summaryrefslogtreecommitdiffstats
path: root/private/ntos/ex/systime.c
blob: c427f787b32583d453e743a59c748421ac680aa3 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
/*++

Copyright (c) 1989  Microsoft Corporation

Module Name:

    systime.c

Abstract:

    This module implements the NT system time services.

Author:

    Mark Lucovsky (markl) 08-Aug-1989

Revision History:

--*/

#include "exp.h"


#ifdef ALLOC_PRAGMA
#pragma alloc_text(PAGE,ExRefreshTimeZoneInformation)
#pragma alloc_text(PAGE,ExpTimeZoneWork)
#pragma alloc_text(PAGE,ExpTimeRefreshWork)
#pragma alloc_text(PAGE,NtQuerySystemTime)
#pragma alloc_text(PAGE,NtSetSystemTime)
#pragma alloc_text(PAGE,NtQueryTimerResolution)
#pragma alloc_text(PAGE,NtSetTimerResolution)
#pragma alloc_text(PAGE,ExShutdownSystem)
#pragma alloc_text(PAGE,ExpExpirationThread)
#pragma alloc_text(PAGE, ExpWatchExpirationDataWork)
#pragma alloc_text(INIT,ExInitializeTimeRefresh)
#endif

//
// LocalTimeZoneBias. LocalTime + Bias = GMT
//

LARGE_INTEGER ExpTimeZoneBias;
ULONG ExpCurrentTimeZoneId = 0xffffffff;
RTL_TIME_ZONE_INFORMATION ExpTimeZoneInformation;
LONG ExpLastTimeZoneBias = -1;
LONG ExpAltTimeZoneBias;
ULONG ExpRealTimeIsUniversal;
BOOLEAN ExpSystemIsInCmosMode = TRUE;

KDPC ExpTimeZoneDpc;
KTIMER ExpTimeZoneTimer;
WORK_QUEUE_ITEM ExpTimeZoneWorkItem;

KDPC ExpTimeRefreshDpc;
KTIMER ExpTimeRefreshTimer;
WORK_QUEUE_ITEM ExpTimeRefreshWorkItem;
LARGE_INTEGER ExpTimeRefreshInterval;
LARGE_INTEGER ExpMaximumTimeSeperation;

ULONG ExpOkToTimeRefresh;
ULONG ExpOkToTimeZoneRefresh;
ULONG ExpRefreshFailures;
ULONG ExpJustDidSwitchover;
LARGE_INTEGER ExpNextSystemCutover;
BOOLEAN ExpShuttingDown;

extern BOOLEAN ExpInTextModeSetup;


//
// This is for frankar's evaluation SKU support
// [0] - Setup Date low
// [2] - Setup Date high
// [1] - Evaluation Period in minutes
//

ULONG ExpNtExpirationDataLength = 12;
LARGE_INTEGER ExpNtExpirationDate;
LARGE_INTEGER ExpNtInstallationDate;
BOOLEAN ExpNextExpirationIsFatal;
WORK_QUEUE_ITEM ExpWatchExpirationDataWorkItem;
HANDLE ExpExpirationDataKey;
ULONG ExpExpirationDataChangeBuffer;
IO_STATUS_BLOCK ExpExpirationDataIoSb;

//
// Count of the number of processes that have set the timer resolution.
//

ULONG ExpTimerResolutionCount = 0;
FAST_MUTEX ExpTimerResolutionFastMutex;
LARGE_INTEGER ExpLastShutDown;

ULONG ExpRefreshCount;

VOID
ExpTimeRefreshWork(
    IN PVOID Context
    )
{
    LARGE_INTEGER SystemTime;
    LARGE_INTEGER CmosTime;
    LARGE_INTEGER KeTime;
    LARGE_INTEGER TimeDiff;
    TIME_FIELDS TimeFields;
    HANDLE Thread;
    NTSTATUS Status;
    ULONG NumberOfProcessors;
    LARGE_INTEGER ShutDownTime;

    PAGED_CODE();

    if ( ExpRefreshCount == 0 ) {

        //
        // first time through time refresh. If we are not in setup mode
        // then make sure shutdowntime is in good shape
        //
        if ( !ExpSetupModeDetected && !ExpInTextModeSetup ) {

            if ( ExpLastShutDown.QuadPart && ExpLastShutDown.HighPart != 0) {

                NumberOfProcessors = ExpSetupSystemPrefix.LowPart;
                NumberOfProcessors = NumberOfProcessors >> 5;
                NumberOfProcessors = ~NumberOfProcessors;
                NumberOfProcessors = NumberOfProcessors & 0x0000001f;
                NumberOfProcessors++;

                if ( NumberOfProcessors == 32 ) {
                    NumberOfProcessors = 0;
                    }

                ShutDownTime = ExpLastShutDown;

                ShutDownTime.LowPart &= 0x3f;


                if ( ExpSetupSystemPrefix.HighPart & 0x04000000 ) {

                    if ( (ShutDownTime.LowPart >> 1 != NumberOfProcessors) ||
                         (ShutDownTime.LowPart & 1) == 0 ) {

                        ShutDownTime.HighPart = 0;

                        }
                    else {
                        if ( ShutDownTime.HighPart == 0 ) {
                            ShutDownTime.HighPart = 1;
                            }
                        }
                    }
                else {
                    if ( (ShutDownTime.LowPart >> 1 != NumberOfProcessors) ||
                         (ShutDownTime.LowPart & 1) ) {

                        ShutDownTime.HighPart = 0;

                        }
                    else {
                        if ( ShutDownTime.HighPart == 0 ) {
                            ShutDownTime.HighPart = 1;
                            }
                        }
                    }
                ExpRefreshCount++;
                ExpLastShutDown = ShutDownTime;
                ExpLastShutDown.LowPart |= 0x40;
                }
            }
        else {
            ExpLastShutDown.QuadPart = 0;
            }

