summaryrefslogtreecommitdiffstats
path: root/private/ntos/fw/alpha/jxhwsup.c
blob: a43a31400c90d2115aa0bd4253f37290518b3f41 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
/*++

Copyright (c) 1990  Microsoft Corporation
Copyright (c) 1993  Digital Equipment Corporation

Module Name:

    jxhwsup.c

Abstract:

    This module contains the IopXxx routines for the NT I/O system that
    are hardware dependent.  Were these routines not hardware dependent,
    they would normally reside in the internal.c module.

    Like the MIPS module, this is a hacked-up version of
    \nt\private\ntos\hal\alpha\jxhwsup.c.


Author:

    Jeff Havens (jhavens) 14-Feb-1990
    Miche Baker-Harvey (miche) 22-May-1992
    Jeff McLeman (mcleman) 27-May-1992

Environment:

    Kernel mode, local to I/O system

Revision History:

    3-August-1992	John DeRosa

    Made this from \nt\private\ntos\hal\alpha\jxhwsup.c and
    \nt\private\ntos\fw\mips\jxhwsup.c.

--*/

#include "fwp.h"
#include "ntalpha.h"
#include "jxfwhal.h"

#ifdef JENSEN
#include "jnsndma.h"
#else
#include "mrgndma.h"				// morgan
#endif

#include "eisa.h"
#include "jxisa.h"


//
// Firmware-specific definitions to aid compilation and linking.
//

//
// HalpBusType is used by the Hal so to run properly on EISA or ISA
// machines.  It is a static that is initialized in hal\alpha\xxinithl.c.

#ifdef EISA_PLATFORM

//
// This definition is correct for any EISA-based Alpha machines.
//

#define HalpBusType	MACHINE_TYPE_EISA

#else

#define HalpBusType	MACHINE_TYPE_ISA

#endif

//
// This is a BOOLEAN variable in the real Hal code.
//

#define LessThan16Mb	(MemorySize <= (16 * 1024 * 1024))

#define HAL_32MB 0x2000000

PVOID HalpEisaControlBase;

//
// The following is an array of adapter object structures for the Eisa DMA
// channels.
//

//
// Define the area for the Eisa objects
//

PADAPTER_OBJECT HalpEisaAdapter[8];

PADAPTER_OBJECT MasterAdapterObject;

//
// function prototypes
//

BOOLEAN
HalpGrowMapBuffers(
    PADAPTER_OBJECT AdapterObject,
    ULONG Amount
    );


PADAPTER_OBJECT
IopAllocateAdapter(
    IN ULONG MapRegistersPerChannel,
    IN PVOID AdapterBaseVa,
    IN PVOID ChannelNumber
    );

VOID
HalpCopyBufferMap(
    IN PMDL Mdl,
    IN PTRANSLATION_ENTRY translationEntry,
    IN PVOID CurrentVa,
    IN ULONG Length,
    IN BOOLEAN WriteToDevice
    );

QUASI_VIRTUAL_ADDRESS
HalCreateQva(
    IN PHYSICAL_ADDRESS PA,
    IN PVOID VA
    );

VOID
HalpCopyBufferMap(
    IN PMDL Mdl,
    IN PTRANSLATION_ENTRY translationEntry,
    IN PVOID CurrentVa,
    IN ULONG Length,
    IN BOOLEAN WriteToDevice
    )

/*++

Routine Description:

    This routine copies the specified data between the user buffer and the
    map register buffer. First, the user buffer is mapped, if need be then
   the data is copied. Finally, the user buffer will be unmapped, if need be.

Arguments:

    Mdl - Pointer to the Mdl that describes the pages of memory that are
          being read or written.

    translationEntry - The address of the base map register that has been
          allocated to the device driver for use in mapping the xfer.

    CurrentVa - Current Virtual Address in the buffer described by the Mdl
          that the transfer is being done to or from.

    Length - The length of the transfer. This determines the number of map
          registers that need to be written to map the transfer.

    WriteToDevice - A Boolean value that indicates whether this is a write
          to the device from memory of vise-versa.

Return Value:

    None

--*/

{

    PCCHAR bufferAddress;
    PCCHAR mapAddress;


    // 
    // Get the system address of the MDL.
    //

    //bufferAddress = MmGetSystemAddressForMdl(Mdl);

    // 
    // Calculate the actual start of the buffer based on the system VA and
    // the current VA.
    //

    //bufferAddress += (PCCHAR) CurrentVa - (PCCHAR) MmGetMdlVirtualAddress(Mdl);
    bufferAddress = (PCCHAR) CurrentVa;

    mapAddress = (PCCHAR) translationEntry->VirtualAddress + 
       BYTE_OFFSET(CurrentVa);

    // 
    // Copy the data between the user buffer and the map buffer.
    //

    if (WriteToDevice) {

        RtlMoveMemory( mapAddress, bufferAddress, Length);

      } else {

        RtlMoveMemory ( bufferAddress, mapAddress, Length);

      }
}

NTSTATUS
IoAllocateAdapterChannel(
    IN PADAPTER_OBJECT AdapterObject,
    IN PDEVICE_OBJECT DeviceObject,
    IN ULONG NumberOfMapRegisters,
    IN PDRIVER_CONTROL ExecutionRoutine,
    IN PVOID Context
    )

/*++

Routine Description:

    This routine allocates the adapter channel specified by the adapter object.
    This is accomplished by placing the device object of the driver that wants
    to allocate the adapter on the adapter's queue.  If the queue is already
    "busy", then the adapter has already been allocated, so the device object
    is simply placed onto the queue and waits until the adapter becomes free.

