
//
// Return Value:
//
//    The 32-bit integer result (quotient) is returned in register t10.
//
// Note:
//
//    This function uses a non-standard calling procedure. The return address
//    is stored in the t9 register and the return value is in the t10 register.
//    No other registers are modified.
//
//--

        NESTED_ENTRY(__divl, DiFrameLength, Tr)

        lda     sp, -DiFrameLength(sp)  // allocate stack frame

//
// This prologue is magic. When executed during a call, it will save the
// value of register ra (twice) and register t9 in the stack frame, even
// though these registers are not modified by this function. The stores
// appear to unnecessary.
//
// But if an exception occurs (e.g., divide by zero GENTRAP), the prologue
// is reverse executed by virtual unwind to reset the stack pointer and to
// obtain the return address. The return address is the value of RA the
// first time it is restored, which will be the saved value of t9.
//

        stq     ra, DiRa(sp)            // save ra register
        stq     ra, DiTr(sp)            // backtrace return address
        stq     Tr, DiTr(sp)            // save actual return address

        stq     Ty, DiTy(sp)            // save original divisor
        stq     s2, DiS2(sp)            // save non volatile registers
        stq     s1, DiS1(sp)            //
        stq     s0, DiS0(sp)            //

        PROLOGUE_END

//
// Check for division by zero.
//

        beq     Ty, 20f                 // die if divisor is zero

        addl    Tx, 0, Tx               // make sure dividend is in canonical form
        addl    Ty, 0, Ty               // make sure divisor is in canonical form

//
// Check for division of the most negative integer (INT_MIN) by the least
// negative (-1). The result would be an integer which is one greater than the
// maximum positive integer. Since this cannot be represented, an overflow must
// be generated.
//

        addl    Ty, 1, s0               // 0 if Ty == -1; != 0 otherwise
        mov     Tx, s1                  // copy dividend
        cmovne  s0, 0, s1               // replace w/ 0 if divisor != -1
        sublv   zero, s1, s1            // trap if dividend = INT_MIN

//
// Save sign of quotient for later. Convert negative arguments to positive for
// the division algorithm.
//

        xor     Tx, Ty, s2              // compute sign of quotient
        cmplt   Tx, 0, s0               // sign of dividend is sign of remainder
        bic     s2, 1, s2               // use low bit for remainder sign
        bis     s0, s2, s2              // merge in with quotient sign

        subl    zero, Tx, s0            // negate dividend
        cmovlt  Tx, s0, Tx              // get absolute value of dividend
        subl    zero, Ty, s0            // negate divisor
        cmovlt  Ty, s0, Ty              // get absolute value of divisor

//
// Perform the shift/subtract loop 8 times and 4 bits per loop.
//

        ldiq    s0, 32/4                // loop iterations

        sll     Ty, 32, Ty              // move divisor up to high 32 bits
        zap     Tx, 0xf0, Tx            // zero-extend dividend to 64 bits

10:     addq    Tx, Tx, Tx              // shift dividend left a bit

        cmpule  Ty, Tx, s1              // is dividend >= divisor?
        addq    Tx, s1, Tx              // set quotient bit if dividend >= divisor
        subq    Tx, Ty, s1              // subtract divisor from dividend...
        cmovlbs Tx, s1, Tx              // ...if dividend >= divisor

        addq    Tx, Tx, Tx              // shift dividend left a bit

        cmpule  Ty, Tx, s1              // is dividend >= divisor?
        addq    Tx, s1, Tx              // set quotient bit if dividend >= divisor
        subq    Tx, Ty, s1              // subtract divisor from dividend...
        cmovlbs Tx, s1, Tx              // ...if dividend >= divisor

        addq    Tx, Tx, Tx              // shift dividend left a bit

        cmpule  Ty, Tx, s1              // is dividend >= divisor?
        addq    Tx, s1, Tx              // set quotient bit if dividend >= divisor
        subq    Tx, Ty, s1              // subtract divisor from dividend...
        cmovlbs Tx, s1, Tx              // ...if dividend >= divisor

        addq    Tx, Tx, Tx              // shift dividend left a bit

        cmpule  Ty, Tx, s1              // is dividend >= divisor?
        addq    Tx, s1, Tx              // set quotient bit if dividend >= divisor
        subq    Tx, Ty, s1              // subtract divisor from dividend...
        cmovlbs Tx, s1, Tx              // ...if dividend >= divisor

        subq    s0, 1, s0               // any more iterations?
        bne     s0, 10b                 //

//
// Restore sign of quotient and return value in Tx.
//

        addl    Tx, 0, Tx               // get quotient into canonical form

        subl    zero, Tx, s0            // negate quotient into a temp
        cmovlt  s2, s0, Tx              // if quotient should be negative copy temp

        ldq     s0, DiS0(sp)            // restore saved registers
        ldq     s1, DiS1(sp)            //
        ldq     s2, DiS2(sp)            //
        ldq     Ty, DiTy(sp)            // restore original divisor

        lda     sp, DiFrameLength(sp)   // deallocate stack frame
        ret     zero, (Tr)              // return

//
// Generate an exception for divide by zero. Return a zero quotient if the
// caller continues execution.
//

20:     ldil    a0, GENTRAP_INTEGER_DIVIDE_BY_ZERO

        GENERATE_TRAP

        ldil    Tx, 0                   // return zero quotient
        lda     sp, DiFrameLength(sp)   // deallocate stack frame
        ret     zero, (Tr)              // return

