summaryrefslogtreecommitdiffstats
path: root/private/ntos/cdfs/deviosup.c
blob: ce28ebc8816a4947989a6a5d924ce4bf3887f7f6 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
/*++

Copyright (c) 1989  Microsoft Corporation

Module Name:

    DevIoSup.c

Abstract:

    This module implements the low lever disk read/write support for Cdfs.

Author:

    Brian Andrew    [BrianAn]   01-July-1995

Revision History:

--*/

#include "CdProcs.h"

//
//  The Bug check file id for this module
//

#define BugCheckFileId                   (CDFS_BUG_CHECK_DEVIOSUP)

//
//  Local structure definitions
//

//
//  An array of these structures is passed to CdMultipleAsync describing
//  a set of runs to execute in parallel.
//

typedef struct _IO_RUN {

    //
    //  Disk offset to read from and number of bytes to read.  These
    //  must be a multiple of 2048 and the disk offset is also a
    //  multiple of 2048.
    //

    LONGLONG DiskOffset;
    ULONG DiskByteCount;

    //
    //  Current position in user buffer.  This is the final destination for
    //  this portion of the Io transfer.
    //

    PVOID UserBuffer;

    //
    //  Buffer to perform the transfer to.  If this is the same as the
    //  user buffer above then we are using the user's buffer.  Otherwise
    //  we either allocated a temporary buffer or are using a different portion
    //  of the user's buffer.
    //
    //  TransferBuffer - Read full sectors into this location.  This can
    //      be a pointer into the user's buffer at the exact location the
    //      data should go.  It can also be an earlier point in the user's
    //      buffer if the complete I/O doesn't start on a sector boundary.
    //      It may also be a pointer into an allocated buffer.
    //
    //  TransferByteCount - Count of bytes to transfer to user's buffer.  A
    //      value of zero indicates that we did do the transfer into the
    //      user's buffer directly.
    //
    //  TransferBufferOffset - Offset in this buffer to begin the transfer
    //      to the user's buffer.
    //

    PVOID TransferBuffer;
    ULONG TransferByteCount;
    ULONG TransferBufferOffset;

    //
    //  This is the Mdl describing the locked pages in memory.  It may
    //  be allocated to describe the allocated buffer.  Or it may be
    //  the Mdl in the originating Irp.  The MdlOffset is the offset of
    //  the current buffer from the beginning of the buffer described by
    //  the Mdl below.  If the TransferMdl is not the same as the Mdl
    //  in the user's Irp then we know we have allocated it.
    //

    PMDL TransferMdl;
    PVOID TransferVirtualAddress;

    //
    //  Associated Irp used to perform the Io.
    //

    PIRP SavedIrp;

} IO_RUN;
typedef IO_RUN *PIO_RUN;

#define MAX_PARALLEL_IOS            5

//
//  Local support routines
//

BOOLEAN
CdPrepareBuffers (
    IN PIRP_CONTEXT IrpContext,
    IN PIRP Irp,
    IN PFCB Fcb,
    IN PVOID UserBuffer,
    IN ULONG UserBufferOffset,
    IN LONGLONG StartingOffset,
    IN ULONG ByteCount,
    IN PIO_RUN IoRuns,
    IN PULONG RunCount,
    IN PULONG ThisByteCount
    );

VOID
CdPrepareXABuffers (
    IN PIRP_CONTEXT IrpContext,
    IN PIRP Irp,
    IN PFCB Fcb,
    IN PVOID UserBuffer,
    IN ULONG UserBufferOffset,
    IN LONGLONG StartingOffset,
    IN ULONG ByteCount,
    IN PIO_RUN IoRuns,
    IN PULONG RunCount,
    IN PULONG ThisByteCount
    );

BOOLEAN
CdFinishBuffers (
    IN PIRP_CONTEXT IrpContext,
    IN PIO_RUN IoRuns,
    IN ULONG RunCount,
    IN BOOLEAN FinalCleanup,
    IN BOOLEAN SaveXABuffer
    );

VOID
CdMultipleAsync (
    IN PIRP_CONTEXT IrpContext,
    IN ULONG RunCount,
    IN PIO_RUN IoRuns
    );

VOID
CdMultipleXAAsync (
    IN PIRP_CONTEXT IrpContext,
    IN ULONG RunCount,
    IN PIO_RUN IoRuns,
    IN PRAW_READ_INFO RawReads,
    IN TRACK_MODE_TYPE TrackMode
    );

VOID
CdSingleAsync (
    IN PIRP_CONTEXT IrpContext,
    IN LONGLONG ByteOffset,
    IN ULONG ByteCount
    );

VOID
CdWaitSync (
    IN PIRP_CONTEXT IrpContext
    );

NTSTATUS
CdMultiSyncCompletionRoutine (
    IN PDEVICE_OBJECT DeviceObject,
    IN PIRP Irp,
    IN PVOID Context
    );

NTSTATUS
CdMultiAsyncCompletionRoutine (
    IN PDEVICE_OBJECT DeviceObject,
    IN PIRP Irp,
    IN PVOID Context
    );

NTSTATUS
CdSingleSyncCompletionRoutine (
    IN PDEVICE_OBJECT DeviceObject,
    IN PIRP Irp,
    IN PVOID Context
    );

NTSTATUS
CdSingleAsyncCompletionRoutine (
    IN PDEVICE_OBJECT DeviceObject,
    IN PIRP Irp,
    IN PVOID Context
    );

VOID
CdReadAudioSystemFile (
    IN PIRP_CONTEXT IrpContext,
    IN PFCB Fcb,
    IN LONGLONG StartingOffset,
    IN ULONG ByteCount,
    IN PVOID SystemBuffer
    );

#ifdef ALLOC_PRAGMA
#pragma alloc_text(PAGE, CdCreateUserMdl)
#pragma alloc_text(PAGE, CdMultipleAsync)
#pragma alloc_text(PAGE, CdMultipleXAAsync)
#pragma alloc_text(PAGE, CdNonCachedRead)
#pragma alloc_text(PAGE, CdNonCachedXARead)
#pragma alloc_text(PAGE, CdFinishBuffers)
#pragma alloc_text(PAGE, CdPerformDevIoCtrl)
#pragma alloc_text(PAGE, CdPrepareBuffers)
#pragma alloc_text(PAGE, CdReadAudioSystemFile)
#pragma alloc_text(PAGE, CdReadSectors)
#pragma alloc_text(PAGE, CdSingleAsync)
#pragma alloc_text(PAGE, CdWaitSync)
#endif


__inline
TRACK_MODE_TYPE
CdFileTrackMode (
    IN PFCB Fcb
    )

/*++

Routine Description:

    This routine converts FCB XA file type flags to the track mode
    used by the device drivers.

Arguments:

    Fcb - Fcb representing the file to read.

Return Value:

    TrackMode of the file represented by the Fcb.

--*/
{

    if (FlagOn( Fcb->FcbState, FCB_STATE_MODE2FORM2_FILE )) {

        return XAForm2;

    } else if (FlagOn( Fcb->FcbState, FCB_STATE_DA_FILE )) {

        return CDDA;

    } else if (FlagOn( Fcb->FcbState, FCB_STATE_MODE2_FILE )) {

        return YellowMode2;

    } else {

        ASSERT(FALSE);
    }
}


NTSTATUS
CdNonCachedRead (
    IN PIRP_CONTEXT IrpContext,
    IN PFCB Fcb,
    IN LONGLONG StartingOffset,
    IN ULONG ByteCount
    )

/*++

Routine Description:

    This routine performs the non-cached reads to 'cooked' sectors (2048 bytes
    per sector).  This is done by performing the following in a loop.

        Fill in the IoRuns array for the next block of Io.
        Send the Io to the device.
        Perform any cleanup on the Io runs array.

    We will not do async Io to any request that generates non-aligned Io.
    Also we will not perform async Io if it will exceed the size of our
    IoRuns array.  These should be the unusual cases but we will raise
    or return CANT_WAIT in this routine if we detect this case.

Arguments:

    Fcb - Fcb representing the file to read.

    StartingOffset - Logical offset in the file to read from.

    ByteCount - Number of bytes to read.

Return Value:

    NTSTATUS - Status indicating the result of the operation.

--*/

{
    NTSTATUS Status = STATUS_SUCCESS;

    IO_RUN IoRuns[MAX_PARALLEL_IOS];
    ULONG RunCount = 0;
    ULONG CleanupRunCount = 0;

    PVOID UserBuffer;
    ULONG UserBufferOffset = 0;
    LONGLONG CurrentOffset = StartingOffset;
    ULONG RemainingByteCount = ByteCount;
    ULONG ThisByteCount;

    BOOLEAN Unaligned;
    BOOLEAN FlushIoBuffers = FALSE;
    BOOLEAN FirstPass = TRUE;

    PAGED_CODE();

    //
    //  We want to make sure the user's buffer is locked in all cases.
    //

    if (IrpContext->Irp->MdlAddress == NULL) {

        CdCreateUserMdl( IrpContext, ByteCount, TRUE );
    }

    UserBuffer = CdMapUserBuffer( IrpContext );

    //
    //  Special case the root directory and path table for a music volume.
    //

    if (FlagOn( Fcb->Vcb->VcbState, VCB_STATE_AUDIO_DISK ) &&
        ((SafeNodeType( Fcb ) == CDFS_NTC_FCB_INDEX) ||
         (SafeNodeType( Fcb ) == CDFS_NTC_FCB_PATH_TABLE))) {

        CdReadAudioSystemFile( IrpContext,
                               Fcb,
                               StartingOffset,
                               ByteCount,
                               UserBuffer );

        return STATUS_SUCCESS;
    }

    //
    //  Use a try-finally to perform the final cleanup.
    //

    try {

        //
        //  Loop while there are more bytes to transfer.
        //

        do {

            //
            //  Call prepare buffers to set up the next entries
            //  in the IoRuns array.  Remember if there are any
            //  unaligned entries.
            //

            RtlZeroMemory( IoRuns, sizeof( IoRuns ));

            Unaligned = CdPrepareBuffers( IrpContext,
                                          IrpContext->Irp,
                                          Fcb,
                                          UserBuffer,
                                          UserBufferOffset,
                                          CurrentOffset,
                                          RemainingByteCount,
                                          IoRuns,
                                          &CleanupRunCount,
                                          &ThisByteCount );


            RunCount = CleanupRunCount;

            //
            //  If this is an async request and there aren't enough entries
            //  in the Io array then post the request.  This routine will
            //  always raise if we are doing any unaligned Io for an
            //  async request.
            //

            if ((ThisByteCount < RemainingByteCount) &&
                !FlagOn( IrpContext->Flags, IRP_CONTEXT_FLAG_WAIT )) {

                CdRaiseStatus( IrpContext, STATUS_CANT_WAIT );
            }

            //
            //  If the entire Io is contained in a single run then
            //  we can pass the Io down to the driver.  Send the driver down
            //  and wait on the result if this is synchronous.
            //

            if ((RunCount == 1) && !Unaligned && FirstPass) {

                CdSingleAsync( IrpContext,
                               IoRuns[0].DiskOffset,
                               IoRuns[0].DiskByteCount );

                //
                //  No cleanup needed for the IoRuns array here.
                //

                CleanupRunCount = 0;

                //
                //  Wait if we are synchronous, otherwise return
                //

                if (FlagOn( IrpContext->Flags, IRP_CONTEXT_FLAG_WAIT )) {

                    CdWaitSync( IrpContext );

                    Status = IrpContext->Irp->IoStatus.Status;

                //
                //  Our completion routine will free the Io context but
                //  we do want to return STATUS_PENDING.
                //

                } else {

                    ClearFlag( IrpContext->Flags, IRP_CONTEXT_FLAG_ALLOC_IO );
                    Status = STATUS_PENDING;
                }

                try_return( NOTHING );
            }

            //
            //  Otherwise we will perform multiple Io to read in the data.
            //

            CdMultipleAsync( IrpContext, RunCount, IoRuns );