    Once the adapter becomes free (or if it already is), then the driver's
    execution routine is invoked.

    Also, a number of map registers may be allocated to the driver by specifying
    a non-zero value for NumberOfMapRegisters.  Then the map register must be
    allocated from the master adapter.  Once there are a sufficient number of
    map registers available, then the execution routine is called and the
    base address of the allocated map registers in the adapter is also passed
    to the driver's execution routine.

Arguments:

    AdapterObject - Pointer to the adapter control object to allocate to the
        driver.

    DeviceObject - Pointer to the driver's device object that represents the
        device allocating the adapter.

    NumberOfMapRegisters - The number of map registers that are to be allocated
        from the channel, if any.

    ExecutionRoutine - The address of the driver's execution routine that is
        invoked once the adapter channel (and possibly map registers) have been
        allocated.

    Context - An untyped longword context parameter passed to the driver's
        execution routine.


Return Value:

    Returns STATUS_SUCESS unless too many map registers are requested.

Notes:

    Note that this routine MUST be invoked at DISPATCH_LEVEL or above.

--*/

{
    PADAPTER_OBJECT MasterAdapter;
    IO_ALLOCATION_ACTION Action;

    //
    // Begin by obtaining a pointer to the master adapter associated with this
    // request.
    //

    if (AdapterObject->MasterAdapter != NULL) {
        MasterAdapter = AdapterObject->MasterAdapter;
    } else {
        MasterAdapter = AdapterObject;
    }

    //
    // Make sure the adapter is free.
    //

    if (AdapterObject->AdapterInUse) {
        DbgPrint("IoAllocateAdapterChannel: Called while adapter in use.\n");
    }

    //
    // Make sure there are enough map registers.
    //

    AdapterObject->NumberOfMapRegisters = NumberOfMapRegisters;
    
    if ((NumberOfMapRegisters != 0) && AdapterObject->NeedsMapRegisters) {
	
	if (NumberOfMapRegisters > AdapterObject->MapRegistersPerChannel) {
	    DbgPrint("IoAllocateAdapterChannel: Out of map registers.\r\n");
	    AdapterObject->NumberOfMapRegisters = 0;
	    IoFreeAdapterChannel(AdapterObject);
	    return(STATUS_INSUFFICIENT_RESOURCES);
	}
	
	AdapterObject->MapRegisterBase =
	  (PVOID)(PTRANSLATION_ENTRY)MasterAdapter->MapRegisterBase;
	
    } else {
	AdapterObject->MapRegisterBase = NULL;
	AdapterObject->NumberOfMapRegisters = 0;
    }
    
    Action = ExecutionRoutine( DeviceObject,
			       DeviceObject->CurrentIrp,
                               AdapterObject->MapRegisterBase,
                               Context );

    //
    // If the driver wishes to keep the map registers then
    // increment the current base and decrease the number of existing map
    // registers.
    //

    if (Action == DeallocateObjectKeepRegisters) {

        AdapterObject->MapRegistersPerChannel -= NumberOfMapRegisters;
        (PTRANSLATION_ENTRY) MasterAdapter->MapRegisterBase  +=
            NumberOfMapRegisters;

    } else if (Action == KeepObject) {

        AdapterObject->AdapterInUse = TRUE;

    } else if (Action == DeallocateObject) {

	IoFreeAdapterChannel( AdapterObject );

    }

    return(STATUS_SUCCESS);
}

PADAPTER_OBJECT
HalGetAdapter(
    IN PDEVICE_DESCRIPTION DeviceDescriptor,
    IN OUT PULONG NumberOfMapRegisters
    )

/*++

Routine Description:

    This function returns the appropriate adapter object for the device defined
    in the device description structure.  Two bus types are supported for the
    Jensen system: Isa, and Eisa.

Arguments:

    DeviceDescriptor - Supplies a description of the deivce.

    NumberOfMapRegisters - Returns the maximum number of map registers which
        may be allocated by the device driver.

Return Value:

    A pointer to the requested adapter object or NULL if an adapter could not
    be created.

--*/

{
    PADAPTER_OBJECT adapterObject;
    PVOID adapterBaseVa;
    ULONG channelNumber;
    ULONG controllerNumber;
    DMA_EXTENDED_MODE extendedMode;
    UCHAR adapterMode;
    ULONG numberOfMapRegisters;
    BOOLEAN useChannel;
    BOOLEAN eisaSystem;
    ULONG maximumLength;

    eisaSystem = HalpBusType == MACHINE_TYPE_EISA ? TRUE : FALSE;

    //
    // Determine if the channel number is important. Master cards on
    // Eisa systems do not use channel numbers.
    //

    if (DeviceDescriptor->InterfaceType != Isa &&
       DeviceDescriptor->Master) {
       
       useChannel = FALSE;
     } else {

       useChannel = TRUE;
     }

    //
    // Limit the max length to 2GB. This is done to make BYTES_TO_PAGES
    // work correctly.
    //

    maximumLength = DeviceDescriptor->MaximumLength & 0x7FFFFFFF;