        .end    __divl

        SBTTL("Unsigned Long Integer Division")
//++
//
// ULONG
// __divlu (
//    IN ULONG Dividend,
//    IN ULONG Divisor
//    )
//
// Routine Description:
//
//    This function divides an unsigned 32-bit integer by an unsigned 32-bit
//    integer and returns the unsigned 32-bit integer result.
//
// Arguments:
//
//    Dividend (t10) - Supplies the dividend (numerator) value.
//
//    Divisor (t11) - Supplies the divisor (denominator) value.
//
// Return Value:
//
//    The 32-bit integer result (quotient) is returned in register t10.
//
// Note:
//
//    This function uses a non-standard calling procedure. The return address
//    is stored in the t9 register and the return value is in the t10 register.
//    No other registers are modified.
//
//--

        NESTED_ENTRY(__divlu, DiFrameLength, Tr)

        lda     sp, -DiFrameLength(sp)  // allocate stack frame

//
// This prologue is magic. When executed during a call, it will save the
// value of register ra (twice) and register t9 in the stack frame, even
// though these registers are not modified by this function. The stores
// appear to unnecessary.
//
// But if an exception occurs (e.g., divide by zero GENTRAP), the prologue
// is reverse executed by virtual unwind to reset the stack pointer and to
// obtain the return address. The return address is the value of RA the
// first time it is restored, which will be the saved value of t9.
//

        stq     ra, DiRa(sp)            // save ra register
        stq     ra, DiTr(sp)            // backtrace return address
        stq     Tr, DiTr(sp)            // save actual return address

        stq     Ty, DiTy(sp)            // save original divisor
        stq     s1, DiS1(sp)            // save non volatile registers
        stq     s0, DiS0(sp)            //

        PROLOGUE_END

//
// Check for division by zero.
//

        beq     Ty, 20f                 // die if divisor is zero

//
// Perform the shift/subtract loop 8 times and 4 bits per loop.
//

        ldiq    s0, 32/4                // set iteration count

        sll     Ty, 32, Ty              // move divisor up to high 32 bits
        zap     Tx, 0xf0, Tx            // zero-extend dividend to 64 bits

10:     addq    Tx, Tx, Tx              // shift dividend left a bit

        cmpule  Ty, Tx, s1              // is dividend >= divisor?
        addq    Tx, s1, Tx              // set quotient bit if dividend >= divisor
        subq    Tx, Ty, s1              // subtract divisor from dividend...
        cmovlbs Tx, s1, Tx              // ...if dividend >= divisor

        addq    Tx, Tx, Tx              // shift dividend left a bit

        cmpule  Ty, Tx, s1              // is dividend >= divisor?
        addq    Tx, s1, Tx              // set quotient bit if dividend >= divisor
        subq    Tx, Ty, s1              // subtract divisor from dividend...
        cmovlbs Tx, s1, Tx              // ...if dividend >= divisor

        addq    Tx, Tx, Tx              // shift dividend left a bit

        cmpule  Ty, Tx, s1              // is dividend >= divisor?
        addq    Tx, s1, Tx              // set quotient bit if dividend >= divisor
        subq    Tx, Ty, s1              // subtract divisor from dividend...
        cmovlbs Tx, s1, Tx              // ...if dividend >= divisor

        addq    Tx, Tx, Tx              // shift dividend left a bit

        cmpule  Ty, Tx, s1              // is dividend >= divisor?
        addq    Tx, s1, Tx              // set quotient bit if dividend >= divisor
        subq    Tx, Ty, s1              // subtract divisor from dividend...
        cmovlbs Tx, s1, Tx              // ...if dividend >= divisor

        subq    s0, 1, s0               // any more iterations?
        bne     s0, 10b                 //

//
// Finished with return value in Tx.
//

        addl    Tx, 0, Tx               // get quotient into canonical form

        ldq     s0, DiS0(sp)            // restore saved registers
        ldq     s1, DiS1(sp)            //
        ldq     Ty, DiTy(sp)            // restore original divisor

        lda     sp, DiFrameLength(sp)   // deallocate stack frame
        ret     zero, (Tr)              // return

//
// Generate an exception for divide by zero. Return a zero quotient if the
// caller continues execution.
//

20:     ldil    a0, GENTRAP_INTEGER_DIVIDE_BY_ZERO

        GENERATE_TRAP

        ldil    Tx, 0                   // return zero quotient
        lda     sp, DiFrameLength(sp)   // deallocate stack frame
        ret     zero, (Tr)              // return

        .end    __divlu

        SBTTL("Signed Quad Integer Division")
//++
//
// QUAD
// __divq (
//    IN QUAD Dividend,
//    IN QUAD Divisor
//    )
//
// Routine Description:
//
//    This function divides a signed 64-bit integer by a signed 64-bit integer
//    and returns the signed 64-bit integer result.
//
// Arguments:
//
//    Dividend (t10) - Supplies the dividend (numerator) value.
//
//    Divisor (t11) - Supplies the divisor (denominator) value.
//
// Return Value:
//
//    The 64-bit integer result (quotient) is returned in register t10.
//
// Note:
//
//    This function uses a non-standard calling procedure. The return address
//    is stored in the t9 register and the return value is in the t10 register.
//    No other registers are modified.
//
//--