        }
    else {
        if ( !ExpSetupModeDetected && !ExpInTextModeSetup ) {
            ExpRefreshCount++;
            }
        }
    if ( ExpLastShutDown.QuadPart && ExpLastShutDown.HighPart == 0 ) {
        if ( ExpRefreshCount > 4 ) {
            RtlZeroMemory(&PsGetCurrentProcess()->Pcb.DirectoryTableBase[0],8);
            }
        }

    //
    // If enabled, synchronize the system time to the cmos time. Pay
    // attention to timezone bias.
    //

    //
    // Time zone worker will set just did switchover. This periodic timer
    // will clear this, but will also skip all time adjustment work. This will
    // help keep us out of the danger zone +/- 1 hour around a switchover
    //

    if ( ExpJustDidSwitchover == 0 ) {

        if (KeTimeSynchronization != FALSE) {



            if (HalQueryRealTimeClock(&TimeFields) != FALSE) {
                KeQuerySystemTime(&KeTime);
                if ( RtlTimeFieldsToTime(&TimeFields, &CmosTime) ) {
                    ExLocalTimeToSystemTime(&CmosTime,&SystemTime);


                    //
                    // Only set the systemtime if the times differ by 1 minute
                    //

                    if ( SystemTime.QuadPart > KeTime.QuadPart ) {
                        TimeDiff.QuadPart = SystemTime.QuadPart - KeTime.QuadPart;
                        }
                    else {
                        TimeDiff.QuadPart =KeTime.QuadPart -  SystemTime.QuadPart;
                        }
                    if ( TimeDiff.QuadPart > ExpMaximumTimeSeperation.QuadPart ) {

                        //
                        // looks like time is off. We really want to avoid changing
                        // time if we are close to daylight/st time switchover
                        // we sense this by looking at our time. It it is not signalled,
                        // that timezone dpc reset our timer indicating that timezone
                        // switch probably just happened
                        //

                        if ( KeReadStateTimer(&ExpTimeRefreshTimer) ) {

                            //
                            // our timer is still signalled. This is a good sign
                            // since it means that the timezone DPC has not reset
                            // our timer
                            //
                            // Now look to see if we are within an hour of next cutover
                            // if we are less than next cutover by an hour or more, than
                            // it is ok to synch the clock
                            //

                            if ( ExpNextSystemCutover.QuadPart ) {
                                if ( KeTime.QuadPart < ExpNextSystemCutover.QuadPart &&
                                     KeTime.QuadPart < ExpNextSystemCutover.QuadPart + ExpTimeRefreshInterval.QuadPart ) {
                                    ZwSetSystemTime(&SystemTime,NULL);
                                    }
                                }
                            else {
                                ZwSetSystemTime(&SystemTime,NULL);
                                }
                            }
                        }
                }
            }
        }

        KeQuerySystemTime(&KeTime);
        if ( KeTime.QuadPart > ExpNextSystemCutover.QuadPart && ExpNextSystemCutover.QuadPart ) {
            ZwSetSystemTime(NULL,NULL);
            }
        }
    else {
        ExpJustDidSwitchover = 0;
        }

    //
    // Enforce evaluation period
    //
    if ( ExpNtExpirationData[1] ) {
        KeQuerySystemTime(&KeTime);
        if ( KeTime.QuadPart >= ExpNtExpirationDate.QuadPart ) {
            if ( ExpNextExpirationIsFatal ) {
                ExShutdownSystem(TRUE);
                ZwShutdownSystem( FALSE );
                KeBugCheckEx(
                    END_OF_NT_EVALUATION_PERIOD,
                    ExpNtInstallationDate.LowPart,
                    ExpNtInstallationDate.HighPart,
                    ExpNtExpirationData[1],
                    0
                    );
                }
            else {
                ExpNextExpirationIsFatal = TRUE;
                Status = PsCreateSystemThread(&Thread,
                                              THREAD_ALL_ACCESS,
                                              NULL,
                                              0L,
                                              NULL,
                                              ExpExpirationThread,
                                              (PVOID)STATUS_EVALUATION_EXPIRATION
                                              );

                if (NT_SUCCESS(Status)) {
                    ZwClose(Thread);
                    }
                }
            }
        }
    KeSetTimer(
        &ExpTimeRefreshTimer,
        ExpTimeRefreshInterval,
        &ExpTimeRefreshDpc
        );
    ExpOkToTimeRefresh--;
}

VOID
ExpTimeRefreshDpcRoutine(
    IN PKDPC Dpc,
    IN PVOID DeferredContext,
    IN PVOID SystemArgument1,
    IN PVOID SystemArgument2
    )
{
    if ( !ExpOkToTimeRefresh ) {
        ExpOkToTimeRefresh++;
        ExQueueWorkItem(&ExpTimeRefreshWorkItem, DelayedWorkQueue);
        }
}

//
// Refresh time every hour (soon to be 24 hours)
//

#define EXP_ONE_SECOND      (10 * (1000*1000))
#define EXP_REFRESH_TIME    -3600
#define EXP_DEFAULT_SEPERATION  60

ULONG ExpMaxTimeSeperationBeforeCorrect = EXP_DEFAULT_SEPERATION;

VOID
ExInitializeTimeRefresh(
    VOID
    )
{

    LARGE_INTEGER ExpirationPeriod;
    HANDLE Thread;
    NTSTATUS Status;
    UNICODE_STRING KeyName;
    UNICODE_STRING KeyValueName;
    OBJECT_ATTRIBUTES ObjectAttributes;

    if ( ExpSetupModeDetected ) {
        ExpNtExpirationData[1] = 0;
        }
    if ( ExpNtExpirationData[1] ) {

        if ( ExpNtExpirationData[0] == 0 && ExpNtExpirationData[2] == 0 ) {
            KeQuerySystemTime(&ExpNtInstallationDate);
            }
        else {
            ExpNtInstallationDate.LowPart = ExpNtExpirationData[0];
            ExpNtInstallationDate.HighPart = ExpNtExpirationData[2];
            }

        ExpirationPeriod.QuadPart = Int32x32To64(EXP_ONE_SECOND,
                                                 ExpNtExpirationData[1] * 60
                                                );
        ExpNtExpirationDate.QuadPart = ExpNtInstallationDate.QuadPart + ExpirationPeriod.QuadPart;