    //
    // Channel 4 cannot be used since it reserved for chaining. Return
    // NULL if it has been requested.
    //

    if (DeviceDescriptor->DmaChannel == 4 && useChannel) {
     return(NULL);
    }
 
    //
    // Determine the number of map registers for this device
    //

    if (DeviceDescriptor->ScatterGather && (LessThan16Mb ||
        DeviceDescriptor->InterfaceType == Eisa)) {

       //
       // Since the device is a master and does scatter/gather
       // we don't need any map registers.
       //
       
       numberOfMapRegisters = 0;

    } else { 


      //
      // Return number of map registers requested based on the maximum
      // transfer length.
      //

      //numberOfMapRegisters = BYTES_TO_PAGES(
      //              maximumLength
      //              ) + 1;
      numberOfMapRegisters = DMA_TRANSLATION_LIMIT / sizeof(TRANSLATION_ENTRY);

      numberOfMapRegisters = numberOfMapRegisters > MAXIMUM_ISA_MAP_REGISTER ? MAXIMUM_ISA_MAP_REGISTER : numberOfMapRegisters;

      //
      // If this device is not a master then it only needs one register
      // and does scatter/gather.
      //

      if (DeviceDescriptor->ScatterGather && !DeviceDescriptor->Master) {

         numberOfMapRegisters = 1;

       }
    }

    //
    // Set the channel number.
    //

    channelNumber = DeviceDescriptor->DmaChannel & 0x03;

    //
    // set the adapter base address to the Base address register and
    // controller number.

    if (!(DeviceDescriptor->DmaChannel & 0x04)) {

       controllerNumber = 1;
       adapterBaseVa = &((PEISA_CONTROL) HalpEisaControlBase)->Dma1BasePort;
    } else {

       controllerNumber = 2;
       adapterBaseVa = &((PEISA_CONTROL) HalpEisaControlBase)->Dma2BasePort;

    }

    //
    // Determine if a new adapter object is necessary
    // 

    if (useChannel && HalpEisaAdapter[DeviceDescriptor->DmaChannel] != NULL) {

      adapterObject = HalpEisaAdapter[DeviceDescriptor->DmaChannel];

    } else {

      //
      // Allocate an adapter object
      //

      adapterObject = (PADAPTER_OBJECT) IopAllocateAdapter(
          numberOfMapRegisters,
          adapterBaseVa,
          NULL);

      if (adapterObject == NULL) {

        return(NULL);

       }

      if (useChannel) {

         HalpEisaAdapter[DeviceDescriptor->DmaChannel] = adapterObject;

      }

      //
      // Set the maximum number of map registers for this channel based
      // on the number requested andthe type of the device.
      //

      if (numberOfMapRegisters) {

         //
         // The specified number of registers are actually allowed to be
         // allocated.
         //

         adapterObject->MapRegistersPerChannel = numberOfMapRegisters;

         // 
         // Increase the commitment for the map registers
         //

         if (DeviceDescriptor->Master) {

           //
           // Double the commitment for Master I/O devices
           //
   
           MasterAdapterObject->CommittedMapRegisters +=
              numberOfMapRegisters * 2;

         } else {

           MasterAdapterObject->CommittedMapRegisters +=
              numberOfMapRegisters;

         }

         //
         // If the committed map registers is significantly greater than
         // the number allocated, then grow the map buffer.
         //

         if (MasterAdapterObject->CommittedMapRegisters >
             MasterAdapterObject->NumberOfMapRegisters &&
             MasterAdapterObject->CommittedMapRegisters -
             MasterAdapterObject->NumberOfMapRegisters >
             MAXIMUM_ISA_MAP_REGISTER ) {

             HalpGrowMapBuffers(
               MasterAdapterObject,
               INCREMENT_MAP_BUFFER_SIZE);

         }

         adapterObject->NeedsMapRegisters = TRUE;

     } else {

         //
         // No real registers were allocated. If this is a master, then
         // it is allowed as many registers as it wants.
         //
    
         adapterObject->NeedsMapRegisters = FALSE;

         if (DeviceDescriptor->Master) {

             adapterObject->MapRegistersPerChannel = BYTES_TO_PAGES(
                 maximumLength) + 1;
         } else {

             //
             // The device only gets one register. It must call
             // IoMapTransfer repeatedly to do a large transfer.
             //

             adapterObject->MapRegistersPerChannel = 1;
         }
     }
  }

  *NumberOfMapRegisters = adapterObject->MapRegistersPerChannel;

  // 
  // If the channel number is not used, we are done. If we do use one,
  // we have to set up the following.
  //

  if (!useChannel) {

      return(adapterObject);

  }

  //
  // Setup pointers to the various and sundry registers.
  //

  adapterObject->ChannelNumber = (UCHAR) channelNumber;

  if (controllerNumber == 1) {

     switch (channelNumber) {

     case 0:
          adapterObject->PagePort = (PUCHAR) &((PDMA_PAGE) 0)->Channel0;
          break;
     case 1:
          adapterObject->PagePort = (PUCHAR) &((PDMA_PAGE) 0)->Channel1;
          break;
     case 2:
          adapterObject->PagePort = (PUCHAR) &((PDMA_PAGE) 0)->Channel2;
          break;
     case 3:
          adapterObject->PagePort = (PUCHAR) &((PDMA_PAGE) 0)->Channel3;
          break;

     }

     // 
     // Set the adapter number
     //

     adapterObject->AdapterNumber = 1;

     //
     // Save the extended mode register
     //

     adapterBaseVa =
       &((PEISA_CONTROL) HalpEisaControlBase)->Dma1ExtendedModePort;