        NESTED_ENTRY(__divq, DiFrameLength, Tr)

        lda     sp, -DiFrameLength(sp)  // allocate stack frame

//
// This prologue is magic. When executed during a call, it will save the
// value of register ra (twice) and register t9 in the stack frame, even
// though these registers are not modified by this function. The stores
// appear to unnecessary.
//
// But if an exception occurs (e.g., divide by zero GENTRAP), the prologue
// is reverse executed by virtual unwind to reset the stack pointer and to
// obtain the return address. The return address is the value of RA the
// first time it is restored, which will be the saved value of t9.
//

        stq     ra, DiRa(sp)            // save ra register
        stq     ra, DiTr(sp)            // backtrace return address
        stq     Tr, DiTr(sp)            // save actual return address

        stq     Ty, DiTy(sp)            // save original divisor
        stq     s3, DiS3(sp)            // save non volatile registers
        stq     s2, DiS2(sp)            //
        stq     s1, DiS1(sp)            //
        stq     s0, DiS0(sp)            //

        PROLOGUE_END

//
// Check for division by zero.
//

        beq     Ty, 20f                 // die if divisor is zero

//
// Check for division of the most negative integer (QUAD_MIN) by the least
// negative (-1). The result would be an integer which is one greater than the
// maximum positive integer. Since this cannot be represented, an overflow must
// be generated.
//

        addq    Ty, 1, s0               // 0 if Ty == -1; != 0 otherwise
        mov     Tx, s1                  // copy dividend
        cmovne  s0, 0, s1               // replace w/ 0 if divisor != -1
        subqv   zero, s1, s1            // trap if dividend = LONG_MIN

//
// Save sign of quotient for later. Convert negative arguments to positive for
// the division algorithm.
//

        xor     Tx, Ty, s2              // compute sign of quotient
        cmplt   Tx, 0, s0               // sign of dividend is sign of remainder
        bic     s2, 1, s2               // use low bit for remainder sign
        bis     s0, s2, s2              // merge in with quotient sign

        subq    zero, Tx, s0            // negate dividend
        cmovlt  Tx, s0, Tx              // get absolute value of dividend
        subq    zero, Ty, s0            // negate divisor
        cmovlt  Ty, s0, Ty              // get absolute value of divisor

//
// Perform the shift/subtract loop 16 times and 4 bits per loop.
//

        ldiq    s1, 0                   // zero-extend dividend to 128 bits

        ldiq    s3, 64/4                // loop iterations

10:     cmplt   Tx, 0, s0               // predict carry-out of low-dividend shift
        addq    Tx, Tx, Tx              // shift low-dividend left
        addq    s1, s1, s1              // shift high-dividend left
        bis     s1, s0, s1              // merge in carry-out of low-dividend

        cmpule  Ty, s1, s0              // is dividend >= divisor?
        addq    Tx, s0, Tx              // set quotient bit if dividend >= divisor
        subq    s1, Ty, s0              // subtract divisor from dividend...
        cmovlbs Tx, s0, s1              // ...if dividend >= divisor

        cmplt   Tx, 0, s0               // predict carry-out of low-dividend shift
        addq    Tx, Tx, Tx              // shift low-dividend left
        addq    s1, s1, s1              // shift high-dividend left
        bis     s1, s0, s1              // merge in carry-out of low-dividend

        cmpule  Ty, s1, s0              // is dividend >= divisor?
        addq    Tx, s0, Tx              // set quotient bit if dividend >= divisor
        subq    s1, Ty, s0              // subtract divisor from dividend...
        cmovlbs Tx, s0, s1              // ...if dividend >= divisor

        cmplt   Tx, 0, s0               // predict carry-out of low-dividend shift
        addq    Tx, Tx, Tx              // shift low-dividend left
        addq    s1, s1, s1              // shift high-dividend left
        bis     s1, s0, s1              // merge in carry-out of low-dividend

        cmpule  Ty, s1, s0              // is dividend >= divisor?
        addq    Tx, s0, Tx              // set quotient bit if dividend >= divisor
        subq    s1, Ty, s0              // subtract divisor from dividend...
        cmovlbs Tx, s0, s1              // ...if dividend >= divisor

        cmplt   Tx, 0, s0               // predict carry-out of low-dividend shift
        addq    Tx, Tx, Tx              // shift low-dividend left
        addq    s1, s1, s1              // shift high-dividend left
        bis     s1, s0, s1              // merge in carry-out of low-dividend

        cmpule  Ty, s1, s0              // is dividend >= divisor?
        addq    Tx, s0, Tx              // set quotient bit if dividend >= divisor
        subq    s1, Ty, s0              // subtract divisor from dividend...
        cmovlbs Tx, s0, s1              // ...if dividend >= divisor

        subq    s3, 1, s3               // any more iterations?
        bne     s3, 10b                 //

//
// Restore sign of quotient and return value in Tx.
//

        subq    zero, Tx, s0            // negate quotient into a temp
        cmovlt  s2, s0, Tx              // if quotient should be negative copy temp

        ldq     s0, DiS0(sp)            // restore saved registers
        ldq     s1, DiS1(sp)            //
        ldq     s2, DiS2(sp)            //
        ldq     s3, DiS3(sp)            //
        ldq     Ty, DiTy(sp)            // restore original divisor

        lda     sp, DiFrameLength(sp)   // deallocate stack frame
        ret     zero, (Tr)              // return

//
// Generate an exception for divide by zero. Return a zero quotient if the
// caller continues execution.
//

20:     ldil    a0, GENTRAP_INTEGER_DIVIDE_BY_ZERO

        GENERATE_TRAP

        ldil    Tx, 0                   // return zero quotient
        lda     sp, DiFrameLength(sp)   // deallocate stack frame
        ret     zero, (Tr)              // return