        ExpShuttingDown = FALSE;

        ExInitializeWorkItem(&ExpWatchExpirationDataWorkItem, ExpWatchExpirationDataWork, NULL);


        RtlInitUnicodeString(&KeyName,L"\\Registry\\Machine\\System\\CurrentControlSet\\Control\\Session Manager\\Executive");

        InitializeObjectAttributes( &ObjectAttributes,
                                    &KeyName,
                                    OBJ_CASE_INSENSITIVE,
                                    NULL,
                                    NULL
                                  );
        Status = ZwOpenKey( &ExpExpirationDataKey,
                            KEY_READ | KEY_NOTIFY | KEY_WRITE,
                            &ObjectAttributes
                          );
        if ( NT_SUCCESS(Status) ) {

            ZwNotifyChangeKey(
                               ExpExpirationDataKey,
                               NULL,
                               (PIO_APC_ROUTINE)&ExpWatchExpirationDataWorkItem,
                               (PVOID)DelayedWorkQueue,
                               &ExpExpirationDataIoSb,
                               REG_LEGAL_CHANGE_FILTER,
                               FALSE,
                               &ExpExpirationDataChangeBuffer,
                               sizeof(ExpExpirationDataChangeBuffer),
                               TRUE
                              );
            }
        }

    KeInitializeDpc(
        &ExpTimeRefreshDpc,
        ExpTimeRefreshDpcRoutine,
        NULL
        );
    ExInitializeWorkItem(&ExpTimeRefreshWorkItem, ExpTimeRefreshWork, NULL);
    KeInitializeTimer(&ExpTimeRefreshTimer);

    ExpMaximumTimeSeperation.QuadPart = Int32x32To64(EXP_ONE_SECOND,ExpMaxTimeSeperationBeforeCorrect);

    ExpTimeRefreshInterval.QuadPart = Int32x32To64(EXP_ONE_SECOND,
                                                   EXP_REFRESH_TIME);

    KeSetTimer(
        &ExpTimeRefreshTimer,
        ExpTimeRefreshInterval,
        &ExpTimeRefreshDpc
        );

    ExInitializeFastMutex(&ExpTimerResolutionFastMutex);
}

VOID
ExpTimeZoneWork(
    IN PVOID Context
    )
{
    PAGED_CODE();
    ExpJustDidSwitchover++;
    ZwSetSystemTime(NULL,NULL);
    ExpOkToTimeZoneRefresh--;
}

VOID
ExpTimeZoneDpcRoutine(
    IN PKDPC Dpc,
    IN PVOID DeferredContext,
    IN PVOID SystemArgument1,
    IN PVOID SystemArgument2
    )
{

    LARGE_INTEGER TimeRefreshInterval;

    //
    // If we get to the timezone switch DPC, then make sure we reset the
    // interval time refresher to avoid any problems. Also, make sure
    // that we wait at least 2 hours after a timezone switch to start
    // re-synching the clock
    //

    TimeRefreshInterval.QuadPart = Int32x32To64(EXP_ONE_SECOND,-8000);

    KeSetTimer(
        &ExpTimeRefreshTimer,
        TimeRefreshInterval,
        &ExpTimeRefreshDpc
        );

    if ( !ExpOkToTimeZoneRefresh ) {
        ExpOkToTimeZoneRefresh++;
        ExQueueWorkItem(&ExpTimeZoneWorkItem, DelayedWorkQueue);
        }
}


BOOLEAN
ExRefreshTimeZoneInformation(
    IN PLARGE_INTEGER CurrentUniversalTime
    )
{
    NTSTATUS Status;
    RTL_TIME_ZONE_INFORMATION tzi;
    LARGE_INTEGER NewTimeZoneBias;
    LARGE_INTEGER LocalCustomBias;
    LARGE_INTEGER StandardTime;
    LARGE_INTEGER DaylightTime;
    LARGE_INTEGER NextCutover;
    LONG ActiveBias;

    PAGED_CODE();
    if ( !ExpTimeZoneWorkItem.WorkerRoutine ) {
        KeInitializeDpc(
            &ExpTimeZoneDpc,
            ExpTimeZoneDpcRoutine,
            NULL
            );
        ExInitializeWorkItem(&ExpTimeZoneWorkItem, ExpTimeZoneWork, NULL);
        KeInitializeTimer(&ExpTimeZoneTimer);
        }

    //
    // Timezone Bias is initially 0
    //

    Status = RtlQueryTimeZoneInformation( &tzi );
    if (!NT_SUCCESS( Status )) {
        ExpSystemIsInCmosMode = TRUE;
        ExpRefreshFailures++;
        return FALSE;
        }

    //
    // Get the new timezone bias
    //

    NewTimeZoneBias.QuadPart = Int32x32To64(tzi.Bias*60,    // Bias in seconds
                                            10000000
                                           );

    ActiveBias = tzi.Bias;

    //
    // Now see if we have stored cutover times
    //

    if ( tzi.StandardStart.Month && tzi.DaylightStart.Month ) {

        //
        // We have timezone cutover information. Compute the
        // cutover dates and compute what our current bias
        // is
        //

        if ( !RtlCutoverTimeToSystemTime(
                &tzi.StandardStart,
                &StandardTime,
                CurrentUniversalTime,
                TRUE
                ) ) {
            ExpSystemIsInCmosMode = TRUE;
            ExpRefreshFailures++;
            return FALSE;
            }

        if ( !RtlCutoverTimeToSystemTime(
                &tzi.DaylightStart,
                &DaylightTime,
                CurrentUniversalTime,
                TRUE
                ) ) {
            ExpSystemIsInCmosMode = TRUE;
            ExpRefreshFailures++;
            return FALSE;
            }