   } else {

     switch (channelNumber) {

     case 1:
          adapterObject->PagePort = (PUCHAR) &((PDMA_PAGE) 0)->Channel5;
          break;
     case 2:
          adapterObject->PagePort = (PUCHAR) &((PDMA_PAGE) 0)->Channel6;
          break;
     case 3:
          adapterObject->PagePort = (PUCHAR) &((PDMA_PAGE) 0)->Channel7;
          break;
     }

     // 
     // Set the adapter number
     //

     adapterObject->AdapterNumber = 2;

     //
     // Save the extended mode register
     //

     adapterBaseVa =
       &((PEISA_CONTROL) HalpEisaControlBase)->Dma2ExtendedModePort;

   }

   adapterObject->Width16Bits = FALSE;

   if (eisaSystem) {

      // 
      // Init the extended mode port
      //

      *((PUCHAR) &extendedMode) = 0;

      switch (DeviceDescriptor->DmaSpeed) {
      case Compatible:
         extendedMode.TimingMode =COMPATIBILITY_TIMING;
         break;

      case TypeA:
         extendedMode.TimingMode = TYPE_A_TIMING;
         break;

      case TypeB:
         extendedMode.TimingMode = TYPE_B_TIMING;
         break;

      case TypeC:
         extendedMode.TimingMode = BURST_TIMING;
         break;

      default:
         /* error return, don't bother to dereference the object. */
         //ObDereferenceObject(adapterObject);
         return(NULL);

      }

      switch (DeviceDescriptor->DmaWidth) {
      case Width8Bits:
         extendedMode.TransferSize = BY_BYTE_8_BITS;
         break;

      case Width16Bits:
         extendedMode.TransferSize = BY_BYTE_16_BITS;
         break;

      case Width32Bits:
         extendedMode.TransferSize = BY_BYTE_32_BITS;
         break;

      default:
         /* error return, don't bother to dereference the object. */
         //ObDereferenceObject(adapterObject);
         return(NULL);

      }

      WRITE_PORT_UCHAR( adapterBaseVa, *((PUCHAR) &extendedMode));
   } else if (!DeviceDescriptor->Master) {

      switch (DeviceDescriptor->DmaWidth) {
      case Width8Bits:
         
         //
         // The channel must use controller 1.
         //
         if (controllerNumber != 1) {
             /* error return, don't bother to dereference the object. */
             //ObDereferenceObject(adapterObject);
             return(NULL);
         }
         break;

      case Width16Bits:

         // 
         // The channel must use controller 2
         //

         if (controllerNumber != 2) {
            /* error return, don't bother to dereference the object. */
            //ObDereferenceObject(adapterObject);
            return(NULL);
         }
         adapterObject->Width16Bits = TRUE;
         break;

      default:
         /* error return, don't bother to dereference the object. */
         //ObDereferenceObject(adapterObject);
         return(NULL);

      }
   }

   //
   // Init the adapter mode register to the correct parameters and save
   // them in the adapter object.
   //

   adapterMode = 0;
   ((PDMA_EISA_MODE) &adapterMode)->Channel = adapterObject->ChannelNumber;

   if (DeviceDescriptor->Master) {

      adapterObject->MasterDevice = TRUE;

      ((PDMA_EISA_MODE) &adapterMode)->RequestMode = CASCADE_REQUEST_MODE;
      
      // 
      // Set the mode and grant the request.
      //

      if (adapterObject->AdapterNumber == 1) {

        //
        // This is for DMA controller 1
        //

        PDMA1_CONTROL dmaControl;
        dmaControl = adapterObject->AdapterBaseVa;
        WRITE_PORT_UCHAR(&dmaControl->Mode, adapterMode);
   
        //
        // unmask the DMA channel
        //

        WRITE_PORT_UCHAR(
          &dmaControl->SingleMask,
          (UCHAR) (DMA_CLEARMASK | adapterObject->ChannelNumber)
          );

      } else {

	//
	// This is form DMA controller 2
	//

        PDMA2_CONTROL dmaControl;
        dmaControl = adapterObject->AdapterBaseVa;
        WRITE_PORT_UCHAR(&dmaControl->Mode, adapterMode);
   
        //
        // unmask the DMA channel
        //

        WRITE_PORT_UCHAR(
          &dmaControl->SingleMask,
          (UCHAR) (DMA_CLEARMASK | adapterObject->ChannelNumber)
          );

      }

   } else if (DeviceDescriptor->DemandMode) {

      ((PDMA_EISA_MODE) &adapterMode)->RequestMode = DEMAND_REQUEST_MODE;
   } else {
      ((PDMA_EISA_MODE) &adapterMode)->RequestMode = SINGLE_REQUEST_MODE;
   }

     if (DeviceDescriptor->AutoInitialize) {

        ((PDMA_EISA_MODE) &adapterMode)->AutoInitialize = 1;
   }

     adapterObject->AdapterMode = adapterMode;
 

     return(adapterObject);
  }

BOOLEAN
HalpGrowMapBuffers(
    PADAPTER_OBJECT AdapterObject,
    ULONG Amount
    )
/*++

Routine Description:

    This function attempts to allocate additional map buffers for use by I/O
    devices.  The map register table is updated to indicate the additional
    buffers.

Arguments:

    AdapterObject - Supplies the adapter object for which the buffers are to be
        allocated.