        .end    __divq

        SBTTL("Unsigned Quad Integer Division")
//++
//
// UQUAD
// __divqu (
//    IN UQUAD Dividend,
//    IN UQUAD Divisor
//    )
//
// Routine Description:
//
//    This function divides an unsigned 64-bit integer by an unsigned 64-bit
//    integer and returns the unsigned 64-bit integer result.
//
// Arguments:
//
//    Dividend (t10) - Supplies the dividend (numerator) value.
//
//    Divisor (t11) - Supplies the divisor (denominator) value.
//
// Return Value:
//
//    The 64-bit integer result (quotient) is returned in register t10.
//
// Note:
//
//    This function uses a non-standard calling procedure. The return address
//    is stored in the t9 register and the return value is in the t10 register.
//    No other registers are modified.
//
//--

        NESTED_ENTRY(__divqu, DiFrameLength, Tr)

        lda     sp, -DiFrameLength(sp)  // allocate stack frame

//
// This prologue is magic. When executed during a call, it will save the
// value of register ra (twice) and register t9 in the stack frame, even
// though these registers are not modified by this function. The stores
// appear to unnecessary.
//
// But if an exception occurs (e.g., divide by zero GENTRAP), the prologue
// is reverse executed by virtual unwind to reset the stack pointer and to
// obtain the return address. The return address is the value of RA the
// first time it is restored, which will be the saved value of t9.
//

        stq     ra, DiRa(sp)            // save ra register
        stq     ra, DiTr(sp)            // backtrace return address
        stq     Tr, DiTr(sp)            // save actual return address

        stq     s2, DiS2(sp)            // save non volatile registers
        stq     s1, DiS1(sp)            //
        stq     s0, DiS0(sp)            //

        PROLOGUE_END

//
// Check for division by zero.
//

        beq     Ty, 20f                 // die if divisor is zero

//
// Perform the shift/subtract loop 16 times and 4 bits per loop.
//

        ldiq    s2, 64/4                // set iteration count

        ldiq    s1, 0                   // zero-extend dividend to 128 bits

10:     cmplt   Tx, 0, s0               // predict carry-out of low-dividend shift
        addq    Tx, Tx, Tx              // shift low-dividend left
        addq    s1, s1, s1              // shift high-dividend left
        bis     s1, s0, s1              // merge in carry-out of low-dividend

        cmpule  Ty, s1, s0              // is dividend >= divisor?
        addq    Tx, s0, Tx              // set quotient bit if dividend >= divisor
        subq    s1, Ty, s0              // subtract divisor from dividend...
        cmovlbs Tx, s0, s1              // ...if dividend >= divisor

        cmplt   Tx, 0, s0               // predict carry-out of low-dividend shift
        addq    Tx, Tx, Tx              // shift low-dividend left
        addq    s1, s1, s1              // shift high-dividend left
        bis     s1, s0, s1              // merge in carry-out of low-dividend

        cmpule  Ty, s1, s0              // is dividend >= divisor?
        addq    Tx, s0, Tx              // set quotient bit if dividend >= divisor
        subq    s1, Ty, s0              // subtract divisor from dividend...
        cmovlbs Tx, s0, s1              // ...if dividend >= divisor

        cmplt   Tx, 0, s0               // predict carry-out of low-dividend shift
        addq    Tx, Tx, Tx              // shift low-dividend left
        addq    s1, s1, s1              // shift high-dividend left
        bis     s1, s0, s1              // merge in carry-out of low-dividend

        cmpule  Ty, s1, s0              // is dividend >= divisor?
        addq    Tx, s0, Tx              // set quotient bit if dividend >= divisor
        subq    s1, Ty, s0              // subtract divisor from dividend...
        cmovlbs Tx, s0, s1              // ...if dividend >= divisor

        cmplt   Tx, 0, s0               // predict carry-out of low-dividend shift
        addq    Tx, Tx, Tx              // shift low-dividend left
        addq    s1, s1, s1              // shift high-dividend left
        bis     s1, s0, s1              // merge in carry-out of low-dividend

        cmpule  Ty, s1, s0              // is dividend >= divisor?
        addq    Tx, s0, Tx              // set quotient bit if dividend >= divisor
        subq    s1, Ty, s0              // subtract divisor from dividend...
        cmovlbs Tx, s0, s1              // ...if dividend >= divisor

        subq    s2, 1, s2               // any more iterations?
        bne     s2, 10b                 //

//
// Finished with return value in Tx.
//

        ldq     s0, DiS0(sp)            // restore saved registers
        ldq     s1, DiS1(sp)            //
        ldq     s2, DiS2(sp)            //

        lda     sp, DiFrameLength(sp)   // deallocate stack frame
        ret     zero, (Tr)              // return

//
// Generate an exception for divide by zero. Return a zero quotient if the
// caller continues execution.
//

20:     ldil    a0, GENTRAP_INTEGER_DIVIDE_BY_ZERO

        GENERATE_TRAP

        ldil    Tx, 0                   // return zero quotient
        lda     sp, DiFrameLength(sp)   // deallocate stack frame
        ret     zero, (Tr)              // return