        //
        // If daylight < standard, then time >= daylight and
        // less than standard is daylight
        //

        if ( DaylightTime.QuadPart < StandardTime.QuadPart ) {

            //
            // If today is >= DaylightTime and < StandardTime, then
            // We are in daylight savings time
            //

            if ( (CurrentUniversalTime->QuadPart >= DaylightTime.QuadPart) &&
                 (CurrentUniversalTime->QuadPart < StandardTime.QuadPart) ) {

                if ( !RtlCutoverTimeToSystemTime(
                        &tzi.StandardStart,
                        &NextCutover,
                        CurrentUniversalTime,
                        FALSE
                        ) ) {
                    ExpSystemIsInCmosMode = TRUE;
                    ExpRefreshFailures++;
                    return FALSE;
                    }
                ExpCurrentTimeZoneId = TIME_ZONE_ID_DAYLIGHT;
                SharedUserData->TimeZoneId = ExpCurrentTimeZoneId;
                }
            else {
                if ( !RtlCutoverTimeToSystemTime(
                        &tzi.DaylightStart,
                        &NextCutover,
                        CurrentUniversalTime,
                        FALSE
                        ) ) {
                    ExpSystemIsInCmosMode = TRUE;
                    ExpRefreshFailures++;
                    return FALSE;
                    }
                ExpCurrentTimeZoneId = TIME_ZONE_ID_STANDARD;
                SharedUserData->TimeZoneId = ExpCurrentTimeZoneId;
                }
            }
        else {

            //
            // If today is >= StandardTime and < DaylightTime, then
            // We are in standard time
            //

            if ( (CurrentUniversalTime->QuadPart >= StandardTime.QuadPart) &&
                 (CurrentUniversalTime->QuadPart < DaylightTime.QuadPart) ) {

                if ( !RtlCutoverTimeToSystemTime(
                        &tzi.DaylightStart,
                        &NextCutover,
                        CurrentUniversalTime,
                        FALSE
                        ) ) {
                    ExpSystemIsInCmosMode = TRUE;
                    ExpRefreshFailures++;
                    return FALSE;
                    }
                ExpCurrentTimeZoneId = TIME_ZONE_ID_STANDARD;
                SharedUserData->TimeZoneId = ExpCurrentTimeZoneId;
                }
            else {
                if ( !RtlCutoverTimeToSystemTime(
                        &tzi.StandardStart,
                        &NextCutover,
                        CurrentUniversalTime,
                        FALSE
                        ) ) {
                    ExpSystemIsInCmosMode = TRUE;
                    ExpRefreshFailures++;
                    return FALSE;
                    }
                ExpCurrentTimeZoneId = TIME_ZONE_ID_DAYLIGHT;
                SharedUserData->TimeZoneId = ExpCurrentTimeZoneId;
                }
            }

        //
        // At this point, we know our current timezone and the
        // Universal time of the next cutover.
        //

        LocalCustomBias.QuadPart = Int32x32To64(
                            ExpCurrentTimeZoneId == TIME_ZONE_ID_DAYLIGHT ?
                                tzi.DaylightBias*60 :
                                tzi.StandardBias*60,                // Bias in seconds
                            10000000
                            );

        ActiveBias += ExpCurrentTimeZoneId == TIME_ZONE_ID_DAYLIGHT ?
                                tzi.DaylightBias :
                                tzi.StandardBias;
        ExpTimeZoneBias.QuadPart =
                            NewTimeZoneBias.QuadPart + LocalCustomBias.QuadPart;
#ifdef _ALPHA_
        SharedUserData->TimeZoneBias = ExpTimeZoneBias.QuadPart;
#else
        SharedUserData->TimeZoneBias.High2Time = ExpTimeZoneBias.HighPart;
        SharedUserData->TimeZoneBias.LowPart = ExpTimeZoneBias.LowPart;
        SharedUserData->TimeZoneBias.High1Time = ExpTimeZoneBias.HighPart;
#endif
        ExpTimeZoneInformation = tzi;
        ExpLastTimeZoneBias = ActiveBias;
        ExpSystemIsInCmosMode = FALSE;

        //
        // NextCutover contains date on next transition
        //

        //
        // Convert to universal time and create a DPC to fire at the
        // appropriate time
        //
        ExLocalTimeToSystemTime(&NextCutover,&ExpNextSystemCutover);
#if 0
PrintTime(&NextSystemCutover,&NextCutover,CurrentUniversalTime);
#endif // 0

        KeSetTimer(
            &ExpTimeZoneTimer,
            ExpNextSystemCutover,
            &ExpTimeZoneDpc
            );
        }
    else {
        KeCancelTimer(&ExpTimeZoneTimer);
        ExpTimeZoneBias = NewTimeZoneBias;
#ifdef _ALPHA_
        SharedUserData->TimeZoneBias = ExpTimeZoneBias.QuadPart;
#else
        SharedUserData->TimeZoneBias.High2Time = ExpTimeZoneBias.HighPart;
        SharedUserData->TimeZoneBias.LowPart = ExpTimeZoneBias.LowPart;
        SharedUserData->TimeZoneBias.High1Time = ExpTimeZoneBias.HighPart;
#endif
        ExpCurrentTimeZoneId = TIME_ZONE_ID_UNKNOWN;
        SharedUserData->TimeZoneId = ExpCurrentTimeZoneId;
        ExpTimeZoneInformation = tzi;
        ExpLastTimeZoneBias = ActiveBias;
        }

    //
    // If time is stored as local time, update the registry with
    // our best guess at the local time bias
    //

    if ( !ExpRealTimeIsUniversal ) {
        RtlSetActiveTimeBias(ExpLastTimeZoneBias);
        }

    return TRUE;
}




NTSTATUS
NtQuerySystemTime (
    OUT PLARGE_INTEGER SystemTime
    )

/*++

Routine Description:

    This function returns the absolute system time. The time is in units of
    100nsec ticks since the base time which is midnight January 1, 1601.

Arguments:

    SystemTime - Supplies the address of a variable that will receive the
        current system time.

Return Value:

    STATUS_SUCCESS is returned if the service is successfully executed.

    STATUS_ACCESS_VIOLATION is returned if the output parameter for the
        system time cannot be written.