    Amount - Indicates the size of the map buffers which should be allocated.

Return Value:

    TRUE is returned if the memory could be allocated.

    FALSE is returned if the memory could not be allocated.

--*/
{
    ULONG MapBufferPhysicalAddress;
    PVOID MapBufferVirtualAddress;
    PTRANSLATION_ENTRY TranslationEntry;
    LONG NumberOfPages;
    LONG i;
    BOOLEAN eisaSystem;
    PHYSICAL_ADDRESS physicalAddress;

    eisaSystem = HalpBusType == MACHINE_TYPE_EISA ? TRUE : FALSE;

    NumberOfPages = BYTES_TO_PAGES(Amount);

    //
    // Make sure there is room for the addition pages.  The maximum number of
    // slots needed is equal to NumberOfPages + Amount / 64K + 1.
    //

    i = BYTES_TO_PAGES(MAXIMUM_MAP_BUFFER_SIZE) - (NumberOfPages +
        (NumberOfPages * PAGE_SIZE) / 0x10000 + 1 +
        AdapterObject->NumberOfMapRegisters);

    if (i < 0) {

        //
        // Reduce the allocatation amount to so it will fit.
        //

	NumberOfPages += i;
    }

    if (NumberOfPages <= 0) {
        //
        // No more memory can be allocated.
        //

        return(FALSE);

    }

    //
    // Allocate the map buffers.
    //
    // Remember: for the firmware, virtual = physical.
    //

    MapBufferVirtualAddress = FwAllocatePool(NumberOfPages * PAGE_SIZE);

    if (MapBufferVirtualAddress == NULL) {
	return(FALSE);
    }

    //
    // Get the physical address of the map base.
    //

    MapBufferPhysicalAddress = (ULONG)MapBufferVirtualAddress;

    //
    // Initialize the map registers where memory has been allocated.
    //

    TranslationEntry = ((PTRANSLATION_ENTRY) AdapterObject->MapRegisterBase) +
        AdapterObject->NumberOfMapRegisters;

    for (i = 0; (ULONG) i < NumberOfPages; i++) {

        //
        // Make sure the previous entry is physically contiguous with the next
        // entry and that a 64K physical bountry is not crossed unless this
        // is an Eisa system.
        //

        if (TranslationEntry != AdapterObject->MapRegisterBase &&
            (((TranslationEntry - 1)->PhysicalAddress + PAGE_SIZE) !=
            MapBufferPhysicalAddress || (!eisaSystem &&
            ((TranslationEntry - 1)->PhysicalAddress & ~0x0ffff) !=
            (MapBufferPhysicalAddress & ~0x0ffff)))) {

            //
            // An entry needs to be skipped in the table.  This entry will
            // remain marked as allocated so that no allocation of map
            // registers will cross this bountry.
            //

            TranslationEntry++;
            AdapterObject->NumberOfMapRegisters++;
        }

        TranslationEntry->VirtualAddress = MapBufferVirtualAddress;
        TranslationEntry->PhysicalAddress = MapBufferPhysicalAddress;
        TranslationEntry++;
        (PCCHAR) MapBufferVirtualAddress += PAGE_SIZE;
        MapBufferPhysicalAddress += PAGE_SIZE;

    }

    //
    // Remember the number of pages that where allocated.
    //

    AdapterObject->NumberOfMapRegisters += NumberOfPages;

    return(TRUE);
}

PADAPTER_OBJECT
IopAllocateAdapter(
    IN ULONG MapRegistersPerChannel,
    IN PVOID AdapterBaseVa,
    IN PVOID MapRegisterBase
    )

/*++

Routine Description:

    This routine allocates and initializes an adapter object to represent an
    adapter or a DMA controller on the system.

Arguments:

    MapRegistersPerChannel - Specifies the number of map registers that each
        channel provides for I/O memory mapping.

    AdapterBaseVa - Base virtual address of the adapter itself.  If this
       is NULL then the MasterAdapterObject is allocated.

    MapRegisterBase - Unused.

Return Value:

    The function value is a pointer to the allocate adapter object.

--*/

{
    PADAPTER_OBJECT AdapterObject;
    ULONG Size;

    UNREFERENCED_PARAMETER(MapRegisterBase);

    //
    // Initialize the master adapter if necessary.
    //

    if (MasterAdapterObject == NULL && (AdapterBaseVa != (PVOID) -1) &&
        MapRegistersPerChannel) {

       MasterAdapterObject = IopAllocateAdapter(MapRegistersPerChannel,
						(PVOID) -1,
						NULL
						);

       //
       // If we could not allocate the master adapter then give up.
       //

       if (MasterAdapterObject == NULL) {
          return(NULL);
       }
    }

    //
    // Determine the size of the adapter.
    //

    Size = sizeof( ADAPTER_OBJECT );

    //
    // Now create the adapter object.
    //

    AdapterObject = FwAllocatePool(Size);

    //
    // If the adapter object was successfully created, then attempt to insert
    // it into the the object table.
    //

    if (AdapterObject) {

        //
        // Initialize the adapter object itself.
        //

        AdapterObject->Type = IO_TYPE_ADAPTER;
        AdapterObject->Size = Size;
        AdapterObject->MapRegistersPerChannel = 1;
        AdapterObject->AdapterBaseVa = AdapterBaseVa;
	
	if (MapRegistersPerChannel) {
	    
	    AdapterObject->MasterAdapter = MasterAdapterObject;
	    