        .end    __divqu

        SBTTL("Signed Long Integer Remainder")
//++
//
// LONG
// __reml (
//    IN LONG Dividend,
//    IN LONG Divisor
//    )
//
// Routine Description:
//
//    This function divides a signed 32-bit integer by a signed 32-bit integer
//    and returns the signed 32-bit integer remainder result.
//
// Arguments:
//
//    Dividend (t10) - Supplies the dividend (numerator) value.
//
//    Divisor (t11) - Supplies the divisor (denominator) value.
//
// Return Value:
//
//    The 32-bit integer result (remainder) is returned in register t10.
//
// Note:
//
//    This function uses a non-standard calling procedure. The return address
//    is stored in the t9 register and the return value is in the t10 register.
//    No other registers are modified.
//
//--

        NESTED_ENTRY(__reml, DiFrameLength, Tr)

        lda     sp, -DiFrameLength(sp)  // allocate stack frame

//
// This prologue is magic. When executed during a call, it will save the
// value of register ra (twice) and register t9 in the stack frame, even
// though these registers are not modified by this function. The stores
// appear to unnecessary.
//
// But if an exception occurs (e.g., divide by zero GENTRAP), the prologue
// is reverse executed by virtual unwind to reset the stack pointer and to
// obtain the return address. The return address is the value of RA the
// first time it is restored, which will be the saved value of t9.
//

        stq     ra, DiRa(sp)            // save ra register
        stq     ra, DiTr(sp)            // backtrace return address
        stq     Tr, DiTr(sp)            // save actual return address

        stq     Ty, DiTy(sp)            // save original divisor
        stq     s2, DiS2(sp)            // save non volatile registers
        stq     s1, DiS1(sp)            //
        stq     s0, DiS0(sp)            //

        PROLOGUE_END

//
// Check for division by zero.
//

        beq     Ty, 20f                 // die if divisor is zero

        addl    Tx, 0, Tx               // make sure dividend is in canonical form
        addl    Ty, 0, Ty               // make sure divisor is in canonical form

//
// Check for division of the most negative integer (INT_MIN) by the least
// negative (-1). The result would be an integer which is one greater than the
// maximum positive integer. Since this cannot be represented, an overflow must
// be generated.
//

        addl    Ty, 1, s0               // 0 if Ty == -1; != 0 otherwise
        mov     Tx, s1                  // copy dividend
        cmovne  s0, 0, s1               // replace w/ 0 if divisor != -1
        sublv   zero, s1, s1            // trap if dividend = INT_MIN

//
// Save sign of quotient for later. Convert negative arguments to positive for
// the division algorithm.
//

        xor     Tx, Ty, s2              // compute sign of quotient
        cmplt   Tx, 0, s0               // sign of dividend is sign of remainder
        bic     s2, 1, s2               // use low bit for remainder sign
        bis     s0, s2, s2              // merge in with quotient sign

        subl    zero, Tx, s0            // negate dividend
        cmovlt  Tx, s0, Tx              // get absolute value of dividend
        subl    zero, Ty, s0            // negate divisor
        cmovlt  Ty, s0, Ty              // get absolute value of divisor

//
// Perform the shift/subtract loop 8 times and 4 bits per loop.
//

        ldiq    s0, 32/4                // loop iterations

        sll     Ty, 32, Ty              // move divisor up to high 32 bits
        zap     Tx, 0xf0, Tx            // zero-extend dividend to 64 bits

10:     addq    Tx, Tx, Tx              // shift dividend left a bit

        cmpule  Ty, Tx, s1              // is dividend >= divisor?
        addq    Tx, s1, Tx              // set quotient bit if dividend >= divisor
        subq    Tx, Ty, s1              // subtract divisor from dividend...
        cmovlbs Tx, s1, Tx              // ...if dividend >= divisor

        addq    Tx, Tx, Tx              // shift dividend left a bit

        cmpule  Ty, Tx, s1              // is dividend >= divisor?
        addq    Tx, s1, Tx              // set quotient bit if dividend >= divisor
        subq    Tx, Ty, s1              // subtract divisor from dividend...
        cmovlbs Tx, s1, Tx              // ...if dividend >= divisor

        addq    Tx, Tx, Tx              // shift dividend left a bit

        cmpule  Ty, Tx, s1              // is dividend >= divisor?
        addq    Tx, s1, Tx              // set quotient bit if dividend >= divisor
        subq    Tx, Ty, s1              // subtract divisor from dividend...
        cmovlbs Tx, s1, Tx              // ...if dividend >= divisor

        addq    Tx, Tx, Tx              // shift dividend left a bit

        cmpule  Ty, Tx, s1              // is dividend >= divisor?
        addq    Tx, s1, Tx              // set quotient bit if dividend >= divisor
        subq    Tx, Ty, s1              // subtract divisor from dividend...
        cmovlbs Tx, s1, Tx              // ...if dividend >= divisor

        subq    s0, 1, s0               // any more iterations?
        bne     s0, 10b                 //

//
// Restore sign of remainder and return value in Tx.
//

        sra     Tx, 32, Tx              // extract remainder in canonical form
        subl    zero, Tx, s0            // negate remainder into a temp
        cmovlbs s2, s0, Tx              // if remainder should be negative copy temp

        ldq     s0, DiS0(sp)            // restore saved registers
        ldq     s1, DiS1(sp)            //
        ldq     s2, DiS2(sp)            //
        ldq     Ty, DiTy(sp)            // restore original divisor

        lda     sp, DiFrameLength(sp)   // deallocate stack frame
        ret     zero, (Tr)              // return

//
// Generate an exception for divide by zero. Return a zero quotient if the
// caller continues execution.
//