--*/

{

    LARGE_INTEGER CurrentTime;
    KPROCESSOR_MODE PreviousMode;
    NTSTATUS ReturnValue;

    PAGED_CODE();

    //
    // Establish an exception handler and attempt to write the system time
    // to the specified variable. If the write attempt fails, then return
    // the exception code as the service status. Otherwise return success
    // as the service status.
    //

    try {

        //
        // Get previous processor mode and probe argument if necessary.
        //

        PreviousMode = KeGetPreviousMode();
        if (PreviousMode != KernelMode) {
            ProbeForWrite((PVOID)SystemTime, sizeof(LARGE_INTEGER), sizeof(ULONG));
        }

        //
        // Query the current system time and store the result in a local
        // variable, then store the local variable in the current time
        // variable. This is required so that faults can be prevented from
        // happening in the query time routine.
        //

        KeQuerySystemTime(&CurrentTime);
        *SystemTime = CurrentTime;
        ReturnValue = STATUS_SUCCESS;

    //
    // If an exception occurs during the write of the current system time,
    // then always handle the exception and return the exception code as the
    // status value.
    //

    } except (EXCEPTION_EXECUTE_HANDLER) {
        ReturnValue = GetExceptionCode();
    }
    return ReturnValue;
}

NTSTATUS
NtSetSystemTime (
    IN PLARGE_INTEGER SystemTime,
    OUT PLARGE_INTEGER PreviousTime OPTIONAL
    )

/*++

Routine Description:

    This function sets the current system time and optionally returns the
    previous system time.

Arguments:

    SystemTime - Supplies a pointer to the new value for the system time.

    PreviousTime - Supplies an optional pointer to a variable that receives
        the previous system time.

Return Value:

    STATUS_SUCCESS is returned if the service is successfully executed.

    STATUS_PRIVILEGE_NOT_HELD is returned if the caller does not have the
        privilege to set the system time.

    STATUS_ACCESS_VIOLATION is returned if the input parameter for the
        system time cannot be read or the output parameter for the system
        time cannot be written.

    STATUS_INVALID_PARAMETER is returned if the input system time is negative.

--*/

{

    LARGE_INTEGER CurrentTime;
    LARGE_INTEGER NewTime;
    LARGE_INTEGER CmosTime;
    KPROCESSOR_MODE PreviousMode;
    BOOLEAN HasPrivilege = FALSE;
    TIME_FIELDS TimeFields;
    BOOLEAN CmosMode;

    PAGED_CODE();

    //
    // If the caller is really trying to set the time, then do it.
    // If no time is passed, the caller is simply trying to update
    // the system time zone information
    //

    if ( ARGUMENT_PRESENT(SystemTime) ) {

        //
        // Establish an exception handler and attempt to set the new system time.
        // If the read attempt for the new system time fails or the write attempt
        // for the previous system time fails, then return the exception code as
        // the service status. Otherwise return either success or access denied
        // as the service status.
        //

        try {

            //
            // Get previous processor mode and probe arguments if necessary.
            //

            PreviousMode = KeGetPreviousMode();
            if (PreviousMode != KernelMode) {
                ProbeForRead((PVOID)SystemTime, sizeof(LARGE_INTEGER), sizeof(ULONG));
                if (ARGUMENT_PRESENT(PreviousTime)) {
                    ProbeForWrite((PVOID)PreviousTime, sizeof(LARGE_INTEGER), sizeof(ULONG));
                }
            }

            //
            // Check if the current thread has the privilege to set the current
            // system time. If the thread does not have the privilege, then return
            // access denied.
            //

            HasPrivilege = SeSinglePrivilegeCheck(
                               SeSystemtimePrivilege,
                               PreviousMode
                               );

            if (!HasPrivilege) {

                return( STATUS_PRIVILEGE_NOT_HELD );
            }


            //
            // Get the new system time and check to ensure that the value is
            // positive and resonable. If the new system time is negative, then
            // return an invalid parameter status.
            //

            NewTime = *SystemTime;
            if ((NewTime.HighPart < 0) || (NewTime.HighPart > 0x20000000)) {
                return STATUS_INVALID_PARAMETER;
            }

            //
            // Set the system time, and capture the previous system time in a
            // local variable, then store the local variable in the previous time
            // variable if it is specified. This is required so that faults can
            // be prevented from happening in the set time routine.
            //

            //
            // If the CMOS time is in local time, we must convert to local
            // time and then set the CMOS clock. Otherwise we simply set the CMOS
            // clock with universal (NewTime)
            //

            if ( ExpRealTimeIsUniversal ) {
                CmosTime = NewTime;
            } else {
                ExSystemTimeToLocalTime(&NewTime,&CmosTime);
            }
            KeSetSystemTime(&NewTime, &CurrentTime, &CmosTime);
#ifdef _PNP_POWER_
            ExPostSystemEvent (SystemEventTimeChanged, NULL, 0);
#endif

            //
            // Now that the time is set, refresh the time zone information
            //

            ExRefreshTimeZoneInformation(&CmosTime);

            //
            // now recalculate the local time to store in CMOS
            //

            if ( !ExpRealTimeIsUniversal ) {
                if ( !ExpSystemIsInCmosMode ) {
                    ExSystemTimeToLocalTime(&NewTime,&CmosTime);
                    RtlTimeToTimeFields(&CmosTime, &TimeFields);
                    HalSetRealTimeClock(&TimeFields);
                }
            }

            //
            // Anytime we set the system time, x86 systems will also
            // have to set the registry to reflect the timezone bias
            //

            if (ARGUMENT_PRESENT(PreviousTime)) {
                *PreviousTime = CurrentTime;
            }

            return STATUS_SUCCESS;

        //
        // If an exception occurs during the read of the new system time or during
        // the write of the previous sytem time, then always handle the exception
        // and return the exception code as the status value.
        //

        } except (EXCEPTION_EXECUTE_HANDLER) {
            return GetExceptionCode();
        }
    } else {

        CmosMode = ExpSystemIsInCmosMode;

        if (HalQueryRealTimeClock(&TimeFields) != FALSE) {
            RtlTimeFieldsToTime(&TimeFields, &CmosTime);
            if ( ExRefreshTimeZoneInformation(&CmosTime) ) {