	} else {
	    
	    AdapterObject->MasterAdapter = NULL;
	    
	}
	
	//
	// If this is the MasterAdapter then initialize the register bit map,
	// AdapterQueue and the spin lock.
        //
	      
	if ( AdapterBaseVa == (PVOID) -1 ) {
	      
	    AdapterObject->NumberOfMapRegisters = 0;
	    AdapterObject->CommittedMapRegisters = 0;
	    AdapterObject->PagePort = NULL;
	    AdapterObject->AdapterInUse = FALSE;
	    
	    //
	    // Allocate the memory map registers.  N.B.: FwAllocatePool
	    // returns zeroed memory.
	    //
		    
	    AdapterObject->MapRegisterBase = FwAllocatePool(0x2000);
	    
	    if ((AdapterObject->MapRegisterBase == NULL) ||
		(!HalpGrowMapBuffers(AdapterObject, 0x2000))) {
		
		//
		// No map registers could be allocated, so take error return.
	        //
		      
		return(NULL);
		
	    }
	}
	
    } else {

        //
        // An error was incurred for some reason.  Set the return value
        // to NULL.
        //

        return(NULL);
    }


    AdapterObject->MasterDevice = FALSE;

    return AdapterObject;
}

VOID
IoFreeMapRegisters(
   PADAPTER_OBJECT AdapterObject,
   PVOID MapRegisterBase,
   ULONG NumberOfMapRegisters
   )
/*++

Routine Description:

   This routine deallocates the map registers for the adapter.  If there are
   any queued adapter waiting for an attempt is made to allocate the next
   entry.

Arguments:

   AdapterObject - The adapter object to where the map register should be
        returned.

   MapRegisterBase - The map register base of the registers to be deallocated.

   NumberOfMapRegisters - The number of registers to be deallocated.

Return Value:

   None

--+*/

{
    PADAPTER_OBJECT MasterAdapter;
    PTRANSLATION_ENTRY translationEntry;

    //
    // Begin by obtaining a pointer to the master adapter associated with this
    // request.
    //

    if (AdapterObject->MasterAdapter != NULL) {
        MasterAdapter = AdapterObject->MasterAdapter;
    } else {
        MasterAdapter = AdapterObject;
    }

    //
    // Determine if this was the last allocation from the adapter. If is was
    // then free the map registers by restoring the map register base and the
    // channel count; otherwise the registers are lost.  This handles the
    // normal case.
    //

    translationEntry = MasterAdapter->MapRegisterBase;
    translationEntry -= NumberOfMapRegisters;

    if (translationEntry == MapRegisterBase) {

        //
        // The last allocated registers are being freed.
        //

        MasterAdapter->MapRegisterBase = (PVOID) translationEntry;
        AdapterObject->MapRegistersPerChannel += NumberOfMapRegisters;
    }
}

VOID
IoFreeAdapterChannel(
    IN PADAPTER_OBJECT AdapterObject
    )

/*++

Routine Description:

    This routine is invoked to deallocate the specified adapter object.
    Any map registers that were allocated are also automatically deallocated.
    No checks are made to ensure that the adapter is really allocated to
    a device object.  However, if it is not, then kernel will bugcheck.

    If another device is waiting in the queue to allocate the adapter object
    it will be pulled from the queue and its execution routine will be
    invoked.

Arguments:

    AdapterObject - Pointer to the adapter object to be deallocated.

Return Value:

    None.

--*/

{
    AdapterObject->AdapterInUse = FALSE;
}

PHYSICAL_ADDRESS
IoMapTransfer(
    IN PADAPTER_OBJECT AdapterObject,
    IN PMDL Mdl,
    IN PVOID MapRegisterBase,
    IN PVOID CurrentVa,
    IN OUT PULONG Length,
    IN BOOLEAN WriteToDevice
    )

/*++

Routine Description:

    This routine is invoked to set up the map registers in the DMA controller
    to allow a transfer to or from a device.

Arguments:

    AdapterObject - Pointer to the adapter object representing the DMA
        controller channel that has been allocated.

    Mdl - Pointer to the MDL that describes the pages of memory that are
        being read or written.

    MapRegisterBase - The address of the base map register that has been
        allocated to the device driver for use in mapping the transfer.

    CurrentVa - Current virtual address in the buffer described by the MDL
        that the transfer is being done to or from.

    Length - Supplies the length of the transfer.  This determines the
        number of map registers that need to be written to map the transfer.
        Returns the length of the transfer which was actually mapped.

    WriteToDevice - Boolean value that indicates whether this is a write
        to the device from memory (TRUE), or vice versa.

Return Value:

    Returns the logical address to be used by bus masters.