            //
            //  No cleanup needed on the IoRuns now.
            //

            CleanupRunCount = 0;

            //
            //  If this is a synchronous request then perform any necessary
            //  post-processing.
            //

            if (FlagOn( IrpContext->Flags, IRP_CONTEXT_FLAG_WAIT )) {

                //
                //  Wait for the request to complete.
                //

                CdWaitSync( IrpContext );

                Status = IrpContext->Irp->IoStatus.Status;

                //
                //  Exit this loop if there is an error.
                //

                if (!NT_SUCCESS( Status )) {

                    try_return( NOTHING );
                }

                //
                //  Perform post read operations on the IoRuns if
                //  necessary.
                //

                if (Unaligned &&
                    CdFinishBuffers( IrpContext, IoRuns, RunCount, FALSE, FALSE )) {

                    FlushIoBuffers = TRUE;
                }

                //
                //  Exit this loop if there are no more bytes to transfer
                //  or we have any error.
                //

                RemainingByteCount -= ThisByteCount;
                CurrentOffset += ThisByteCount;
                UserBuffer = Add2Ptr( UserBuffer, ThisByteCount, PVOID );
                UserBufferOffset += ThisByteCount;

            //
            //  Otherwise this is an asynchronous request.  Always return
            //  STATUS_PENDING.
            //

            } else {

                ClearFlag( IrpContext->Flags, IRP_CONTEXT_FLAG_ALLOC_IO );
                CleanupRunCount = 0;
                try_return( Status = STATUS_PENDING );
                break;
            }

            FirstPass = FALSE;
        } while (RemainingByteCount != 0);

        //
        //  Flush the hardware cache if we performed any copy operations.
        //

        if (FlushIoBuffers) {

            KeFlushIoBuffers( IrpContext->Irp->MdlAddress, TRUE, FALSE );
        }

    try_exit:  NOTHING;
    } finally {

        //
        //  Perform final cleanup on the IoRuns if necessary.
        //

        if (CleanupRunCount != 0) {

            CdFinishBuffers( IrpContext, IoRuns, CleanupRunCount, TRUE, FALSE );
        }
    }

    return Status;
}


NTSTATUS
CdNonCachedXARead (
    IN PIRP_CONTEXT IrpContext,
    IN PFCB Fcb,
    IN LONGLONG StartingOffset,
    IN ULONG ByteCount
    )

/*++

Routine Description:

    This routine performs the non-cached reads for 'raw' sectors (2352 bytes
    per sector).  We also prepend a hard-coded RIFF header of 44 bytes to the file.
    All of this is already reflected in the file size.

    We start by checking whether to prepend any portion of the RIFF header.  Then we check
    if the last raw sector read was from the beginning portion of this file, deallocating
    that buffer if necessary.  Finally we do the following in a loop.

        Fill the IoRuns array for the next block of Io.
        Send the Io to the device driver.
        Perform any cleanup necessary on the IoRuns array.

    We will not do any async request in this path.  The request would have been
    posted to a worker thread before getting to this point.

Arguments:

    Fcb - Fcb representing the file to read.

    StartingOffset - Logical offset in the file to read from.

    ByteCount - Number of bytes to read.

Return Value:

    NTSTATUS - Status indicating the result of the operation.

--*/

{
    NTSTATUS Status = STATUS_SUCCESS;

    RIFF_HEADER LocalRiffHeader;
    PRIFF_HEADER RiffHeader;

    RAW_READ_INFO RawReads[MAX_PARALLEL_IOS];
    IO_RUN IoRuns[MAX_PARALLEL_IOS];
    ULONG RunCount = 0;
    ULONG CleanupRunCount = 0;

    PVOID UserBuffer;
    ULONG UserBufferOffset = 0;
    LONGLONG CurrentOffset = StartingOffset;
    ULONG RemainingByteCount = ByteCount;
    ULONG ThisByteCount;

    BOOLEAN TryingYellowbookMode2 = FALSE;

    TRACK_MODE_TYPE TrackMode;

    PAGED_CODE();

    //
    //  We want to make sure the user's buffer is locked in all cases.
    //

    if (IrpContext->Irp->MdlAddress == NULL) {

        CdCreateUserMdl( IrpContext, ByteCount, TRUE );
    }

    //
    //  The byte count was rounded up to a logical sector boundary.  It has
    //  nothing to do with the raw sectors on disk.  Limit the remaining
    //  byte count to file size.
    //

    if (CurrentOffset + RemainingByteCount > Fcb->FileSize.QuadPart) {

        RemainingByteCount = (ULONG) (Fcb->FileSize.QuadPart - CurrentOffset);
    }

    UserBuffer = CdMapUserBuffer( IrpContext );

    //
    //  Use a try-finally to perform the final cleanup.
    //

    try {

        //
        //  If the initial offset lies within the RIFF header then copy the
        //  necessary bytes to the user's buffer.
        //

        if (CurrentOffset < sizeof( RIFF_HEADER )) {

            //
            //  Copy the appropriate RIFF header.
            //

            if (FlagOn( Fcb->FcbState, FCB_STATE_DA_FILE )) {

                //
                //  Create the pseudo entries for a music disk.
                //

                if (FlagOn( Fcb->Vcb->VcbState, VCB_STATE_AUDIO_DISK )) {

                    PAUDIO_PLAY_HEADER AudioPlayHeader;
                    PTRACK_DATA TrackData;
                    ULONG SectorCount;

                    AudioPlayHeader = (PAUDIO_PLAY_HEADER) &LocalRiffHeader;
                    TrackData = &Fcb->Vcb->CdromToc->TrackData[Fcb->XAFileNumber];

                    //
                    //  Copy the data header into our local buffer.
                    //

                    RtlCopyMemory( AudioPlayHeader,
                                   CdAudioPlayHeader,
                                   sizeof( AUDIO_PLAY_HEADER ));

                    //
                    //  Copy the serial number into the Id field.  Also
                    //  the track number in the TOC.
                    //

                    AudioPlayHeader->DiskID = Fcb->Vcb->Vpb->SerialNumber;
                    AudioPlayHeader->TrackNumber = TrackData->TrackNumber;

                    //
                    //  Fill in the address and length fields.
                    //

                    AudioPlayHeader->TrackAddress[2] = TrackData->Address[1];
                    AudioPlayHeader->TrackAddress[1] = TrackData->Address[2];
                    AudioPlayHeader->TrackAddress[0] = TrackData->Address[3];

                    AudioPlayHeader->StartingSector = TrackData->Address[3];
                    AudioPlayHeader->StartingSector += (TrackData->Address[2] * 75);
                    AudioPlayHeader->StartingSector += (TrackData->Address[1] * 60 * 75);

                    //
                    //  Subtract 2 minutes for the block number.
                    //

                    AudioPlayHeader->StartingSector -= 150;

                    //
                    //  Go to the next track and find the starting point.
                    //

                    TrackData = &Fcb->Vcb->CdromToc->TrackData[Fcb->XAFileNumber + 1];

                    AudioPlayHeader->SectorCount = TrackData->Address[3];
                    AudioPlayHeader->SectorCount += (TrackData->Address[2] * 75);
                    AudioPlayHeader->SectorCount += (TrackData->Address[1] * 60 * 75);

                    //
                    //  Bias the sector count by 2 minutes.
                    //  Check that the offset is at least two minutes.
                    //

                    if (AudioPlayHeader->SectorCount < 150) {

                        AudioPlayHeader->SectorCount = 0;

                    } else {

                        AudioPlayHeader->SectorCount -= 150;
                    }

                    //
                    //  Now compute the difference.  If there is an error then use
                    //  a length of zero.
                    //

                    if (AudioPlayHeader->SectorCount < AudioPlayHeader->StartingSector) {

                        AudioPlayHeader->SectorCount = 0;

                    } else {

                        AudioPlayHeader->SectorCount -= AudioPlayHeader->StartingSector;
                    }

                    //
                    //  Use the sector count to determine the MSF length.
                    //

                    SectorCount = AudioPlayHeader->SectorCount;

                    AudioPlayHeader->TrackLength[0] = (UCHAR) (SectorCount % 75);
                    SectorCount /= 75;

                    AudioPlayHeader->TrackLength[1] = (UCHAR) (SectorCount % 60);
                    SectorCount /= 60;

                    AudioPlayHeader->TrackLength[2] = (UCHAR) (SectorCount % 60);

                    ThisByteCount = sizeof( RIFF_HEADER ) - (ULONG) CurrentOffset;

                    RtlCopyMemory( UserBuffer,
                                   Add2Ptr( AudioPlayHeader,
                                            sizeof( RIFF_HEADER ) - ThisByteCount,
                                            PCHAR ),
                                   ThisByteCount );

                //
                //  CD-XA CDDA
                //

                } else {

                    //
                    //  The WAVE header format is actually much closer to an audio play
                    //  header in format but we only need to modify the filesize fields.
                    //

                    RiffHeader = &LocalRiffHeader;

                    //
                    //  Copy the data header into our local buffer and add the file size to it.
                    //

                    RtlCopyMemory( RiffHeader,
                                   CdXAAudioPhileHeader,
                                   sizeof( RIFF_HEADER ));

                    RiffHeader->ChunkSize += Fcb->FileSize.LowPart;
                    RiffHeader->RawSectors += Fcb->FileSize.LowPart;

                    ThisByteCount = sizeof( RIFF_HEADER ) - (ULONG) CurrentOffset;
                    RtlCopyMemory( UserBuffer,
                                   Add2Ptr( RiffHeader,
                                            sizeof( RIFF_HEADER ) - ThisByteCount,
                                            PCHAR ),
                                   ThisByteCount );
                }

            } else if (FlagOn( Fcb->FcbState, FCB_STATE_MODE2_FILE | FCB_STATE_MODE2FORM2_FILE )) {

                RiffHeader = &LocalRiffHeader;

                //
                //  Copy the data header into our local buffer and add the file size to it.
                //

                RtlCopyMemory( RiffHeader,
                               CdXAFileHeader,
                               sizeof( RIFF_HEADER ));

                RiffHeader->ChunkSize += Fcb->FileSize.LowPart;
                RiffHeader->RawSectors += Fcb->FileSize.LowPart;

                RiffHeader->Attributes = (USHORT) Fcb->XAAttributes;
                RiffHeader->FileNumber = (UCHAR) Fcb->XAFileNumber;

                ThisByteCount = sizeof( RIFF_HEADER ) - (ULONG) CurrentOffset;
                RtlCopyMemory( UserBuffer,
                               Add2Ptr( RiffHeader,
                                        sizeof( RIFF_HEADER ) - ThisByteCount,
                                        PCHAR ),
                               ThisByteCount );

            } else {

                //
                //  We didn't find the handler for this type of file.
                //

                ASSERT( FALSE );
            }

            //
            //  Adjust the starting offset and byte count to reflect that
            //  we copied over the RIFF bytes.
            //

            UserBuffer = Add2Ptr( UserBuffer, ThisByteCount, PVOID );
            UserBufferOffset += ThisByteCount;
            CurrentOffset += ThisByteCount;
            RemainingByteCount -= ThisByteCount;
        }

        //
        //  Set up the appropriate trackmode
        //

        TrackMode = CdFileTrackMode(Fcb);

        //
        //  Loop while there are more bytes to transfer.
        //

        while (RemainingByteCount != 0) {

            //
            //  Call prepare buffers to set up the next entries
            //  in the IoRuns array.  Remember if there are any
            //  unaligned entries.
            //

            RtlZeroMemory( IoRuns, sizeof( IoRuns ));
            RtlZeroMemory( RawReads, sizeof( RawReads ));

            CdPrepareXABuffers( IrpContext,
                                IrpContext->Irp,
                                Fcb,
                                UserBuffer,
                                UserBufferOffset,
                                CurrentOffset,
                                RemainingByteCount,
                                IoRuns,
                                &CleanupRunCount,
                                &ThisByteCount );