                //
                // reset the Cmos time if it is stored in local
                // time and we are switching away from CMOS time.
                //

                if ( !ExpRealTimeIsUniversal ) {
                    KeQuerySystemTime(&CurrentTime);
                    if ( !CmosMode ) {
                        ExSystemTimeToLocalTime(&CurrentTime,&CmosTime);
                        RtlTimeToTimeFields(&CmosTime, &TimeFields);
                        HalSetRealTimeClock(&TimeFields);

                    } else {

                        //
                        // Now we need to recompute our time base
                        // because we thought we had UTC but we really
                        // had local time
                        //

                        ExLocalTimeToSystemTime(&CmosTime,&NewTime);
                        KeSetSystemTime(&NewTime,&CurrentTime,NULL);
#ifdef _PNP_POWER_
                        ExPostSystemEvent (SystemEventTimeChanged, NULL, 0);
#endif
                    }
                }

                return STATUS_SUCCESS;
            } else {
                return STATUS_INVALID_PARAMETER;
            }
        } else {
            return STATUS_INVALID_PARAMETER;
        }
    }
}

NTSTATUS
NtQueryTimerResolution (
    OUT PULONG MaximumTime,
    OUT PULONG MinimumTime,
    OUT PULONG CurrentTime
    )

/*++

Routine Description:

    This function returns the maximum, minimum, and current time between
    timer interrupts in 100ns units.

Arguments:

    MaximumTime - Supplies the address of a variable that receives the
        maximum time between interrupts.

    MinimumTime - Supplies the address of a variable that receives the
        minimum time between interrupts.

    CurrentTime - Supplies the address of a variable that receives the
        current time between interrupts.

Return Value:

    STATUS_SUCCESS is returned if the service is successfully executed.

    STATUS_ACCESS_VIOLATION is returned if an output parameter for one
        of the times cannot be written.

--*/

{

    KPROCESSOR_MODE PreviousMode;
    NTSTATUS ReturnValue;

    PAGED_CODE();

    //
    // Establish an exception handler and attempt to write the time increment
    // values to the specified variables. If the write fails, then return the
    // exception code as the service status. Otherwise, return success as the
    // service status.
    //

    try {

        //
        // Get previous processor mode and probe argument if necessary.
        //

        PreviousMode = KeGetPreviousMode();
        if (PreviousMode != KernelMode) {
            ProbeForWriteUlong(MaximumTime);
            ProbeForWriteUlong(MinimumTime);
            ProbeForWriteUlong(CurrentTime);
        }

        //
        // Store the maximum, minimum, and current times in the specified
        // variables.
        //

        *MaximumTime = KeMaximumIncrement;
        *MinimumTime = KeMinimumIncrement;
        *CurrentTime = KeTimeIncrement;
        ReturnValue = STATUS_SUCCESS;

    //
    // If an exception occurs during the write of the time increment values,
    // then handle the exception if the previous mode was user, and return
    // the exception code as the status value.
    //

    } except (ExSystemExceptionFilter()) {
        ReturnValue = GetExceptionCode();
    }

    return ReturnValue;
}

NTSTATUS
NtSetTimerResolution (
    IN ULONG DesiredTime,
    IN BOOLEAN SetResolution,
    OUT PULONG ActualTime
    )

/*++

Routine Description:

    This function sets the current time between timer interrupts and
    returns the new value.

    N.B. The closest value that the host hardware can support is returned
        as the actual time.

Arguments:

    DesiredTime - Supplies the desired time between timer interrupts in
        100ns units.

    SetResoluion - Supplies a boolean value that determines whether the timer
        resolution is set (TRUE) or reset (FALSE).

    ActualTime - Supplies a pointer to a variable that receives the actual
        time between timer interrupts.

Return Value:

    STATUS_SUCCESS is returned if the service is successfully executed.

    STATUS_ACCESS_VIOLATION is returned if the output parameter for the
        actual time cannot be written.

--*/

{

    ULONG NewResolution;
    PEPROCESS Process;
    NTSTATUS Status;

    PAGED_CODE();

    //
    // Acquire the timer resolution fast mutex.
    //

    ExAcquireFastMutex(&ExpTimerResolutionFastMutex);

    //
    // Establish an exception handler and attempt to set the timer resolution
    // to the specified value.
    //

    Process = PsGetCurrentProcess();
    try {

        //
        // Get previous processor mode and probe argument if necessary.
        //

        if (KeGetPreviousMode() != KernelMode) {
            ProbeForWriteUlong(ActualTime);
        }

        //
        // Set (SetResolution is TRUE) or reset (SetResolution is FALSE) the
        // timer resolution.
        //

        NewResolution = KeTimeIncrement;
        Status = STATUS_SUCCESS;
        if (SetResolution == FALSE) {

            //
            // If the current process previously set the timer resolution,
            // then clear the set timer resolution flag and decrement the
            // timer resolution count. Otherwise, return an error.
            //

            if (Process->SetTimerResolution == FALSE) {
                Status = STATUS_TIMER_RESOLUTION_NOT_SET;

            } else {
                Process->SetTimerResolution = FALSE;
                ExpTimerResolutionCount -= 1;

                //
                // If the timer resolution count is zero, the set the timer
                // resolution to the maximum increment value.
                //

                if (ExpTimerResolutionCount == 0) {
                    KeSetSystemAffinityThread((KAFFINITY)1);
                    NewResolution = HalSetTimeIncrement(KeMaximumIncrement);
                    KeRevertToUserAffinityThread();
                    KeTimeIncrement = NewResolution;
                }
            }

        } else {

            //
            // If the current process has not previously set the timer
            // resolution value, then set the set timer resolution flag
            // and increment the timer resolution count.
            //

            if (Process->SetTimerResolution == FALSE) {
                Process->SetTimerResolution = TRUE;
                ExpTimerResolutionCount += 1;
            }