--*/

{
 BOOLEAN useBuffer;
 ULONG transferLength;
 ULONG logicalAddress;
 ULONG returnAddress;
 PULONG pageFrame;
 PUCHAR bytePointer;
 UCHAR adapterMode;
 UCHAR dataByte;
 PTRANSLATION_ENTRY translationEntry;
 BOOLEAN masterDevice;
 ULONG pageOffset;
 BOOLEAN eisaSystem;

    eisaSystem = HalpBusType == MACHINE_TYPE_EISA ? TRUE : FALSE;

    masterDevice = (AdapterObject == NULL) ||
                   (AdapterObject->MasterDevice ? TRUE : FALSE);

    translationEntry = MapRegisterBase;
    transferLength = *Length;
    pageOffset = BYTE_OFFSET(CurrentVa);
 

    //
    // Determine if the data transfer needs to use the map buffer
    //

    if ((translationEntry) && (!masterDevice) &&
        (ADDRESS_AND_SIZE_TO_SPAN_PAGES(CurrentVa, transferLength) > 1)) {

        logicalAddress = translationEntry->PhysicalAddress + pageOffset;
        useBuffer = TRUE;

      } else {

        // 
        // The transfer can only be done for one page
        //

        transferLength = PAGE_SIZE - pageOffset;
        pageFrame = (PULONG)(Mdl+1);
        pageFrame += ((ULONG) CurrentVa - (ULONG) Mdl->StartVa) / PAGE_SIZE;
        logicalAddress = ((*pageFrame << PAGE_SHIFT) + pageOffset);

        //
        // If the buffer is contiguous and does not cross a 64K boundary
        // then just extend the buffer. This restriction does not apply
        // to eisa systems.
        //

        while (transferLength < *Length) {
            if (*pageFrame +1 != *(pageFrame +1) || (!eisaSystem &&
                *pageFrame & ~0x0f != *(pageFrame + 1) & ~0x0f)) {
                   break;
		 }
                 
                 transferLength += PAGE_SIZE;
                 pageFrame ++;
	}

	transferLength = transferLength > *Length ? *Length : transferLength;
        useBuffer = FALSE;
    }

    //
    // If the logical address is greater than 16Mb, then mapping registers
    // (buffer xfer) nust be used. This is due to ISA devices only addressing
    // a max of 16Mb.
    //

    if (translationEntry && logicalAddress >= MAXIMUM_ISA_PHYSICAL_ADDRESS) {

        logicalAddress = (translationEntry + translationEntry->Index)->
           PhysicalAddress + pageOffset;
        useBuffer = TRUE;
     }

     // 
     // Return the length
     //
  
     *Length = transferLength;

     // 
     // Copy the data if necessary
     //

     if (useBuffer && WriteToDevice) {

         HalpCopyBufferMap(
            Mdl,
            translationEntry + translationEntry->Index,
            CurrentVa,
            *Length,
            WriteToDevice
            );

      }

      //
      // If there are map registers, update them to reflect the number
      // used.
      //

      if (translationEntry) {

          translationEntry->Index += ADDRESS_AND_SIZE_TO_SPAN_PAGES(
              CurrentVa,
              transferLength
              );
       }

       //
       // If no adapter was specified, then work is done.
       //
       //
       // We only support 32 bits, but the return is 64.  Just
       // zero extend
       //

       if (masterDevice) {
           return(RtlConvertUlongToLargeInteger(logicalAddress));
       }

       // 
       // Determine the mode based on the trasnfer direction.
       //

       adapterMode = AdapterObject->AdapterMode;
       ((PDMA_EISA_MODE) &adapterMode)->TransferType = 
         (UCHAR) (WriteToDevice ? WRITE_TRANSFER : READ_TRANSFER);
       
       returnAddress = logicalAddress;
       bytePointer = (PUCHAR) &logicalAddress;

       if (AdapterObject->Width16Bits) {

	   //
           // if this is 16 bit wide, adjust the length and address
           //
  
           transferLength >>= 1;

           // 
           // In 16 bit dma mode, the low 16 bits are shifted right one and
           // the page register value is unchanged. So save the page register
           // value and shift the logical address then restore the page value.
           //

           dataByte = bytePointer[2];
           logicalAddress >>= 1;
           bytePointer[2] = dataByte;
    
	 }

       // 
       // Determine the controller number based on the adapter number.
       //

       if (AdapterObject->AdapterNumber == 1) {

           //
           // A request for DMA controller 1
           //

           PDMA1_CONTROL dmaControl;

           dmaControl = AdapterObject->AdapterBaseVa;

           WRITE_PORT_UCHAR ( &dmaControl->ClearBytePointer, 0);

           WRITE_PORT_UCHAR ( &dmaControl->Mode, adapterMode);

           WRITE_PORT_UCHAR (
              &dmaControl->DmaAddressCount[AdapterObject->ChannelNumber]
              .DmaBaseAddress,
              bytePointer[0]
              );


           WRITE_PORT_UCHAR (
              &dmaControl->DmaAddressCount[AdapterObject->ChannelNumber]
              .DmaBaseAddress,
              bytePointer[1]
              );


           WRITE_PORT_UCHAR (
              ((PUCHAR) &((PEISA_CONTROL) HalpEisaControlBase)->DmaPageLowPort)
                + (ULONG) AdapterObject->PagePort,
                bytePointer[2]
                );

           if (eisaSystem) {

               //
               // Write the high page register with zero. This sets a mode
               // that allows the page register to be tied with the base count
               // into a single address register
               //

              WRITE_PORT_UCHAR(
                 ((PUCHAR) &((PEISA_CONTROL) HalpEisaControlBase)->DmaPageHighPort)
                   + (ULONG)AdapterObject->PagePort,
                   0
                   );
	     }

             //
             // Notify the DMA chip of the length
             //

             WRITE_PORT_UCHAR(
                &dmaControl->DmaAddressCount[AdapterObject->ChannelNumber]
                .DmaBaseCount,
                (UCHAR) ((transferLength -1) & 0xff)
                );