20:     ldil    a0, GENTRAP_INTEGER_DIVIDE_BY_ZERO

        GENERATE_TRAP

        ldil    Tx, 0                   // return zero quotient
        lda     sp, DiFrameLength(sp)   // deallocate stack frame
        ret     zero, (Tr)              // return

        .end    __reml

        SBTTL("Unsigned Long Integer Remainder")
//++
//
// ULONG
// __remlu (
//    IN ULONG Dividend,
//    IN ULONG Divisor
//    )
//
// Routine Description:
//
//    This function divides an unsigned 32-bit integer by an unsigned 32-bit
//    integer and returns the unsigned 32-bit integer remainder result.
//
// Arguments:
//
//    Dividend (t10) - Supplies the dividend (numerator) value.
//
//    Divisor (t11) - Supplies the divisor (denominator) value.
//
// Return Value:
//
//    The 32-bit integer result (remainder) is returned in register t10.
//
// Note:
//
//    This function uses a non-standard calling procedure. The return address
//    is stored in the t9 register and the return value is in the t10 register.
//    No other registers are modified.
//
//--

        NESTED_ENTRY(__remlu, DiFrameLength, Tr)

        lda     sp, -DiFrameLength(sp)  // allocate stack frame

//
// This prologue is magic. When executed during a call, it will save the
// value of register ra (twice) and register t9 in the stack frame, even
// though these registers are not modified by this function. The stores
// appear to unnecessary.
//
// But if an exception occurs (e.g., divide by zero GENTRAP), the prologue
// is reverse executed by virtual unwind to reset the stack pointer and to
// obtain the return address. The return address is the value of RA the
// first time it is restored, which will be the saved value of t9.
//

        stq     ra, DiRa(sp)            // save ra register
        stq     ra, DiTr(sp)            // backtrace return address
        stq     Tr, DiTr(sp)            // save actual return address

        stq     Ty, DiTy(sp)            // save original divisor
        stq     s1, DiS1(sp)            // save non volatile registers
        stq     s0, DiS0(sp)            //

        PROLOGUE_END

//
// Check for division by zero.
//

        beq     Ty, 20f                 // die if divisor is zero

//
// Perform the shift/subtract loop 8 times and 4 bits per loop.
//

        ldiq    s0, 32/4                // set iteration count

        sll     Ty, 32, Ty              // move divisor up to high 32 bits
        zap     Tx, 0xf0, Tx            // zero-extend dividend to 64 bits

10:     addq    Tx, Tx, Tx              // shift dividend left a bit

        cmpule  Ty, Tx, s1              // is dividend >= divisor?
        addq    Tx, s1, Tx              // set quotient bit if dividend >= divisor
        subq    Tx, Ty, s1              // subtract divisor from dividend...
        cmovlbs Tx, s1, Tx              // ...if dividend >= divisor

        addq    Tx, Tx, Tx              // shift dividend left a bit

        cmpule  Ty, Tx, s1              // is dividend >= divisor?
        addq    Tx, s1, Tx              // set quotient bit if dividend >= divisor
        subq    Tx, Ty, s1              // subtract divisor from dividend...
        cmovlbs Tx, s1, Tx              // ...if dividend >= divisor

        addq    Tx, Tx, Tx              // shift dividend left a bit

        cmpule  Ty, Tx, s1              // is dividend >= divisor?
        addq    Tx, s1, Tx              // set quotient bit if dividend >= divisor
        subq    Tx, Ty, s1              // subtract divisor from dividend...
        cmovlbs Tx, s1, Tx              // ...if dividend >= divisor

        addq    Tx, Tx, Tx              // shift dividend left a bit

        cmpule  Ty, Tx, s1              // is dividend >= divisor?
        addq    Tx, s1, Tx              // set quotient bit if dividend >= divisor
        subq    Tx, Ty, s1              // subtract divisor from dividend...
        cmovlbs Tx, s1, Tx              // ...if dividend >= divisor

        subq    s0, 1, s0               // any more iterations?
        bne     s0, 10b                 //

//
// Finished with return value in Tx.
//

        sra     Tx, 32, Tx              // extract remainder in canonical form

        ldq     s0, DiS0(sp)            // restore saved registers
        ldq     s1, DiS1(sp)            //
        ldq     Ty, DiTy(sp)            // restore original divisor

        lda     sp, DiFrameLength(sp)   // deallocate stack frame
        ret     zero, (Tr)              // return

//
// Generate an exception for divide by zero. Return a zero quotient if the
// caller continues execution.
//

20:     ldil    a0, GENTRAP_INTEGER_DIVIDE_BY_ZERO

        GENERATE_TRAP

        ldil    Tx, 0                   // return zero quotient
        lda     sp, DiFrameLength(sp)   // deallocate stack frame
        ret     zero, (Tr)              // return

        .end    __remlu

        SBTTL("Signed Quad Integer Remainder")
//++
//
// QUAD
// __remq (
//    IN QUAD Dividend,
//    IN QUAD Divisor
//    )
//
// Routine Description:
//
//    This function divides a signed 64-bit integer by a signed 64-bit integer
//    and returns the signed 64-bit integer remainder result.
//
// Arguments:
//
//    Dividend (t10) - Supplies the dividend (numerator) value.
//
//    Divisor (t11) - Supplies the divisor (denominator) value.
//
// Return Value:
//
//    The 64-bit integer result (remainder) is returned in register t10.
//
// Note:
//
//    This function uses a non-standard calling procedure. The return address
//    is stored in the t9 register and the return value is in the t10 register.
//    No other registers are modified.
//
//--