            //
            //  Perform multiple Io to read in the data.  Note that
            //  there may be no Io to do if we were able to use an
            //  existing buffer from the Vcb.
            //

            if (CleanupRunCount != 0) {

                RunCount = CleanupRunCount;

                CdMultipleXAAsync( IrpContext,
                                   RunCount,
                                   IoRuns,
                                   RawReads,
                                   TrackMode );

                //
                //  No cleanup needed on the IoRuns now.
                //

                CleanupRunCount = 0;

                //
                //  Wait for the request to complete.
                //

                CdWaitSync( IrpContext );

                Status = IrpContext->Irp->IoStatus.Status;

                //
                //  Exit this loop if there is an error.
                //

                if (!NT_SUCCESS( Status )) {

                    if (TryingYellowbookMode2) {

                        //
                        //  Nothing doing, it looks like we can't do anything
                        //  about this failure.
                        //

                        try_return( NOTHING );
                    }

                    if (FlagOn( Fcb->FcbState, FCB_STATE_MODE2FORM2_FILE )) {

                        //
                        //  There are wacky cases where someone has mastered as CD-XA
                        //  but the sectors they claim are Mode2Form2 are really, according
                        //  to ATAPI devices, Yellowbook Mode2. We will try once more
                        //  with these. Kodak PHOTO-CD has been observed to do this.
                        //

                        TryingYellowbookMode2 = TRUE;
                        TrackMode = YellowMode2;

                        continue;
                    }

                    try_return( NOTHING );
                }

                if (TryingYellowbookMode2) {

                    //
                    //  We succesfully got data when we tried switching the trackmode,
                    //  so change the state of the FCB to remember that.
                    //

                    SetFlag( Fcb->FcbState, FCB_STATE_MODE2_FILE );
                    ClearFlag( Fcb->FcbState, FCB_STATE_MODE2FORM2_FILE );

                    TryingYellowbookMode2 = FALSE;
                }

                //
                //  Perform post read operations on the IoRuns if
                //  necessary.
                //

                CdFinishBuffers( IrpContext, IoRuns, RunCount, FALSE, TRUE );
            }

            //
            //  Adjust our loop variants.
            //

            RemainingByteCount -= ThisByteCount;
            CurrentOffset += ThisByteCount;
            UserBuffer = Add2Ptr( UserBuffer, ThisByteCount, PVOID );
            UserBufferOffset += ThisByteCount;
        }

        //
        //  Always flush the hardware cache.
        //

        KeFlushIoBuffers( IrpContext->Irp->MdlAddress, TRUE, FALSE );

    try_exit:  NOTHING;
    } finally {

        //
        //  Perform final cleanup on the IoRuns if necessary.
        //

        if (CleanupRunCount != 0) {

            CdFinishBuffers( IrpContext, IoRuns, CleanupRunCount, TRUE, FALSE );
        }
    }

    return Status;
}


BOOLEAN
CdReadSectors (
    IN PIRP_CONTEXT IrpContext,
    IN LONGLONG StartingOffset,
    IN ULONG ByteCount,
    IN BOOLEAN ReturnError,
    IN OUT PVOID Buffer,
    IN PDEVICE_OBJECT TargetDeviceObject
    )

/*++

Routine Description:

    This routine is called to transfer sectors from the disk to a
    specified buffer.  It is used for mount and volume verify operations.

    This routine is synchronous, it will not return until the operation
    is complete or until the operation fails.

    The routine allocates an IRP and then passes this IRP to a lower
    level driver.  Errors may occur in the allocation of this IRP or
    in the operation of the lower driver.

Arguments:

    StartingOffset - Logical offset on the disk to start the read.  This
        must be on a sector boundary, no check is made here.

    ByteCount - Number of bytes to read.  This is an integral number of
        2K sectors, no check is made here to confirm this.

    ReturnError - Indicates whether we should return TRUE or FALSE
        to indicate an error or raise an error condition.  This only applies
        to the result of the IO.  Any other error may cause a raise.

    Buffer - Buffer to transfer the disk data into.

    TargetDeviceObject - The device object for the volume to be read.

Return Value:

    BOOLEAN - Depending on 'RaiseOnError' flag above.  TRUE if operation
              succeeded, FALSE otherwise.

--*/

{
    NTSTATUS Status;
    KEVENT  Event;
    PIRP Irp;

    PAGED_CODE();

    //
    //  Initialize the event.
    //

    KeInitializeEvent( &Event, NotificationEvent, FALSE );

    //
    //  Attempt to allocate the IRP.  If unsuccessful, raise
    //  STATUS_INSUFFICIENT_RESOURCES.
    //

    Irp = IoBuildSynchronousFsdRequest( IRP_MJ_READ,
                                        TargetDeviceObject,
                                        Buffer,
                                        ByteCount,
                                        (PLARGE_INTEGER) &StartingOffset,
                                        &Event,
                                        &IrpContext->Irp->IoStatus );

    if (Irp == NULL) {

        CdRaiseStatus( IrpContext, STATUS_INSUFFICIENT_RESOURCES );
    }

    //
    //  Ignore the change line (verify) for mount and verify requests
    //

    SetFlag( IoGetNextIrpStackLocation( Irp )->Flags, SL_OVERRIDE_VERIFY_VOLUME );

    //
    //  Send the request down to the driver.  If an error occurs return
    //  it to the caller.
    //

    Status = IoCallDriver( TargetDeviceObject, Irp );

    //
    //  If the status was STATUS_PENDING then wait on the event.
    //

    if (Status == STATUS_PENDING) {

        Status = KeWaitForSingleObject( &Event,
                                        Executive,
                                        KernelMode,
                                        FALSE,
                                        NULL );

        //
        //  On a successful wait pull the status out of the IoStatus block.
        //

        if (NT_SUCCESS( Status )) {

            Status = IrpContext->Irp->IoStatus.Status;
        }
    }

    //
    //  Check whether we should raise in the error case.
    //

    if (!NT_SUCCESS( Status )) {

        if (!ReturnError) {

            CdNormalizeAndRaiseStatus( IrpContext, Status );
        }

        //
        //  We don't raise, but return FALSE to indicate an error.
        //

        return FALSE;

    //
    //  The operation completed successfully.
    //

    } else {

        return TRUE;
    }
}


NTSTATUS
CdCreateUserMdl (
    IN PIRP_CONTEXT IrpContext,
    IN ULONG BufferLength,
    IN BOOLEAN RaiseOnError
    )

/*++

Routine Description:

    This routine locks the specified buffer for read access (we only write into
    the buffer).  The file system requires this routine since it does not
    ask the I/O system to lock its buffers for direct I/O.  This routine
    may only be called from the Fsd while still in the user context.

    This routine is only called if there is not already an Mdl.

Arguments:

    BufferLength - Length of user buffer.

    RaiseOnError - Indicates if our caller wants this routine to raise on
        an error condition.

Return Value:

    NTSTATUS - Status from this routine.  Error status only returned if
        RaiseOnError is FALSE.

--*/

{
    NTSTATUS Status = STATUS_INSUFFICIENT_RESOURCES;
    PMDL Mdl;

    PAGED_CODE();

    ASSERT_IRP_CONTEXT( IrpContext );
    ASSERT_IRP( IrpContext->Irp );
    ASSERT( IrpContext->Irp->MdlAddress == NULL );

    //
    // Allocate the Mdl, and Raise if we fail.
    //

    Mdl = IoAllocateMdl( IrpContext->Irp->UserBuffer,
                         BufferLength,
                         FALSE,
                         FALSE,
                         IrpContext->Irp );

    if (Mdl != NULL) {

        //
        //  Now probe the buffer described by the Irp.  If we get an exception,
        //  deallocate the Mdl and return the appropriate "expected" status.
        //

        try {

            MmProbeAndLockPages( Mdl, IrpContext->Irp->RequestorMode, IoWriteAccess );

            Status = STATUS_SUCCESS;

        } except(EXCEPTION_EXECUTE_HANDLER) {

            Status = GetExceptionCode();

            IoFreeMdl( Mdl );
            IrpContext->Irp->MdlAddress = NULL;

            if (!FsRtlIsNtstatusExpected( Status )) {

                Status = STATUS_INVALID_USER_BUFFER;
            }
        }
    }

    //
    //  Check if we are to raise or return
    //

    if (Status != STATUS_SUCCESS) {

        if (RaiseOnError) {

            CdRaiseStatus( IrpContext, Status );
        }
    }

    //
    //  Return the status code.
    //

    return Status;
}


NTSTATUS
CdPerformDevIoCtrl (
    IN PIRP_CONTEXT IrpContext,
    IN ULONG IoControlCode,
    IN PDEVICE_OBJECT Device,
    OUT PVOID OutputBuffer OPTIONAL,
    IN ULONG OutputBufferLength,
    IN BOOLEAN InternalDeviceIoControl,
    IN BOOLEAN OverrideVerify,
    OUT PIO_STATUS_BLOCK Iosb OPTIONAL
    )

/*++

Routine Description:

    This routine is called to perform DevIoCtrl functions internally within
    the filesystem.  We take the status from the driver and return it to our
    caller.

Arguments:

    IoControlCode - Code to send to driver.

    Device - This is the device to send the request to.

    OutPutBuffer - Pointer to output buffer.

    OutputBufferLength - Length of output buffer above.

    InternalDeviceIoControl - Indicates if this is an internal or external
        Io control code.

    OverrideVerify - Indicates if we should tell the driver not to return
        STATUS_VERIFY_REQUIRED for mount and verify.

    Iosb - If specified, we return the results of the operation here.

Return Value:

    NTSTATUS - Status returned by next lower driver.

--*/

{
    NTSTATUS Status;
    PIRP Irp;
    KEVENT Event;
    IO_STATUS_BLOCK LocalIosb;
    PIO_STATUS_BLOCK IosbToUse = &LocalIosb;

    PAGED_CODE();

    //
    //  Check if the user gave us an Iosb.
    //

    if (ARGUMENT_PRESENT( Iosb )) {

        IosbToUse = Iosb;
    }

    IosbToUse->Status = 0;
    IosbToUse->Information = 0;

    KeInitializeEvent( &Event, NotificationEvent, FALSE );

    Irp = IoBuildDeviceIoControlRequest( IoControlCode,
                                         Device,
                                         NULL,
                                         0,
                                         OutputBuffer,
                                         OutputBufferLength,
                                         InternalDeviceIoControl,
                                         &Event,
                                         IosbToUse );

    if (Irp == NULL) {

        return STATUS_INSUFFICIENT_RESOURCES;
    }

    if (OverrideVerify) {

        SetFlag( IoGetNextIrpStackLocation( Irp )->Flags, SL_OVERRIDE_VERIFY_VOLUME );
    }

    Status = IoCallDriver( Device, Irp );

    //
    //  We check for device not ready by first checking Status
    //  and then if status pending was returned, the Iosb status
    //  value.
    //

    if (Status == STATUS_PENDING) {

        (VOID) KeWaitForSingleObject( &Event,
                                      Executive,
                                      KernelMode,
                                      FALSE,
                                      (PLARGE_INTEGER)NULL );

        Status = IosbToUse->Status;
    }

    return Status;
}


//
//  Local support routine
//

BOOLEAN
CdPrepareBuffers (
    IN PIRP_CONTEXT IrpContext,
    IN PIRP Irp,
    IN PFCB Fcb,
    IN PVOID UserBuffer,
    IN ULONG UserBufferOffset,
    IN LONGLONG StartingOffset,
    IN ULONG ByteCount,
    IN PIO_RUN IoRuns,
    IN PULONG RunCount,
    IN PULONG ThisByteCount
    )

/*++

Routine Description:

    This routine is the worker routine which looks up each run of an IO
    request and stores an entry for it in the IoRuns array.  If the run
    begins on an unaligned disk boundary then we will allocate a buffer
    and Mdl for the unaligned portion and put it in the IoRuns entry.

    This routine will raise CANT_WAIT if an unaligned transfer is encountered
    and this request can't wait.

Arguments:

    Irp - Originating Irp for this request.