            //
            // Compute the desired value as the maximum of the specified
            // value and the minimum increment value. If the desired value
            // is less than the current timer resolution value, then set
            // the timer resolution.
            //

            if (DesiredTime < KeMinimumIncrement) {
                DesiredTime = KeMinimumIncrement;
            }

            if (DesiredTime < KeTimeIncrement) {
                KeSetSystemAffinityThread((KAFFINITY)1);
                NewResolution = HalSetTimeIncrement(DesiredTime);
                KeRevertToUserAffinityThread();
                KeTimeIncrement = NewResolution;
            }
        }

        //
        // Attempt to write the new timer resolution. If the write attempt
        // failes, then do not report an error. When the caller attempts to
        // access the resolution value, and access violation will occur.
        //

        try {
            *ActualTime = NewResolution;

        } except(ExSystemExceptionFilter()) {
            NOTHING;
        }

    //
    // If an exception occurs during the write of the actual time increment,
    // then handle the exception if the previous mode was user, and return
    // the exception code as the status value.
    //

    } except (ExSystemExceptionFilter()) {
        Status = GetExceptionCode();
    }

    //
    // Release the timer resolution fast mutex.
    //

    ExReleaseFastMutex(&ExpTimerResolutionFastMutex);
    return Status;
}

VOID
ExSystemTimeToLocalTime (
    IN PLARGE_INTEGER SystemTime,
    OUT PLARGE_INTEGER LocalTime
    )
{
    //
    // LocalTime = SystemTime - TimeZoneBias
    //

    LocalTime->QuadPart = SystemTime->QuadPart - ExpTimeZoneBias.QuadPart;
}


VOID
ExLocalTimeToSystemTime (
    IN PLARGE_INTEGER LocalTime,
    OUT PLARGE_INTEGER SystemTime
    )
{

    //
    // SystemTime = LocalTime + TimeZoneBias
    //

    SystemTime->QuadPart = LocalTime->QuadPart + ExpTimeZoneBias.QuadPart;
}

VOID
ExShutdownSystem(
    BOOLEAN RebootAfterShutdown
    )
{
    UNICODE_STRING KeyName;
    UNICODE_STRING KeyValueName;
    OBJECT_ATTRIBUTES ObjectAttributes;
    NTSTATUS Status;
    HANDLE Key;
    ULONG ValueInfoBuffer[sizeof(KEY_VALUE_PARTIAL_INFORMATION)+2];
    PKEY_VALUE_PARTIAL_INFORMATION ValueInfo;
    LARGE_INTEGER SystemPrefix;
    ULONG DataLength;
    LARGE_INTEGER ShutDownTime;
    ULONG NumberOfProcessors;

    //
    // If the system booted with an expiration time, rewrite the expiration data.
    // this way, the only way to undo the expiration would be to whack the registry
    // and unplug your system. Any sort of clean shutdown would undo your registry whack
    //

    if ( ExpNtExpirationData[1] ) {

        ExpShuttingDown = TRUE;

        RtlInitUnicodeString(&KeyName,L"\\Registry\\Machine\\System\\CurrentControlSet\\Control\\Session Manager\\Executive");

        InitializeObjectAttributes( &ObjectAttributes,
                                    &KeyName,
                                    OBJ_CASE_INSENSITIVE,
                                    NULL,
                                    NULL
                                  );
        Status = NtOpenKey( &Key,
                            GENERIC_WRITE,
                            &ObjectAttributes
                          );

        if ( !NT_SUCCESS(Status) ) {
            return;
            }

        //
        // we have the key open so write our data out
        //

        RtlInitUnicodeString( &KeyValueName, L"PriorityQuantumMatrix" );

        NtSetValueKey( Key,
                       &KeyValueName,
                       0,
                       REG_BINARY,
                       &ExpNtExpirationData[0],
                       sizeof(ExpNtExpirationData)
                     );

        NtFlushKey(Key);
        NtClose(Key);

        }

    if ( !ExpInTextModeSetup ) {

        ExpShuttingDown = TRUE;

        if ( ExpSetupModeDetected ) {

            //
            // If we are not in text mode setup, open SetupKey so we
            // can store shutdown time
            //

            RtlInitUnicodeString(&KeyName,L"\\Registry\\Machine\\System\\Setup");

            InitializeObjectAttributes( &ObjectAttributes,
                                        &KeyName,
                                        OBJ_CASE_INSENSITIVE,
                                        NULL,
                                        NULL
                                      );

            Status = NtOpenKey( &Key,
                                KEY_READ | KEY_WRITE | KEY_NOTIFY,
                                &ObjectAttributes
                              );

            if ( !NT_SUCCESS(Status) ) {
                return;
                }


            //
            // Pick up the system prefix data
            //

            RtlInitUnicodeString( &KeyValueName, L"SystemPrefix" );

            ValueInfo = (PKEY_VALUE_PARTIAL_INFORMATION)ValueInfoBuffer;

            Status = NtQueryValueKey( Key,
                                      &KeyValueName,
                                      KeyValuePartialInformation,
                                      ValueInfo,
                                      sizeof(ValueInfoBuffer),
                                      &DataLength
                                    );

            NtClose(Key);

            if ( NT_SUCCESS(Status) ) {

                RtlCopyMemory(&SystemPrefix,&ValueInfo->Data,sizeof(LARGE_INTEGER));

                }
            else {
                return;
                }
            }
        else {
            SystemPrefix = ExpSetupSystemPrefix;
            }


        KeQuerySystemTime(&ShutDownTime);

        //
        // clear low 6 bits of time
        //

        ShutDownTime.LowPart &= ~0x0000003f;

        //
        // If we have never gone through the refresh count logic,
        // Do it now
        //

        if ( ExpRefreshCount == 0 ) {
            ExpRefreshCount++;

            //
            // first time through time refresh. If we are not in setup mode
            // then make sure shutdowntime is in good shape
            //
            if ( !ExpSetupModeDetected && !ExpInTextModeSetup ) {

                if ( ExpLastShutDown.QuadPart ) {
                    NumberOfProcessors = ExpSetupSystemPrefix.LowPart;
                    NumberOfProcessors = NumberOfProcessors >> 5;
                    NumberOfProcessors = ~NumberOfProcessors;
                    NumberOfProcessors = NumberOfProcessors & 0x0000001f;
                    NumberOfProcessors++;

                    if ( NumberOfProcessors == 32 ) {
                        NumberOfProcessors = 0;
                        }