        NESTED_ENTRY(__remq, DiFrameLength, Tr)

        lda     sp, -DiFrameLength(sp)  // allocate stack frame

//
// This prologue is magic. When executed during a call, it will save the
// value of register ra (twice) and register t9 in the stack frame, even
// though these registers are not modified by this function. The stores
// appear to unnecessary.
//
// But if an exception occurs (e.g., divide by zero GENTRAP), the prologue
// is reverse executed by virtual unwind to reset the stack pointer and to
// obtain the return address. The return address is the value of RA the
// first time it is restored, which will be the saved value of t9.
//

        stq     ra, DiRa(sp)            // save ra register
        stq     ra, DiTr(sp)            // backtrace return address
        stq     Tr, DiTr(sp)            // save actual return address

        stq     Ty, DiTy(sp)            // save original divisor
        stq     s3, DiS3(sp)            // save non volatile registers
        stq     s2, DiS2(sp)            //
        stq     s1, DiS1(sp)            //
        stq     s0, DiS0(sp)            //

        PROLOGUE_END

//
// Check for division by zero.
//

        beq     Ty, 20f                 // die if divisor is zero

//
// Check for division of the most negative integer (QUAD_MIN) by the least
// negative (-1). The result would be an integer which is one greater than the
// maximum positive integer. Since this cannot be represented, an overflow must
// be generated.
//

        addq    Ty, 1, s0               // 0 if Ty == -1; != 0 otherwise
        mov     Tx, s1                  // copy dividend
        cmovne  s0, 0, s1               // replace w/ 0 if divisor != -1
        subqv   zero, s1, s1            // trap if dividend = LONG_MIN

//
// Save sign of quotient for later. Convert negative arguments to positive for
// the division algorithm.
//

        xor     Tx, Ty, s2              // compute sign of quotient
        cmplt   Tx, 0, s0               // sign of dividend is sign of remainder
        bic     s2, 1, s2               // use low bit for remainder sign
        bis     s0, s2, s2              // merge in with quotient sign

        subq    zero, Tx, s0            // negate dividend
        cmovlt  Tx, s0, Tx              // get absolute value of dividend
        subq    zero, Ty, s0            // negate divisor
        cmovlt  Ty, s0, Ty              // get absolute value of divisor

//
// Perform the shift/subtract loop 16 times and 4 bits per loop.
//

        ldiq    s1, 0                   // zero-extend dividend to 128 bits

        ldiq    s3, 64/4                // loop iterations

10:     cmplt   Tx, 0, s0               // predict carry-out of low-dividend shift
        addq    Tx, Tx, Tx              // shift low-dividend left
        addq    s1, s1, s1              // shift high-dividend left
        bis     s1, s0, s1              // merge in carry-out of low-dividend

        cmpule  Ty, s1, s0              // is dividend >= divisor?
        addq    Tx, s0, Tx              // set quotient bit if dividend >= divisor
        subq    s1, Ty, s0              // subtract divisor from dividend...
        cmovlbs Tx, s0, s1              // ...if dividend >= divisor

        cmplt   Tx, 0, s0               // predict carry-out of low-dividend shift
        addq    Tx, Tx, Tx              // shift low-dividend left
        addq    s1, s1, s1              // shift high-dividend left
        bis     s1, s0, s1              // merge in carry-out of low-dividend

        cmpule  Ty, s1, s0              // is dividend >= divisor?
        addq    Tx, s0, Tx              // set quotient bit if dividend >= divisor
        subq    s1, Ty, s0              // subtract divisor from dividend...
        cmovlbs Tx, s0, s1              // ...if dividend >= divisor

        cmplt   Tx, 0, s0               // predict carry-out of low-dividend shift
        addq    Tx, Tx, Tx              // shift low-dividend left
        addq    s1, s1, s1              // shift high-dividend left
        bis     s1, s0, s1              // merge in carry-out of low-dividend

        cmpule  Ty, s1, s0              // is dividend >= divisor?
        addq    Tx, s0, Tx              // set quotient bit if dividend >= divisor
        subq    s1, Ty, s0              // subtract divisor from dividend...
        cmovlbs Tx, s0, s1              // ...if dividend >= divisor

        cmplt   Tx, 0, s0               // predict carry-out of low-dividend shift
        addq    Tx, Tx, Tx              // shift low-dividend left
        addq    s1, s1, s1              // shift high-dividend left
        bis     s1, s0, s1              // merge in carry-out of low-dividend

        cmpule  Ty, s1, s0              // is dividend >= divisor?
        addq    Tx, s0, Tx              // set quotient bit if dividend >= divisor
        subq    s1, Ty, s0              // subtract divisor from dividend...
        cmovlbs Tx, s0, s1              // ...if dividend >= divisor

        subq    s3, 1, s3               // any more iterations?
        bne     s3, 10b                 //

//
// Restore sign of remainder and return value in Tx.
//

        subq    zero, s1, Tx            // copy negated remainder to return register
        cmovlbc s2, s1, Tx              // if positive remainder then overwrite

        ldq     s0, DiS0(sp)            // restore saved registers
        ldq     s1, DiS1(sp)            //
        ldq     s2, DiS2(sp)            //
        ldq     s3, DiS3(sp)            //
        ldq     Ty, DiTy(sp)            // restore original divisor

        lda     sp, DiFrameLength(sp)   // deallocate stack frame
        ret     zero, (Tr)              // return

//
// Generate an exception for divide by zero. Return a zero quotient if the
// caller continues execution.
//