    Fcb - This is the Fcb for this data stream.  It may be a file, directory,
        path table or the volume file.

    UserBuffer - Current position in the user's buffer.

    UserBufferOffset - Offset from the start of the original user buffer.

    StartingOffset - Offset in the stream to begin the read.

    ByteCount - Number of bytes to read.  We will fill the IoRuns array up
        to this point.  We will stop early if we exceed the maximum number
        of parallel Ios we support.

    IoRuns - Pointer to the IoRuns array.  The entire array is zeroes when
        this routine is called.

    RunCount - Number of entries in the IoRuns array filled here.

    ThisByteCount - Number of bytes described by the IoRun entries.  Will
        not exceed the ByteCount passed in.

Return Value:

    BOOLEAN - TRUE if one of the entries in an unaligned buffer (provided
        this is synchronous).  FALSE otherwise.

--*/

{
    BOOLEAN FoundUnaligned = FALSE;
    PIO_RUN ThisIoRun = IoRuns;

    //
    //  Following indicate where we are in the current transfer.  Current
    //  position in the file and number of bytes yet to transfer from
    //  this position.
    //

    ULONG RemainingByteCount = ByteCount;
    LONGLONG CurrentFileOffset = StartingOffset;

    //
    //  Following indicate the state of the user's buffer.  We have
    //  the destination of the next transfer and its offset in the
    //  buffer.  We also have the next available position in the buffer
    //  available for a scratch buffer.  We will align this up to a sector
    //  boundary.
    //

    PVOID CurrentUserBuffer = UserBuffer;
    ULONG CurrentUserBufferOffset = UserBufferOffset;

    PVOID ScratchUserBuffer = UserBuffer;
    ULONG ScratchUserBufferOffset = UserBufferOffset;

    //
    //  The following is the next contiguous bytes on the disk to
    //  transfer.  Read from the allocation package.
    //

    LONGLONG DiskOffset;
    ULONG CurrentByteCount;

    PAGED_CODE();

    //
    //  Initialize the RunCount and ByteCount.
    //

    *RunCount = 0;
    *ThisByteCount = 0;

    //
    //  Loop while there are more bytes to process or there are
    //  available entries in the IoRun array.
    //

    while (TRUE) {

        *RunCount += 1;

        //
        //  Initialize the current position in the IoRuns array.
        //  Find the user's buffer for this portion of the transfer.
        //

        ThisIoRun->UserBuffer = CurrentUserBuffer;

        //
        //  Find the allocation information for the current offset in the
        //  stream.
        //

        CdLookupAllocation( IrpContext,
                            Fcb,
                            CurrentFileOffset,
                            &DiskOffset,
                            &CurrentByteCount );

        //
        //  Limit ourselves to the data requested.
        //

        if (CurrentByteCount > RemainingByteCount) {

            CurrentByteCount = RemainingByteCount;
        }

        //
        //  Handle the case where this is an unaligned transfer.  The
        //  following must all be true for this to be an aligned transfer.
        //
        //      Disk offset on a 2048 byte boundary (Start of transfer)
        //
        //      Byte count is a multiple of 2048 (Length of transfer)
        //
        //      Current buffer offset is also on a 2048 byte boundary.
        //
        //  If the ByteCount is at least one sector then do the
        //  unaligned transfer only for the tail.  We can use the
        //  user's buffer for the aligned portion.
        //

        if (FlagOn( (ULONG) DiskOffset, SECTOR_MASK ) ||
            FlagOn( CurrentUserBufferOffset, SECTOR_MASK ) ||
            (FlagOn( (ULONG) CurrentByteCount, SECTOR_MASK ) &&
             (CurrentByteCount < SECTOR_SIZE))) {

            //
            //  If we can't wait then raise.
            //

            if (!FlagOn( IrpContext->Flags, IRP_CONTEXT_FLAG_WAIT )) {

                CdRaiseStatus( IrpContext, STATUS_CANT_WAIT );
            }

            //
            //  Remember the offset and the number of bytes out of
            //  the transfer buffer to copy into the user's buffer.
            //  We will truncate the current read to end on a sector
            //  boundary.
            //

            ThisIoRun->TransferBufferOffset = SectorOffset( DiskOffset );

            //
            //  Make sure this transfer ends on a sector boundary.
            //

            ThisIoRun->DiskOffset = LlSectorTruncate( DiskOffset );

            //
            //  Check if we can use a free portion of the user's buffer.
            //  If we can copy the bytes to an earlier portion of the
            //  buffer then read into that location and slide the bytes
            //  up.
            //
            //  We can use the user's buffer if:
            //
            //      The temporary location in the buffer is before the
            //      final destination.
            //
            //      There is at least one sector of data to read.
            //

            if ((ScratchUserBufferOffset + ThisIoRun->TransferBufferOffset < CurrentUserBufferOffset) &&
                (ThisIoRun->TransferBufferOffset + CurrentByteCount >= SECTOR_SIZE)) {

                ThisIoRun->DiskByteCount = SectorTruncate( ThisIoRun->TransferBufferOffset + CurrentByteCount );
                CurrentByteCount = ThisIoRun->DiskByteCount - ThisIoRun->TransferBufferOffset;
                ThisIoRun->TransferByteCount = CurrentByteCount;

                //
                //  Point to the user's buffer and Mdl for this transfer.
                //

                ThisIoRun->TransferBuffer = ScratchUserBuffer;
                ThisIoRun->TransferMdl = Irp->MdlAddress;
                ThisIoRun->TransferVirtualAddress = Add2Ptr( Irp->UserBuffer,
                                                             ScratchUserBufferOffset,
                                                             PVOID );

                ScratchUserBuffer = Add2Ptr( ScratchUserBuffer,
                                             ThisIoRun->DiskByteCount,
                                             PVOID );

                ScratchUserBufferOffset += ThisIoRun->DiskByteCount;

            //
            //  Otherwise we need to allocate an auxilary buffer for the next sector.
            //

            } else {

                //
                //  Read up to a page containing the partial data
                //

                ThisIoRun->DiskByteCount = SectorAlign( ThisIoRun->TransferBufferOffset + CurrentByteCount );

                if (ThisIoRun->DiskByteCount > PAGE_SIZE) {

                    ThisIoRun->DiskByteCount = PAGE_SIZE;
                }

                if (ThisIoRun->TransferBufferOffset + CurrentByteCount > ThisIoRun->DiskByteCount) {

                    CurrentByteCount = ThisIoRun->DiskByteCount - ThisIoRun->TransferBufferOffset;
                }

                ThisIoRun->TransferByteCount = CurrentByteCount;

                //
                //  Allocate a buffer for the non-aligned transfer.
                //

                ThisIoRun->TransferBuffer = FsRtlAllocatePool( CdNonPagedPool,
                                                               PAGE_SIZE );

                //
                //  Allocate and build the Mdl to describe this buffer.
                //

                ThisIoRun->TransferMdl = IoAllocateMdl( ThisIoRun->TransferBuffer,
                                                        PAGE_SIZE,
                                                        FALSE,
                                                        FALSE,
                                                        NULL );

                ThisIoRun->TransferVirtualAddress = ThisIoRun->TransferBuffer;

                if (ThisIoRun->TransferMdl == NULL) {

                    IrpContext->Irp->IoStatus.Information = 0;
                    CdRaiseStatus( IrpContext, STATUS_INSUFFICIENT_RESOURCES );
                }

                MmBuildMdlForNonPagedPool( ThisIoRun->TransferMdl );
            }

            //
            //  Remember we found an unaligned transfer.
            //

            FoundUnaligned = TRUE;

        //
        //  Otherwise we use the buffer and Mdl from the original request.
        //

        } else {

            //
            //  Truncate the read length to a sector-aligned value.  We know
            //  the length must be at least one sector or we wouldn't be
            //  here now.
            //

            CurrentByteCount = SectorTruncate( CurrentByteCount );

            //
            //  Read these sectors from the disk.
            //

            ThisIoRun->DiskOffset = DiskOffset;
            ThisIoRun->DiskByteCount = CurrentByteCount;

            //
            //  Use the user's buffer and Mdl as our transfer buffer
            //  and Mdl.
            //

            ThisIoRun->TransferBuffer = CurrentUserBuffer;
            ThisIoRun->TransferMdl = Irp->MdlAddress;
            ThisIoRun->TransferVirtualAddress = Add2Ptr( Irp->UserBuffer,
                                                         CurrentUserBufferOffset,
                                                         PVOID );

            ScratchUserBuffer = Add2Ptr( CurrentUserBuffer,
                                         CurrentByteCount,
                                         PVOID );

            ScratchUserBufferOffset += CurrentByteCount;
        }

        //
        //  Update our position in the transfer and the RunCount and
        //  ByteCount for the user.
        //

        RemainingByteCount -= CurrentByteCount;

        //
        //  Break out if no more positions in the IoRuns array or
        //  we have all of the bytes accounted for.
        //

        *ThisByteCount += CurrentByteCount;

        if ((RemainingByteCount == 0) || (*RunCount == MAX_PARALLEL_IOS)) {

            break;
        }

        //
        //  Update our pointers for the user's buffer.
        //

        ThisIoRun += 1;
        CurrentUserBuffer = Add2Ptr( CurrentUserBuffer, CurrentByteCount, PVOID );
        CurrentUserBufferOffset += CurrentByteCount;
        CurrentFileOffset += CurrentByteCount;
    }

    return FoundUnaligned;
}


//
//  Local support routine
//

VOID
CdPrepareXABuffers (
    IN PIRP_CONTEXT IrpContext,
    IN PIRP Irp,
    IN PFCB Fcb,
    IN PVOID UserBuffer,
    IN ULONG UserBufferOffset,
    IN LONGLONG StartingOffset,
    IN ULONG ByteCount,
    IN PIO_RUN IoRuns,
    IN PULONG RunCount,
    IN PULONG ThisByteCount
    )

/*++

Routine Description:

    This routine is the worker routine which looks up the individual runs
    of an IO request and stores an entry for it in the IoRuns array.  The
    worker routine is for XA files where we need to convert the raw offset
    in the file to logical cooked sectors.  We store one raw sector in
    the Vcb.  If the current read is to that sector then we can simply copy
    whatever bytes are needed from that sector.

Arguments:

    Irp - Originating Irp for this request.

    Fcb - This is the Fcb for this data stream.  It must be a data stream.

    UserBuffer - Current position in the user's buffer.

    UserBufferOffset - Offset of this buffer from the beginning of the user's
        buffer for the original request.

    StartingOffset - Offset in the stream to begin the read.

    ByteCount - Number of bytes to read.  We will fill the IoRuns array up
        to this point.  We will stop early if we exceed the maximum number
        of parallel Ios we support.

    IoRuns - Pointer to the IoRuns array.  The entire array is zeroes when
        this routine is called.

    RunCount - Number of entries in the IoRuns array filled here.

    ThisByteCount - Number of bytes described by the IoRun entries.  Will
        not exceed the ByteCount passed in.