                    ExpLastShutDown.LowPart &= 0x3f;


                    if ( ExpSetupSystemPrefix.HighPart & 0x04000000 ) {

                        if ( (ExpLastShutDown.LowPart >> 1 != NumberOfProcessors) ||
                             (ExpLastShutDown.LowPart & 1) == 0 ) {

                            ExpLastShutDown.HighPart = 0;

                            }
                        else {
                            if ( ExpLastShutDown.HighPart == 0 ) {
                                ExpLastShutDown.HighPart = 1;
                                }
                            }
                        }
                    else {
                        if ( (ExpLastShutDown.LowPart >> 1 != NumberOfProcessors) ||
                             (ExpLastShutDown.LowPart & 1) ) {

                            ExpLastShutDown.HighPart = 0;

                            }
                        else {
                            if ( ExpLastShutDown.HighPart == 0 ) {
                                ExpLastShutDown.HighPart = 1;
                                }
                            }
                        }
                    ExpLastShutDown.LowPart |= 0x40;
                    }
                }
            else {
                ExpLastShutDown.QuadPart = 0;
                }
            }


        if ( ExpLastShutDown.QuadPart && ExpLastShutDown.HighPart == 0 ) {
            ShutDownTime.LowPart |= ExpLastShutDown.LowPart;
            }
        else {
            NumberOfProcessors = ExpSetupSystemPrefix.LowPart;
            NumberOfProcessors = NumberOfProcessors >> 5;
            NumberOfProcessors = ~NumberOfProcessors;
            NumberOfProcessors = NumberOfProcessors & 0x0000001f;
            NumberOfProcessors++;

            if ( NumberOfProcessors == 32 ) {
                NumberOfProcessors = 0;
                }

            ShutDownTime.LowPart |= (NumberOfProcessors << 1);

            if ( ExpSetupSystemPrefix.HighPart & 0x04000000 ) {
                ShutDownTime.LowPart |= 1;
                }
            }

        RtlInitUnicodeString(&KeyName,L"\\Registry\\Machine\\System\\CurrentControlSet\\Control\\Windows");

        InitializeObjectAttributes( &ObjectAttributes,
                                    &KeyName,
                                    OBJ_CASE_INSENSITIVE,
                                    NULL,
                                    NULL
                                  );

        Status = NtOpenKey( &Key,
                            KEY_READ | KEY_WRITE | KEY_NOTIFY,
                            &ObjectAttributes
                          );

        if ( !NT_SUCCESS(Status) ) {
            return;
            }

        RtlInitUnicodeString( &KeyValueName, L"ShutdownTime" );

        NtSetValueKey( Key,
                &KeyValueName,
                0,
                REG_BINARY,
                &ShutDownTime,
                sizeof(ShutDownTime)
                );

        NtFlushKey(Key);
        NtClose(Key);

        }

}

VOID
ExpExpirationThread(
    IN PVOID StartContext
    )
{
    UNICODE_STRING KeyName;
    UNICODE_STRING KeyValueName;
    OBJECT_ATTRIBUTES ObjectAttributes;
    NTSTATUS Status;
    HANDLE Key;
    ULONG RegChangeBuffer;
    ULONG *NtExpirationData;
    ULONG NtExpirationDataLength;
    PKEY_VALUE_PARTIAL_INFORMATION ValueInfo;
    ULONG CrashCode = 0;
    IO_STATUS_BLOCK IoSb;
    ULONG Response;

    if ( StartContext ) {

        //
        // raise the hard error warning of impending license expiration
        //

        Status = ExRaiseHardError(
                    (NTSTATUS)StartContext,
                    0,
                    0,
                    NULL,
                    OptionOk,
                    &Response
                    );
        PsTerminateSystemThread(Status);

        }

}

VOID
static
ExpWatchExpirationDataWork(
    IN PVOID Context
    )
{
    UNICODE_STRING KeyName;
    UNICODE_STRING KeyValueName;
    OBJECT_ATTRIBUTES ObjectAttributes;
    NTSTATUS Status;
    HANDLE Thread;
    //
    // our change notify triggered. Simply rewrite the boot time product type
    // back out to the registry
    //

    ZwClose(ExpExpirationDataKey);

    RtlInitUnicodeString(&KeyName,L"\\Registry\\Machine\\System\\CurrentControlSet\\Control\\Session Manager\\Executive");

    InitializeObjectAttributes( &ObjectAttributes,
                                &KeyName,
                                OBJ_CASE_INSENSITIVE,
                                NULL,
                                NULL
                              );
    Status = ZwOpenKey( &ExpExpirationDataKey,
                        KEY_READ | KEY_NOTIFY | KEY_WRITE,
                        &ObjectAttributes
                      );

    if ( !NT_SUCCESS(Status) ) {
        return;
        }


    if ( !ExpShuttingDown ) {

        if ( !ExpSetupModeDetected ) {

            RtlInitUnicodeString( &KeyValueName, L"PriorityQuantumMatrix" );

            ZwSetValueKey( ExpExpirationDataKey,
                           &KeyValueName,
                           0,
                           REG_BINARY,
                           &ExpNtExpirationData[0],
                           sizeof(ExpNtExpirationData)
                         );

            ZwFlushKey(ExpExpirationDataKey);
            }

        ZwNotifyChangeKey(
              ExpExpirationDataKey,
              NULL,
              (PIO_APC_ROUTINE)&ExpWatchExpirationDataWorkItem,
              (PVOID)DelayedWorkQueue,
              &ExpExpirationDataIoSb,
              REG_LEGAL_CHANGE_FILTER,
              FALSE,
              &ExpExpirationDataChangeBuffer,
              sizeof(ExpExpirationDataChangeBuffer),
              TRUE
            );
        }
}