20:     ldil    a0, GENTRAP_INTEGER_DIVIDE_BY_ZERO

        GENERATE_TRAP

        ldil    Tx, 0                   // return zero quotient
        lda     sp, DiFrameLength(sp)   // deallocate stack frame
        ret     zero, (Tr)              // return

        .end    __remq

        SBTTL("Unsigned Quad Integer Remainder")
//++
//
// UQUAD
// __remqu (
//    IN UQUAD Dividend,
//    IN UQUAD Divisor
//    )
//
// Routine Description:
//
//    This function divides an unsigned 64-bit integer by an unsigned 64-bit
//    integer and returns the unsigned 64-bit integer remainder result.
//
// Arguments:
//
//    Dividend (t10) - Supplies the dividend (numerator) value.
//
//    Divisor (t11) - Supplies the divisor (denominator) value.
//
// Return Value:
//
//    The 64-bit integer result (remainder) is returned in register t10.
//
// Note:
//
//    This function uses a non-standard calling procedure. The return address
//    is stored in the t9 register and the return value is in the t10 register.
//    No other registers are modified.
//
//--

        NESTED_ENTRY(__remqu, DiFrameLength, Tr)

        lda     sp, -DiFrameLength(sp)  // allocate stack frame

//
// This prologue is magic. When executed during a call, it will save the
// value of register ra (twice) and register t9 in the stack frame, even
// though these registers are not modified by this function. The stores
// appear to unnecessary.
//
// But if an exception occurs (e.g., divide by zero GENTRAP), the prologue
// is reverse executed by virtual unwind to reset the stack pointer and to
// obtain the return address. The return address is the value of RA the
// first time it is restored, which will be the saved value of t9.
//

        stq     ra, DiRa(sp)            // save ra register
        stq     ra, DiTr(sp)            // backtrace return address
        stq     Tr, DiTr(sp)            // save actual return address

        stq     s2, DiS2(sp)            // save non volatile registers
        stq     s1, DiS1(sp)            //
        stq     s0, DiS0(sp)            //

        PROLOGUE_END

//
// Check for division by zero.
//

        beq     Ty, 20f                 // die if divisor is zero

//
// Perform the shift/subtract loop 16 times and 4 bits per loop.
//

        ldiq    s2, 64/4                // set iteration count

        ldiq    s1, 0                   // zero-extend dividend to 128 bits

10:     cmplt   Tx, 0, s0               // predict carry-out of low-dividend shift
        addq    Tx, Tx, Tx              // shift low-dividend left
        addq    s1, s1, s1              // shift high-dividend left
        bis     s1, s0, s1              // merge in carry-out of low-dividend

        cmpule  Ty, s1, s0              // is dividend >= divisor?
        addq    Tx, s0, Tx              // set quotient bit if dividend >= divisor
        subq    s1, Ty, s0              // subtract divisor from dividend...
        cmovlbs Tx, s0, s1              // ...if dividend >= divisor

        cmplt   Tx, 0, s0               // predict carry-out of low-dividend shift
        addq    Tx, Tx, Tx              // shift low-dividend left
        addq    s1, s1, s1              // shift high-dividend left
        bis     s1, s0, s1              // merge in carry-out of low-dividend

        cmpule  Ty, s1, s0              // is dividend >= divisor?
        addq    Tx, s0, Tx              // set quotient bit if dividend >= divisor
        subq    s1, Ty, s0              // subtract divisor from dividend...
        cmovlbs Tx, s0, s1              // ...if dividend >= divisor

        cmplt   Tx, 0, s0               // predict carry-out of low-dividend shift
        addq    Tx, Tx, Tx              // shift low-dividend left
        addq    s1, s1, s1              // shift high-dividend left
        bis     s1, s0, s1              // merge in carry-out of low-dividend

        cmpule  Ty, s1, s0              // is dividend >= divisor?
        addq    Tx, s0, Tx              // set quotient bit if dividend >= divisor
        subq    s1, Ty, s0              // subtract divisor from dividend...
        cmovlbs Tx, s0, s1              // ...if dividend >= divisor

        cmplt   Tx, 0, s0               // predict carry-out of low-dividend shift
        addq    Tx, Tx, Tx              // shift low-dividend left
        addq    s1, s1, s1              // shift high-dividend left
        bis     s1, s0, s1              // merge in carry-out of low-dividend

        cmpule  Ty, s1, s0              // is dividend >= divisor?
        addq    Tx, s0, Tx              // set quotient bit if dividend >= divisor
        subq    s1, Ty, s0              // subtract divisor from dividend...
        cmovlbs Tx, s0, s1              // ...if dividend >= divisor

        subq    s2, 1, s2               // any more iterations?
        bne     s2, 10b                 //

//
// Finished with return value in Tx.
//

        mov     s1, Tx                  // get remainder

        ldq     s0, DiS0(sp)            // restore saved registers
        ldq     s1, DiS1(sp)            //
        ldq     s2, DiS2(sp)            //

        lda     sp, DiFrameLength(sp)   // deallocate stack frame
        ret     zero, (Tr)              // return

//
// Generate an exception for divide by zero. Return a zero quotient if the
// caller continues execution.
//

20:     ldil    a0, GENTRAP_INTEGER_DIVIDE_BY_ZERO

        GENERATE_TRAP

        ldil    Tx, 0                   // return zero quotient
        lda     sp, DiFrameLength(sp)   // deallocate stack frame
        ret     zero, (Tr)              // return

        .end    __remqu