Return Value:

    None

--*/

{
    PIO_RUN ThisIoRun = IoRuns;
    BOOLEAN PerformedCopy;

    //
    //  The following deal with where we are in the range of raw sectors.
    //  Note that we will bias the input file offset by the RIFF header
    //  to deal directly with the raw sectors.
    //

    ULONG RawSectorOffset;
    ULONG RemainingRawByteCount = ByteCount;
    LONGLONG CurrentRawOffset = StartingOffset - sizeof( RIFF_HEADER );

    //
    //  The following is the offset into the cooked sectors for the file.
    //

    LONGLONG CurrentCookedOffset;
    ULONG RemainingCookedByteCount;

    //
    //  Following indicate the state of the user's buffer.  We have
    //  the destination of the next transfer and its offset in the
    //  buffer.  We also have the next available position in the buffer
    //  available for a scratch buffer.
    //

    PVOID CurrentUserBuffer = UserBuffer;
    ULONG CurrentUserBufferOffset = UserBufferOffset;

    PVOID ScratchUserBuffer = UserBuffer;
    ULONG ScratchUserBufferOffset = UserBufferOffset;
    BOOLEAN RoundScratchBuffer = TRUE;

    //
    //  The following is the next contiguous bytes on the disk to
    //  transfer.  These are represented by cooked byte offset and length.
    //  We also compute the number of raw bytes in the current transfer.
    //

    LONGLONG DiskOffset;
    ULONG CurrentCookedByteCount;
    ULONG CurrentRawByteCount;

    PAGED_CODE();

    //
    //  We need to maintain our position as we walk through the sectors on the disk.
    //  We keep separate values for the cooked offset as well as the raw offset.
    //  These are initialized on sector boundaries and we move through these
    //  the file sector-by-sector.
    //
    //  Try to do 32-bit math.
    //

    if (((PLARGE_INTEGER) &CurrentRawOffset)->HighPart == 0) {

        CurrentRawOffset = (LONGLONG) ((ULONG) CurrentRawOffset / RAW_SECTOR_SIZE);

        CurrentCookedOffset = (LONGLONG) ((ULONG) CurrentRawOffset << SECTOR_SHIFT );

        CurrentRawOffset = (LONGLONG) ((ULONG) CurrentRawOffset * RAW_SECTOR_SIZE);

    //
    //  Otherwise we need to do 64-bit math (sigh).
    //

    } else {

        CurrentRawOffset /= RAW_SECTOR_SIZE;

        CurrentCookedOffset = CurrentRawOffset << SECTOR_SHIFT;

        CurrentRawOffset *= RAW_SECTOR_SIZE;
    }

    //
    //  Now compute the full number of sectors to be read.  Count all of the raw
    //  sectors that need to be read and convert to cooked bytes.
    //

    RawSectorOffset = (ULONG) ( StartingOffset - CurrentRawOffset) - sizeof( RIFF_HEADER );
    CurrentRawByteCount = (RawSectorOffset + RemainingRawByteCount + RAW_SECTOR_SIZE - 1) / RAW_SECTOR_SIZE;

    RemainingCookedByteCount = CurrentRawByteCount << SECTOR_SHIFT;

    //
    //  Initialize the RunCount and ByteCount.
    //

    *RunCount = 0;
    *ThisByteCount = 0;

    //
    //  Loop while there are more bytes to process or there are
    //  available entries in the IoRun array.
    //

    while (TRUE) {

        PerformedCopy = FALSE;
        *RunCount += 1;

        //
        //  Round the scratch buffer up to a sector boundary for alignment.
        //

        if (RoundScratchBuffer) {

            if (SectorOffset( ScratchUserBuffer ) != 0) {

                CurrentRawByteCount = SECTOR_SIZE - SectorOffset( ScratchUserBuffer );

                ScratchUserBuffer = Add2Ptr( ScratchUserBuffer,
                                             CurrentRawByteCount,
                                             PVOID );

                ScratchUserBufferOffset += CurrentRawByteCount;
            }

            RoundScratchBuffer = FALSE;
        }

        //
        //  Initialize the current position in the IoRuns array.
        //  Find the user's buffer for this portion of the transfer.
        //

        ThisIoRun->UserBuffer = CurrentUserBuffer;

        //
        //  Find the allocation information for the current offset in the
        //  stream.
        //

        CdLookupAllocation( IrpContext,
                            Fcb,
                            CurrentCookedOffset,
                            &DiskOffset,
                            &CurrentCookedByteCount );

        //
        //  Maybe we got lucky and this is the same sector as in the
        //  Vcb.
        //

        if (DiskOffset == Fcb->Vcb->XADiskOffset) {

            //
            //  We will perform safe synchronization.  Check again that
            //  this is the correct sector.
            //

            CdLockVcb( IrpContext, Fcb->Vcb );

            if ((DiskOffset == Fcb->Vcb->XADiskOffset) &&
                (Fcb->Vcb->XASector != NULL)) {

                //
                //  Copy any bytes we can from the current sector.
                //

                CurrentRawByteCount = RAW_SECTOR_SIZE - RawSectorOffset;

                //
                //  Check whether we don't go to the end of the sector.
                //

                if (CurrentRawByteCount > RemainingRawByteCount) {

                    CurrentRawByteCount = RemainingRawByteCount;
                }

                RtlCopyMemory( CurrentUserBuffer,
                               Add2Ptr( Fcb->Vcb->XASector, RawSectorOffset, PCHAR ),
                               CurrentRawByteCount );

                CdUnlockVcb( IrpContext, Fcb->Vcb );

                //
                //  Adjust the run count and pointer in the IoRuns array
                //  to show that we didn't use a position.
                //

                *RunCount -= 1;
                ThisIoRun -= 1;

                //
                //  Remember that we performed a copy operation and update
                //  the next available position in the scratch buffer.
                //

                PerformedCopy = TRUE;

                ScratchUserBuffer = Add2Ptr( ScratchUserBuffer,
                                             CurrentRawByteCount,
                                             PVOID );

                ScratchUserBufferOffset += CurrentRawByteCount;

                CurrentCookedByteCount = SECTOR_SIZE;

                //
                //  Set the flag indicating we want to round the scratch buffer
                //  to a sector boundary.
                //

                RoundScratchBuffer = TRUE;

            } else {

                //
                //  The safe test showed no available buffer.  Drop down to common code to
                //  perform the Io.
                //

                CdUnlockVcb( IrpContext, Fcb->Vcb );
            }
        }

        //
        //  No work in this pass if we did a copy operation.
        //

        if (!PerformedCopy) {

            //
            //  Limit ourselves by the number of remaining cooked bytes.
            //

            if (CurrentCookedByteCount > RemainingCookedByteCount) {

                CurrentCookedByteCount = RemainingCookedByteCount;
            }

            ThisIoRun->DiskOffset = DiskOffset;
            ThisIoRun->TransferBufferOffset = RawSectorOffset;

            //
            //  We will always need to perform copy operations for XA files.
            //  We allocate an auxillary buffer to read the start of the
            //  transfer.  Then we can use a range of the user's buffer to
            //  perform the next range of the transfer.  Finally we may
            //  need to allocate a buffer for the tail of the transfer.
            //
            //  We can use the user's buffer (at the current scratch buffer) if the
            //  following are true:
            //
            //      If we are to store the beginning of the raw sector in the user's buffer.
            //      The current scratch buffer precedes the destination in the user's buffer.
            //      There are enough bytes remaining in the buffer for at least one
            //          raw sector.
            //

            if ((RawSectorOffset == 0) &&
                (ScratchUserBufferOffset <= CurrentUserBufferOffset) &&
                (CurrentUserBufferOffset - ScratchUserBufferOffset + RemainingRawByteCount >= RAW_SECTOR_SIZE)) {

                //
                //  We can use the scratch buffer.  We must insure we don't send down reads
                //  greater than the device can handle, since the driver is unable to split
                //  raw requests.
                //

                if (CurrentCookedByteCount <= Fcb->Vcb->MaximumTransferRawSectors * SECTOR_SIZE) {

                    CurrentRawByteCount = (CurrentCookedByteCount >> SECTOR_SHIFT) * RAW_SECTOR_SIZE;
    
                } else {

                    CurrentCookedByteCount = Fcb->Vcb->MaximumTransferRawSectors * SECTOR_SIZE;
                    CurrentRawByteCount = Fcb->Vcb->MaximumTransferRawSectors * RAW_SECTOR_SIZE;
                }

                //
                //  Now make sure we are within the page limit.
                //

                while (ADDRESS_AND_SIZE_TO_SPAN_PAGES(ScratchUserBuffer, CurrentRawByteCount) > Fcb->Vcb->MaximumPhysicalPages) {

                    CurrentRawByteCount -= RAW_SECTOR_SIZE;
                    CurrentCookedByteCount -= SECTOR_SIZE;

                }

                //
                //  Trim the number of bytes to read if it won't fit into the current buffer.
                //

                while (CurrentRawByteCount > CurrentUserBufferOffset - ScratchUserBufferOffset + RemainingRawByteCount ) {

                    CurrentRawByteCount -= RAW_SECTOR_SIZE;
                    CurrentCookedByteCount -= SECTOR_SIZE;
                }

                //
                //  Now trim the maximum number of raw bytes by the remaining bytes.
                //

                if (CurrentRawByteCount > RemainingRawByteCount) {

                    CurrentRawByteCount = RemainingRawByteCount;
                }

                //
                //  Update the IO run array.  We point to the scratch buffer as
                //  well as the buffer and Mdl in the original Irp.
                //

                ThisIoRun->DiskByteCount = CurrentCookedByteCount;
                ThisIoRun->TransferByteCount = CurrentRawByteCount;

                //
                //  Point to the user's buffer and Mdl for this transfer.
                //

                ThisIoRun->TransferBuffer = ScratchUserBuffer;
                ThisIoRun->TransferMdl = Irp->MdlAddress;
                ThisIoRun->TransferVirtualAddress = Add2Ptr( Irp->UserBuffer,
                                                             ScratchUserBufferOffset,
                                                             PVOID );

                //
                //  Update the scratch buffer pointer.
                //

                ScratchUserBuffer = Add2Ptr( ScratchUserBuffer,
                                             CurrentRawByteCount,
                                             PVOID );

                ScratchUserBufferOffset += CurrentRawByteCount;

                //
                //  Set the flag indicating we want to round the scratch buffer
                //  to a sector boundary.
                //

                RoundScratchBuffer = TRUE;

            } else {

                //
                //  We need to determine the number of bytes to transfer and the
                //  offset into this page to begin the transfer.  Trim the transfer
                //  if we don't want to pick up the bytes at the end of the sector.
                //

                ThisIoRun->DiskByteCount = SECTOR_SIZE;

                CurrentCookedByteCount = SECTOR_SIZE;

                ThisIoRun->TransferByteCount = RAW_SECTOR_SIZE - RawSectorOffset;

                if (ThisIoRun->TransferByteCount > RemainingRawByteCount) {

                    ThisIoRun->TransferByteCount = RemainingRawByteCount;
                }

                CurrentRawByteCount = ThisIoRun->TransferByteCount;

                //
                //  We need to allocate an auxillary buffer.  We will allocate
                //  a single page.  Then we will build an Mdl to describe the buffer.
                //

                ThisIoRun->TransferBuffer = FsRtlAllocatePool( CdNonPagedPool, PAGE_SIZE );

                //
                //  Allocate and build the Mdl to describe this buffer.
                //

                ThisIoRun->TransferMdl = IoAllocateMdl( ThisIoRun->TransferBuffer,
                                                        PAGE_SIZE,
                                                        FALSE,
                                                        FALSE,
                                                        NULL );

                ThisIoRun->TransferVirtualAddress = ThisIoRun->TransferBuffer;

                if (ThisIoRun->TransferMdl == NULL) {

                    IrpContext->Irp->IoStatus.Information = 0;
                    CdRaiseStatus( IrpContext, STATUS_INSUFFICIENT_RESOURCES );
                }

                MmBuildMdlForNonPagedPool( ThisIoRun->TransferMdl );
            }
        }

        //
        //  Update the byte count for our caller.
        //

        RemainingRawByteCount -= CurrentRawByteCount;
        *ThisByteCount += CurrentRawByteCount;

        //
        //  Break out if no more positions in the IoRuns array or
        //  we have all of the bytes accounted for.
        //

        if ((RemainingRawByteCount == 0) || (*RunCount == MAX_PARALLEL_IOS)) {

            break;
        }

        //
        //  Update our local pointers to allow for the current range of bytes.
        //

        ThisIoRun += 1;

        CurrentUserBuffer = Add2Ptr( CurrentUserBuffer, CurrentRawByteCount, PVOID );
        CurrentUserBufferOffset += CurrentRawByteCount;

        RawSectorOffset = 0;

        CurrentCookedOffset += CurrentCookedByteCount;
        RemainingCookedByteCount -= CurrentCookedByteCount;
    }

    return;
}


//
//  Local support routine
//

BOOLEAN
CdFinishBuffers (
    IN PIRP_CONTEXT IrpContext,
    IN PIO_RUN IoRuns,
    IN ULONG RunCount,
    IN BOOLEAN FinalCleanup,
    IN BOOLEAN SaveXABuffer
    )

/*++

Routine Description:

    This routine is called to perform any data transferred required for
    unaligned Io or to perform the final cleanup of the IoRuns array.

    In all cases this is where we will deallocate any buffer and mdl
    allocated to perform the unaligned transfer.  If this is not the
    final cleanup then we also transfer the bytes to the user buffer
    and flush the hardware cache.

    We walk backwards through the run array because we may be shifting data
    in the user's buffer.  Typical case is where we allocated a buffer for
    the first part of a read and then used the user's buffer for the
    next section (but stored it at the beginning of the buffer.

Arguments:

    IoRuns - Pointer to the IoRuns array.

    RunCount - Number of entries in the IoRuns array filled here.

    FinalCleanup - Indicates if we should be deallocating temporary buffers
        (TRUE) or transferring bytes for a unaligned transfers and
        deallocating the buffers (FALSE).  Flush the system cache if
        transferring data.

    SaveXABuffer - TRUE if we should try to save an XA buffer, FALSE otherwise

Return Value:

    BOOLEAN - TRUE if this request needs the Io buffers to be flushed, FALSE otherwise.

--*/

{
    BOOLEAN FlushIoBuffers = FALSE;

    ULONG RemainingEntries = RunCount;
    PIO_RUN ThisIoRun = &IoRuns[RunCount - 1];
    PVCB Vcb;

    PAGED_CODE();

    //
    //  Walk through each entry in the IoRun array.
    //

    while (RemainingEntries != 0) {

        //
        //  We only need to deal with the case of an unaligned transfer.
        //

        if (ThisIoRun->TransferByteCount != 0) {

            //
            //  If not the final cleanup then transfer the data to the
            //  user's buffer and remember that we will need to flush
            //  the user's buffer to memory.
            //

            if (!FinalCleanup) {

                //
                //  If we are shifting in the user's buffer then use
                //  MoveMemory.
                //

                if (ThisIoRun->TransferMdl == IrpContext->Irp->MdlAddress) {

                    RtlMoveMemory( ThisIoRun->UserBuffer,
                                   Add2Ptr( ThisIoRun->TransferBuffer,
                                            ThisIoRun->TransferBufferOffset,
                                            PVOID ),
                                   ThisIoRun->TransferByteCount );

                } else {

                    RtlCopyMemory( ThisIoRun->UserBuffer,
                                   Add2Ptr( ThisIoRun->TransferBuffer,
                                            ThisIoRun->TransferBufferOffset,
                                            PVOID ),
                                   ThisIoRun->TransferByteCount );
                }

                FlushIoBuffers = TRUE;
            }

            //
            //  Free any Mdl we may have allocated.  If the Mdl isn't
            //  present then we must have failed during the allocation
            //  phase.
            //

            if (ThisIoRun->TransferMdl != IrpContext->Irp->MdlAddress) {

                if (ThisIoRun->TransferMdl != NULL) {

                    IoFreeMdl( ThisIoRun->TransferMdl );
                }

                //
                //  Now free any buffer we may have allocated.  If the Mdl
                //  doesn't match the original Mdl then free the buffer.
                //

                if (ThisIoRun->TransferBuffer != NULL) {

                    //
                    //  If this is the final buffer for an XA read then store this buffer
                    //  into the Vcb so that we will have it when reading any remaining
                    //  portion of this buffer.
                    //

                    if (SaveXABuffer) {

                        Vcb = IrpContext->Vcb;

                        CdLockVcb( IrpContext, Vcb );

                        if (Vcb->XASector != NULL) {

                            ExFreePool( Vcb->XASector );
                        }

                        Vcb->XASector = ThisIoRun->TransferBuffer;
                        Vcb->XADiskOffset = ThisIoRun->DiskOffset;

                        SaveXABuffer = FALSE;

                        CdUnlockVcb( IrpContext, Vcb );

                    //
                    //  Otherwise just free the buffer.
                    //

                    } else {

                        ExFreePool( ThisIoRun->TransferBuffer );
                    }
                }
            }
        }

        //
        //  Now handle the case where we failed in the process
        //  of allocating associated Irps and Mdls.
        //

        if (ThisIoRun->SavedIrp != NULL) {

            if (ThisIoRun->SavedIrp->MdlAddress != NULL) {

                IoFreeMdl( ThisIoRun->SavedIrp->MdlAddress );
            }

            IoFreeIrp( ThisIoRun->SavedIrp );
        }

        //
        //  Move to the previous IoRun entry.
        //

        ThisIoRun -= 1;
        RemainingEntries -= 1;
    }

    //
    //  If we copied any data then flush the Io buffers.
    //

    return FlushIoBuffers;
}


//
//  Local support routine
//

VOID
CdMultipleAsync (
    IN PIRP_CONTEXT IrpContext,
    IN ULONG RunCount,
    IN PIO_RUN IoRuns
    )

/*++

Routine Description:

    This routine first does the initial setup required of a Master IRP that is
    going to be completed using associated IRPs.  This routine should not
    be used if only one async request is needed, instead the single read
    async routines should be called.

    A context parameter is initialized, to serve as a communications area
    between here and the common completion routine.

    Next this routine reads or writes one or more contiguous sectors from
    a device asynchronously, and is used if there are multiple reads for a
    master IRP.  A completion routine is used to synchronize with the
    completion of all of the I/O requests started by calls to this routine.

    Also, prior to calling this routine the caller must initialize the
    IoStatus field in the Context, with the correct success status and byte
    count which are expected if all of the parallel transfers complete
    successfully.  After return this status will be unchanged if all requests
    were, in fact, successful.  However, if one or more errors occur, the
    IoStatus will be modified to reflect the error status and byte count
    from the first run (by Vbo) which encountered an error.  I/O status
    from all subsequent runs will not be indicated.

Arguments:

    RunCount - Supplies the number of multiple async requests
        that will be issued against the master irp.

    IoRuns - Supplies an array containing the Offset and ByteCount for the
        separate requests.

Return Value:

    None.

--*/

{
    PIO_COMPLETION_ROUTINE CompletionRoutine;
    PIO_STACK_LOCATION IrpSp;
    PMDL Mdl;
    PIRP Irp;
    PIRP MasterIrp;
    ULONG UnwindRunCount;

    PAGED_CODE();

    //
    //  Set up things according to whether this is truely async.
    //

    CompletionRoutine = CdMultiSyncCompletionRoutine;

    if (!FlagOn( IrpContext->Flags, IRP_CONTEXT_FLAG_WAIT )) {

        CompletionRoutine = CdMultiAsyncCompletionRoutine;
    }

    //
    //  Initialize some local variables.
    //

    MasterIrp = IrpContext->Irp;

    //
    //  Itterate through the runs, doing everything that can fail.
    //  We let the cleanup in CdFinishBuffers clean up on error.
    //

    for (UnwindRunCount = 0;
         UnwindRunCount < RunCount;
         UnwindRunCount += 1) {

        //
        //  Create an associated IRP, making sure there is one stack entry for
        //  us, as well.
        //

        IoRuns[UnwindRunCount].SavedIrp =
        Irp = IoMakeAssociatedIrp( MasterIrp, (CCHAR)(IrpContext->Vcb->TargetDeviceObject->StackSize + 1) );

        if (Irp == NULL) {

            IrpContext->Irp->IoStatus.Information = 0;
            CdRaiseStatus( IrpContext, STATUS_INSUFFICIENT_RESOURCES );
        }

        //
        // Allocate and build a partial Mdl for the request.
        //

        Mdl = IoAllocateMdl( IoRuns[UnwindRunCount].TransferVirtualAddress,
                             IoRuns[UnwindRunCount].DiskByteCount,
                             FALSE,
                             FALSE,
                             Irp );

        if (Mdl == NULL) {

            IrpContext->Irp->IoStatus.Information = 0;
            CdRaiseStatus( IrpContext, STATUS_INSUFFICIENT_RESOURCES );
        }

        IoBuildPartialMdl( IoRuns[UnwindRunCount].TransferMdl,
                           Mdl,
                           IoRuns[UnwindRunCount].TransferVirtualAddress,
                           IoRuns[UnwindRunCount].DiskByteCount );

        //
        //  Get the first IRP stack location in the associated Irp
        //

        IoSetNextIrpStackLocation( Irp );
        IrpSp = IoGetCurrentIrpStackLocation( Irp );

        //
        //  Setup the Stack location to describe our read.
        //

        IrpSp->MajorFunction = IRP_MJ_READ;
        IrpSp->Parameters.Read.Length = IoRuns[UnwindRunCount].DiskByteCount;
        IrpSp->Parameters.Read.ByteOffset.QuadPart = IoRuns[UnwindRunCount].DiskOffset;

        //
        // Set up the completion routine address in our stack frame.
        //

        IoSetCompletionRoutine( Irp,
                                CompletionRoutine,
                                IrpContext->IoContext,
                                TRUE,
                                TRUE,
                                TRUE );

        //
        //  Setup the next IRP stack location in the associated Irp for the disk
        //  driver beneath us.
        //

        IrpSp = IoGetNextIrpStackLocation( Irp );

        //
        //  Setup the Stack location to do a read from the disk driver.
        //

        IrpSp->MajorFunction = IRP_MJ_READ;
        IrpSp->Parameters.Read.Length = IoRuns[UnwindRunCount].DiskByteCount;
        IrpSp->Parameters.Read.ByteOffset.QuadPart = IoRuns[UnwindRunCount].DiskOffset;
    }

    //
    //  We only need to set the associated IRP count in the master irp to
    //  make it a master IRP.  But we set the count to one more than our
    //  caller requested, because we do not want the I/O system to complete
    //  the I/O.  We also set our own count.
    //

    IrpContext->IoContext->IrpCount = RunCount;
    IrpContext->IoContext->MasterIrp = MasterIrp;

    //
    //  We set the count in the master Irp to 1 since typically we
    //  will clean up the associated irps ourselves.  Setting this to one
    //  means completing the last associated Irp with SUCCESS (in the async
    //  case) will complete the master irp.
    //

    MasterIrp->AssociatedIrp.IrpCount = 1;

    //
    //  Now that all the dangerous work is done, issue the Io requests
    //

    for (UnwindRunCount = 0;
         UnwindRunCount < RunCount;
         UnwindRunCount++) {

        Irp = IoRuns[UnwindRunCount].SavedIrp;
        IoRuns[UnwindRunCount].SavedIrp = NULL;

        //
        //  If IoCallDriver returns an error, it has completed the Irp
        //  and the error will be caught by our completion routines
        //  and dealt with as a normal IO error.
        //

        (VOID) IoCallDriver( IrpContext->Vcb->TargetDeviceObject, Irp );
    }

    return;
}


//
//  Local support routine
//

VOID
CdMultipleXAAsync (
    IN PIRP_CONTEXT IrpContext,
    IN ULONG RunCount,
    IN PIO_RUN IoRuns,
    IN PRAW_READ_INFO RawReads,
    IN TRACK_MODE_TYPE TrackMode
    )

/*++

Routine Description:

    This routine first does the initial setup required of a Master IRP that is
    going to be completed using associated IRPs.  This routine is used to generate
    the associated Irps used to read raw sectors from the disk.

    A context parameter is initialized, to serve as a communications area
    between here and the common completion routine.

    Next this routine reads or writes one or more contiguous sectors from
    a device asynchronously, and is used if there are multiple reads for a
    master IRP.  A completion routine is used to synchronize with the
    completion of all of the I/O requests started by calls to this routine.

    Also, prior to calling this routine the caller must initialize the
    IoStatus field in the Context, with the correct success status and byte
    count which are expected if all of the parallel transfers complete
    successfully.  After return this status will be unchanged if all requests
    were, in fact, successful.  However, if one or more errors occur, the
    IoStatus will be modified to reflect the error status and byte count
    from the first run (by Vbo) which encountered an error.  I/O status
    from all subsequent runs will not be indicated.

Arguments:

    RunCount - Supplies the number of multiple async requests
        that will be issued against the master irp.

    IoRuns - Supplies an array containing the Offset and ByteCount for the
        separate requests.

    RawReads - Supplies an array of structures to store in the Irps passed to the
        device driver to perform the low-level Io.

    TrackMode - Supplies the recording mode of sectors in these IoRuns

Return Value:

    None.

--*/

{
    PIO_STACK_LOCATION IrpSp;
    PMDL Mdl;
    PIRP Irp;
    PIRP MasterIrp;
    ULONG UnwindRunCount;

    PIO_RUN ThisIoRun = IoRuns;
    PRAW_READ_INFO ThisRawRead = RawReads;

    PAGED_CODE();

    //
    //  Initialize some local variables.
    //

    MasterIrp = IrpContext->Irp;

    //
    //  Itterate through the runs, doing everything that can fail.
    //  We let the cleanup in CdFinishBuffers clean up on error.
    //

    for (UnwindRunCount = 0;
         UnwindRunCount < RunCount;
         UnwindRunCount += 1, ThisIoRun += 1, ThisRawRead += 1) {

        //
        //  Create an associated IRP, making sure there is one stack entry for
        //  us, as well.
        //

        ThisIoRun->SavedIrp =
        Irp = IoMakeAssociatedIrp( MasterIrp, (CCHAR)(IrpContext->Vcb->TargetDeviceObject->StackSize + 1) );

        if (Irp == NULL) {

            IrpContext->Irp->IoStatus.Information = 0;
            CdRaiseStatus( IrpContext, STATUS_INSUFFICIENT_RESOURCES );
        }

        //
        // Allocate and build a partial Mdl for the request.
        //

        Mdl = IoAllocateMdl( ThisIoRun->TransferVirtualAddress,
                             ThisIoRun->TransferByteCount,
                             FALSE,
                             FALSE,
                             Irp );

        if (Mdl == NULL) {

            IrpContext->Irp->IoStatus.Information = 0;
            CdRaiseStatus( IrpContext, STATUS_INSUFFICIENT_RESOURCES );
        }

        IoBuildPartialMdl( ThisIoRun->TransferMdl,
                           Mdl,
                           ThisIoRun->TransferVirtualAddress,
                           ThisIoRun->TransferByteCount );

        //
        //  Get the first IRP stack location in the associated Irp
        //

        IoSetNextIrpStackLocation( Irp );
        IrpSp = IoGetCurrentIrpStackLocation( Irp );

        //
        //  Setup the Stack location to describe our read.
        //

        IrpSp->MajorFunction = IRP_MJ_READ;
        IrpSp->Parameters.Read.Length = ThisIoRun->DiskByteCount;
        IrpSp->Parameters.Read.ByteOffset.QuadPart = ThisIoRun->DiskOffset;

        //
        // Set up the completion routine address in our stack frame.
        //

        IoSetCompletionRoutine( Irp,
                                CdMultiSyncCompletionRoutine,
                                IrpContext->IoContext,
                                TRUE,
                                TRUE,
                                TRUE );

        //
        //  Setup the next IRP stack location in the associated Irp for the disk
        //  driver beneath us.
        //

        IrpSp = IoGetNextIrpStackLocation( Irp );

        //
        //  Setup the stack location to do a read of raw sectors at this location.
        //

        ThisRawRead->DiskOffset.QuadPart = ThisIoRun->DiskOffset;
        ThisRawRead->SectorCount = ThisIoRun->DiskByteCount >> SECTOR_SHIFT;
        ThisRawRead->TrackMode = TrackMode;

        IrpSp->MajorFunction = IRP_MJ_DEVICE_CONTROL;

        IrpSp->Parameters.DeviceIoControl.OutputBufferLength = ThisRawRead->SectorCount * RAW_SECTOR_SIZE;
        Irp->UserBuffer = ThisIoRun->TransferBuffer;

        IrpSp->Parameters.DeviceIoControl.InputBufferLength = sizeof( RAW_READ_INFO );
        IrpSp->Parameters.DeviceIoControl.Type3InputBuffer = ThisRawRead;

        IrpSp->Parameters.DeviceIoControl.IoControlCode = IOCTL_CDROM_RAW_READ;
    }

    //
    //  We only need to set the associated IRP count in the master irp to
    //  make it a master IRP.  But we set the count to one more than our
    //  caller requested, because we do not want the I/O system to complete
    //  the I/O.  We also set our own count.
    //

    IrpContext->IoContext->IrpCount = RunCount;
    IrpContext->IoContext->MasterIrp = MasterIrp;

    //
    //  We set the count in the master Irp to 1 since typically we
    //  will clean up the associated irps ourselves.  Setting this to one
    //  means completing the last associated Irp with SUCCESS (in the async
    //  case) will complete the master irp.
    //

    MasterIrp->AssociatedIrp.IrpCount = 1;

    //
    //  Now that all the dangerous work is done, issue the Io requests
    //

    for (UnwindRunCount = 0;
         UnwindRunCount < RunCount;
         UnwindRunCount++) {

        Irp = IoRuns[UnwindRunCount].SavedIrp;
        IoRuns[UnwindRunCount].SavedIrp = NULL;

        //
        //
        //  If IoCallDriver returns an error, it has completed the Irp
        //  and the error will be caught by our completion routines
        //  and dealt with as a normal IO error.
        //

        (VOID) IoCallDriver( IrpContext->Vcb->TargetDeviceObject, Irp );
    }

    return;
}


//
//  Local support routine
//

VOID
CdSingleAsync (
    IN PIRP_CONTEXT IrpContext,
    IN LONGLONG ByteOffset,
    IN ULONG ByteCount
    )

/*++

Routine Description:

    This routine reads one or more contiguous sectors from a device
    asynchronously, and is used if there is only one read necessary to
    complete the IRP.  It implements the read by simply filling
    in the next stack frame in the Irp, and passing it on.  The transfer
    occurs to the single buffer originally specified in the user request.

Arguments:

    ByteOffset - Supplies the starting Logical Byte Offset to begin reading from

    ByteCount - Supplies the number of bytes to read from the device

Return Value:

    None.

--*/

{
    PIO_STACK_LOCATION IrpSp;
    PIO_COMPLETION_ROUTINE CompletionRoutine;

    PAGED_CODE();

    //
    //  Set up things according to whether this is truely async.
    //

    if (FlagOn( IrpContext->Flags, IRP_CONTEXT_FLAG_WAIT )) {

        CompletionRoutine = CdSingleSyncCompletionRoutine;

    } else {

        CompletionRoutine = CdSingleAsyncCompletionRoutine;
    }

    //
    // Set up the completion routine address in our stack frame.
    //

    IoSetCompletionRoutine( IrpContext->Irp,
                            CompletionRoutine,
                            IrpContext->IoContext,
                            TRUE,
                            TRUE,
                            TRUE );

    //
    //  Setup the next IRP stack location in the associated Irp for the disk
    //  driver beneath us.
    //

    IrpSp = IoGetNextIrpStackLocation( IrpContext->Irp );

    //
    //  Setup the Stack location to do a read from the disk driver.
    //

    IrpSp->MajorFunction = IRP_MJ_READ;
    IrpSp->Parameters.Read.Length = ByteCount;
    IrpSp->Parameters.Read.ByteOffset.QuadPart = ByteOffset;

    //
    //  Issue the Io request
    //

    //
    //  If IoCallDriver returns an error, it has completed the Irp
    //  and the error will be caught by our completion routines
    //  and dealt with as a normal IO error.
    //

    (VOID)IoCallDriver( IrpContext->Vcb->TargetDeviceObject, IrpContext->Irp );

    //
    //  And return to our caller
    //

    return;
}


//
//  Local support routine
//

VOID
CdWaitSync (
    IN PIRP_CONTEXT IrpContext
    )

/*++

Routine Description:

    This routine waits for one or more previously started I/O requests
    from the above routines, by simply waiting on the event.

Arguments:

Return Value:

    None

--*/

{
    PAGED_CODE();

    KeWaitForSingleObject( &IrpContext->IoContext->SyncEvent,
                           Executive,
                           KernelMode,
                           FALSE,
                           NULL );

    KeClearEvent( &IrpContext->IoContext->SyncEvent );

    return;
}


//
//  Local support routine
//

NTSTATUS
CdMultiSyncCompletionRoutine (
    IN PDEVICE_OBJECT DeviceObject,
    IN PIRP Irp,
    IN PVOID Context
    )

/*++

Routine Description:

    This is the completion routine for all synchronous reads
    started via CdMultipleAsynch.

    The completion routine has has the following responsibilities:

        If the individual request was completed with an error, then
        this completion routine must see if this is the first error
        and remember the error status in the Context.

        If the IrpCount goes to 1, then it sets the event in the Context
        parameter to signal the caller that all of the asynch requests
        are done.

Arguments:

    DeviceObject - Pointer to the file system device object.

    Irp - Pointer to the associated Irp which is being completed.  (This
        Irp will no longer be accessible after this routine returns.)

    Context - The context parameter which was specified for all of
        the multiple asynch I/O requests for this MasterIrp.

Return Value:

    The routine returns STATUS_MORE_PROCESSING_REQUIRED so that we can
    immediately complete the Master Irp without being in a race condition
    with the IoCompleteRequest thread trying to decrement the IrpCount in
    the Master Irp.

--*/

{
    PCD_IO_CONTEXT IoContext = Context;

    //
    //  If we got an error (or verify required), remember it in the Irp
    //

    if (!NT_SUCCESS( Irp->IoStatus.Status )) {

        InterlockedExchange( &IoContext->Status, Irp->IoStatus.Status );
        IoContext->MasterIrp->IoStatus.Information = 0;
    }

    //
    //  We must do this here since IoCompleteRequest won't get a chance
    //  on this associated Irp.
    //

    IoFreeMdl( Irp->MdlAddress );
    IoFreeIrp( Irp );

    if (InterlockedDecrement( &IoContext->IrpCount ) == 0) {

        //
        //  Update the Master Irp with any error status from the associated Irps.
        //

        IoContext->MasterIrp->IoStatus.Status = IoContext->Status;
        KeSetEvent( &IoContext->SyncEvent, 0, FALSE );
    }

    UNREFERENCED_PARAMETER( DeviceObject );

    return STATUS_MORE_PROCESSING_REQUIRED;
}


//
//  Local support routine
//

NTSTATUS
CdMultiAsyncCompletionRoutine (
    IN PDEVICE_OBJECT DeviceObject,
    IN PIRP Irp,
    IN PVOID Context
    )

/*++

Routine Description:

    This is the completion routine for all asynchronous reads
    started via CdMultipleAsynch.

    The completion routine has has the following responsibilities:

        If the individual request was completed with an error, then
        this completion routine must see if this is the first error
        and remember the error status in the Context.

Arguments:

    DeviceObject - Pointer to the file system device object.

    Irp - Pointer to the associated Irp which is being completed.  (This
        Irp will no longer be accessible after this routine returns.)

    Context - The context parameter which was specified for all of
             the multiple asynch I/O requests for this MasterIrp.

Return Value:

    Currently always returns STATUS_SUCCESS.

--*/

{
    PCD_IO_CONTEXT IoContext = Context;
    PIO_STACK_LOCATION IrpSp = IoGetCurrentIrpStackLocation( Irp );

    //
    //  If we got an error (or verify required), remember it in the Irp
    //

    if (!NT_SUCCESS( Irp->IoStatus.Status )) {

        InterlockedExchange( &IoContext->Status, Irp->IoStatus.Status );
    }

    //
    //  Decrement IrpCount and see if it goes to zero.
    //

    if (InterlockedDecrement( &IoContext->IrpCount ) == 0) {

        //
        //  Mark the master Irp pending
        //

        IoMarkIrpPending( IoContext->MasterIrp );

        //
        //  Update the Master Irp with any error status from the associated Irps.
        //

        IoContext->MasterIrp->IoStatus.Status = IoContext->Status;

        //
        //  Update the information field with the correct value.
        //

        IoContext->MasterIrp->IoStatus.Information = 0;

        if (NT_SUCCESS( IoContext->MasterIrp->IoStatus.Status )) {

            IoContext->MasterIrp->IoStatus.Information = IoContext->RequestedByteCount;
        }

        //
        //  Now release the resource
        //

        ExReleaseResourceForThread( IoContext->Resource,
                                    IoContext->ResourceThreadId );

        //
        //  and finally, free the context record.
        //

        CdFreeIoContext( IoContext );

        //
        //  Return success in this case.
        //

        return STATUS_SUCCESS;

    } else {

        //
        //  We need to cleanup the associated Irp and its Mdl.
        //

        IoFreeMdl( Irp->MdlAddress );
        IoFreeIrp( Irp );

        return STATUS_MORE_PROCESSING_REQUIRED;
    }

    UNREFERENCED_PARAMETER( DeviceObject );
}


//
//  Local support routine
//

NTSTATUS
CdSingleSyncCompletionRoutine (
    IN PDEVICE_OBJECT DeviceObject,
    IN PIRP Irp,
    IN PVOID Context
    )

/*++

Routine Description:

    This is the completion routine for all reads started via CdSingleAsynch.

    The completion routine has has the following responsibilities:

        It sets the event in the Context parameter to signal the caller
        that all of the asynch requests are done.

Arguments:

    DeviceObject - Pointer to the file system device object.

    Irp - Pointer to the Irp for this request.  (This Irp will no longer
        be accessible after this routine returns.)

    Context - The context parameter which was specified in the call to
        CdSingleAsynch.

Return Value:

    The routine returns STATUS_MORE_PROCESSING_REQUIRED so that we can
    immediately complete the Master Irp without being in a race condition
    with the IoCompleteRequest thread trying to decrement the IrpCount in
    the Master Irp.

--*/

{
    KeSetEvent( &((PCD_IO_CONTEXT)Context)->SyncEvent, 0, FALSE );

    //
    //  Store the correct information field into the Irp.
    //



    if (!NT_SUCCESS( Irp->IoStatus.Status )) {

        Irp->IoStatus.Information = 0;
    }

    return STATUS_MORE_PROCESSING_REQUIRED;
}


//
//  Local support routine
//

NTSTATUS
CdSingleAsyncCompletionRoutine (
    IN PDEVICE_OBJECT DeviceObject,
    IN PIRP Irp,
    IN PVOID Context
    )

/*++

Routine Description:

    This is the completion routine for all asynchronous reads
    started via CdSingleAsynch.

Arguments:

    DeviceObject - Pointer to the file system device object.

    Irp - Pointer to the Irp for this request.  (This Irp will no longer
        be accessible after this routine returns.)

    Context - The context parameter which was specified in the call to
        CdSingleAsynch.

Return Value:

    Currently always returns STATUS_SUCCESS.

--*/

{
    //
    //  Update the information field with the correct value for bytes read.
    //

    Irp->IoStatus.Information = 0;

    if (NT_SUCCESS( Irp->IoStatus.Status )) {

        Irp->IoStatus.Information = ((PCD_IO_CONTEXT) Context)->RequestedByteCount;
    }

    //
    //  Mark the Irp pending
    //

    IoMarkIrpPending( Irp );

    //
    //  Now release the resource
    //

    ExReleaseResourceForThread( ((PCD_IO_CONTEXT) Context)->Resource,
                                ((PCD_IO_CONTEXT) Context)->ResourceThreadId );

    //
    //  and finally, free the context record.
    //

    CdFreeIoContext( (PCD_IO_CONTEXT) Context );
    return STATUS_SUCCESS;

    UNREFERENCED_PARAMETER( DeviceObject );
}


//
//  Local support routine
//

VOID
CdReadAudioSystemFile (
    IN PIRP_CONTEXT IrpContext,
    IN PFCB Fcb,
    IN LONGLONG StartingOffset,
    IN ULONG ByteCount,
    IN PVOID SystemBuffer
    )

/*++

Routine Description:

    This routine is called to read the pseudo root directory and path
    table for a music disk.  We build the individual elements on the
    stack and copy into the cache buffer.

Arguments:

    Fcb - Fcb representing the file to read.

    StartingOffset - Logical offset in the file to read from.

    ByteCount - Number of bytes to read.

    SystemBuffer - Pointer to buffer to fill in.  This will always be page
        aligned.

Return Value:

    None.

--*/

{
    PRAW_PATH_ISO RawPath;
    PRAW_DIRENT RawDirent;

    ULONG CurrentTrack;
    ULONG SectorOffset;
    ULONG EntryCount;
    UCHAR TrackOnes;
    UCHAR TrackTens;
    PTRACK_DATA ThisTrack;

    LONGLONG CurrentOffset;

    PVOID CurrentSector;

    PSYSTEM_USE_XA SystemUse;

    ULONG BytesToCopy;

    UCHAR LocalBuffer[FIELD_OFFSET( RAW_DIRENT, FileId ) + 12];

    PAGED_CODE();

    //
    //  If this is the path table then we just need a single entry.
    //

    if (SafeNodeType( Fcb ) == CDFS_NTC_FCB_PATH_TABLE) {

        //
        //  Sanity check that the offset is zero.
        //

        ASSERT( StartingOffset == 0 );

        //
        //  Store a pseudo path entry in our local buffer.
        //

        RawPath = (PRAW_PATH_ISO) LocalBuffer;

        RtlZeroMemory( RawPath, sizeof( LocalBuffer ));

        RawPath->DirIdLen = 1;
        RawPath->ParentNum = 1;
        RawPath->DirId[0] = '\0';

        //
        //  Now copy to the user's buffer.
        //

        BytesToCopy = FIELD_OFFSET( RAW_PATH_ISO, DirId ) + 2;

        if (BytesToCopy > ByteCount) {

            BytesToCopy = ByteCount;
        }

        RtlCopyMemory( SystemBuffer,
                       RawPath,
                       BytesToCopy );

    //
    //  We need to deal with the multiple sector case for the root directory.
    //

    } else {

        //
        //  Initialize the first track to return to our caller.
        //

        CurrentTrack = 0;

        //
        //  If the offset is zero then store the entries for the self and parent
        //  entries.
        //

        if (StartingOffset == 0) {

            RawDirent = SystemBuffer;

            //
            //  Clear all of the fields initially.
            //

            RtlZeroMemory( RawDirent, FIELD_OFFSET( RAW_DIRENT, FileId ));

            //
            //  Now fill in the interesting fields.
            //

            RawDirent->DirLen = FIELD_OFFSET( RAW_DIRENT, FileId ) + 1;
            RawDirent->FileIdLen = 1;
            RawDirent->FileId[0] = '\0';
            SetFlag( RawDirent->FlagsISO, CD_ATTRIBUTE_DIRECTORY );

            //
            //  Set the time stamp to be Jan 1, 1995
            //

            RawDirent->RecordTime[0] = 95;
            RawDirent->RecordTime[1] = 1;
            RawDirent->RecordTime[2] = 1;

            SectorOffset = RawDirent->DirLen;

            RawDirent = Add2Ptr( RawDirent, SectorOffset, PRAW_DIRENT );

            //
            //  Clear all of the fields initially.
            //

            RtlZeroMemory( RawDirent, FIELD_OFFSET( RAW_DIRENT, FileId ));

            //
            //  Now fill in the interesting fields.
            //

            RawDirent->DirLen = FIELD_OFFSET( RAW_DIRENT, FileId ) + 1;
            RawDirent->FileIdLen = 1;
            RawDirent->FileId[0] = '\1';
            SetFlag( RawDirent->FlagsISO, CD_ATTRIBUTE_DIRECTORY );

            //
            //  Set the time stamp to be Jan 1, 1995
            //

            RawDirent->RecordTime[0] = 95;
            RawDirent->RecordTime[1] = 1;
            RawDirent->RecordTime[2] = 1;

            SectorOffset += RawDirent->DirLen;
            EntryCount = 2;

        //
        //  Otherwise compute the starting track to write to the buffer.
        //

        } else {

            //
            //  Count the tracks in each preceding sector.
            //

            CurrentOffset = 0;

            do {

                CurrentTrack += CdAudioDirentsPerSector;
                CurrentOffset += SECTOR_SIZE;

            } while (CurrentOffset < StartingOffset);

            //
            //  Bias the track count to reflect the two default entries.
            //

            CurrentTrack -= 2;

            SectorOffset = 0;
            EntryCount = 0;
        }

        //
        //  We now know the first track to return as well as where we are in
        //  the current sector.  We will walk through sector by sector adding
        //  the entries for the separate tracks in the TOC.  We will zero
        //  any sectors or partial sectors without data.
        //

        CurrentSector = SystemBuffer;
        BytesToCopy = SECTOR_SIZE;

        //
        //  Loop for each sector.
        //

        do {

            //
            //  Add entries until we reach our threshold for each sector.
            //

            do {

                //
                //  If we are beyond the entries in the TOC then exit.
                //

                if (CurrentTrack >= IrpContext->Vcb->TrackCount) {

                    break;
                }

                ThisTrack = &IrpContext->Vcb->CdromToc->TrackData[CurrentTrack];

                //
                //  Point to the current position in the buffer.
                //

                RawDirent = Add2Ptr( CurrentSector, SectorOffset, PRAW_DIRENT );

                //
                //  Clear all of the fields initially.
                //

                RtlZeroMemory( RawDirent, CdAudioDirentSize );

                //
                //  Now fill in the interesting fields.
                //

                RawDirent->DirLen = (UCHAR) CdAudioDirentSize;
                RawDirent->FileIdLen = CdAudioFileNameLength;

                RtlCopyMemory( RawDirent->FileId,
                               CdAudioFileName,
                               CdAudioFileNameLength );

                //
                //  Set the time stamp to be Jan 1, 1995
                //

                RawDirent->RecordTime[0] = 95;
                RawDirent->RecordTime[1] = 1;
                RawDirent->RecordTime[2] = 1;

                //
                //  Now bias by the values in the TOC.
                //

                RawDirent->RecordTime[4] = ThisTrack->Address[1] % 60;
                RawDirent->RecordTime[5] = ThisTrack->Address[2] % 60;

                //
                //  Put the track number into the file name.
                //

                TrackTens = TrackOnes = ThisTrack->TrackNumber;

                TrackOnes = (TrackOnes % 10) + '0';

                TrackTens /= 10;
                TrackTens = (TrackTens % 10) + '0';

                RawDirent->FileId[AUDIO_NAME_TENS_OFFSET] = TrackTens;
                RawDirent->FileId[AUDIO_NAME_ONES_OFFSET] = TrackOnes;

                SystemUse = Add2Ptr( RawDirent, CdAudioSystemUseOffset, PSYSTEM_USE_XA );

                SystemUse->Attributes = SYSTEM_USE_XA_DA;
                SystemUse->Signature = SYSTEM_XA_SIGNATURE;

                //
                //  Store the track number as the file number.
                //

                SystemUse->FileNumber = (UCHAR) CurrentTrack;

                EntryCount += 1;
                SectorOffset += CdAudioDirentSize;
                CurrentTrack += 1;

            } while (EntryCount < CdAudioDirentsPerSector);

            //
            //  Zero the remaining portion of this buffer.
            //

            RtlZeroMemory( Add2Ptr( CurrentSector, SectorOffset, PVOID ),
                           SECTOR_SIZE - SectorOffset );

            //
            //  Prepare for the next sector.
            //

            EntryCount = 0;
            BytesToCopy += SECTOR_SIZE;
            SectorOffset = 0;
            CurrentSector = Add2Ptr( CurrentSector, SECTOR_SIZE, PVOID );

        } while (BytesToCopy <= ByteCount);
    }

    return;
}