             WRITE_PORT_UCHAR(
                &dmaControl->DmaAddressCount[AdapterObject->ChannelNumber]
                .DmaBaseCount,
                (UCHAR) ((transferLength -1) >> 8)
                );

             //
             // Set the DMA chip to read or write and unmask it
             //

             WRITE_PORT_UCHAR(
                &dmaControl->SingleMask,
                (UCHAR) (DMA_CLEARMASK | AdapterObject->ChannelNumber)
                );


	 } else {

             //
             // This is a request for DMA controller 2
             //

             PDMA2_CONTROL dmaControl;
             dmaControl = AdapterObject->AdapterBaseVa;

           WRITE_PORT_UCHAR ( &dmaControl->ClearBytePointer, 0);

           WRITE_PORT_UCHAR ( &dmaControl->Mode, adapterMode);

           WRITE_PORT_UCHAR (
              &dmaControl->DmaAddressCount[AdapterObject->ChannelNumber]
              .DmaBaseAddress,
              bytePointer[0]
              );


           WRITE_PORT_UCHAR (
              &dmaControl->DmaAddressCount[AdapterObject->ChannelNumber]
              .DmaBaseAddress,
              bytePointer[1]
              );


           WRITE_PORT_UCHAR (
              ((PUCHAR) &((PEISA_CONTROL) HalpEisaControlBase)->DmaPageLowPort)
                + (ULONG) AdapterObject->PagePort,
                bytePointer[2]
                );

           if (eisaSystem) {

               //
               // Write the high page register with zero. This sets a mode
               // that allows the page register to be tied with the base count
               // into a single address register
               //

              WRITE_PORT_UCHAR(
                 ((PUCHAR) &((PEISA_CONTROL) HalpEisaControlBase)->DmaPageHighPort)
                   + (ULONG)AdapterObject->PagePort,
                   0
                   );
	     }

             //
             // Notify the DMA chip of the length
             //

             WRITE_PORT_UCHAR(
                &dmaControl->DmaAddressCount[AdapterObject->ChannelNumber]
                .DmaBaseCount,
                (UCHAR) ((transferLength -1) & 0xff)
                );

             WRITE_PORT_UCHAR(
                &dmaControl->DmaAddressCount[AdapterObject->ChannelNumber]
                .DmaBaseCount,
                (UCHAR) ((transferLength -1) >> 8)
                );

             //
             // Set the DMA chip to read or write and unmask it
             //

             WRITE_PORT_UCHAR(
                &dmaControl->SingleMask,
                (UCHAR) (DMA_CLEARMASK | AdapterObject->ChannelNumber)
                );


	   }

       return(RtlConvertUlongToLargeInteger(returnAddress));

}

BOOLEAN
IoFlushAdapterBuffers(
    IN PADAPTER_OBJECT AdapterObject,
    IN PMDL Mdl,
    IN PVOID MapRegisterBase,
    IN PVOID CurrentVa,
    IN ULONG Length,
    IN BOOLEAN WriteToDevice
    )

/*++

Routine Description:

    This routine flushes the DMA adapter object buffers.  For the Jensen system
    its clears the enable flag which aborts the dma.

Arguments:

    AdapterObject - Pointer to the adapter object representing the DMA
        controller channel.

    Mdl - A pointer to a Memory Descriptor List (MDL) that maps the locked-down
        buffer to/from which the I/O occured.

    MapRegisterBase - A pointer to the base of the map registers in the adapter
        or DMA controller.

    CurrentVa - The current virtual address in the buffer described the the Mdl
        where the I/O operation occurred.

    Length - Supplies the length of the transfer.

    WriteToDevice - Supplies a BOOLEAN value that indicates the direction of
        the data transfer was to the device.

Return Value:

    TRUE - If the transfer was successful.

    FALSE - If there was an error in the transfer.

--*/
{

   PTRANSLATION_ENTRY translationEntry;
   PULONG pageFrame;
   ULONG transferLength;
   ULONG partialLength;
   BOOLEAN masterDevice;

   masterDevice = AdapterObject == NULL || AdapterObject->MasterDevice ?
     TRUE : FALSE;

   translationEntry = MapRegisterBase;

   //
   // Clear the index of used buffers
   //

   if (translationEntry) {

       translationEntry->Index = 0;

     }

    //
    // Determine if the data needs to be copied to the orignal buffer.
    // This happens if the transfer is from a device, the MapRegisterBase
    // is not NULL and the xfer spans a page.
    //

    if (!WriteToDevice && translationEntry) {

       // 
       // if this is not a master device, then just xfer the buffer
       //

       if (ADDRESS_AND_SIZE_TO_SPAN_PAGES(CurrentVa, Length) > 1 &&
          !masterDevice) {

           HalpCopyBufferMap(
             Mdl,
             translationEntry,
             CurrentVa,
             Length,
             WriteToDevice
             );

	 } else {

           //
           // Cycle through the pages of the xfer to determine if there
           // are any which need to be copied back
           //

           transferLength = PAGE_SIZE - BYTE_OFFSET(CurrentVa);
           partialLength = transferLength;
           pageFrame = (PULONG) (Mdl + 1);
           pageFrame += ((ULONG) CurrentVa - (ULONG) Mdl->StartVa) / PAGE_SIZE;
  
           while (transferLength <= Length) {
  
             if (*pageFrame >= BYTES_TO_PAGES(MAXIMUM_ISA_PHYSICAL_ADDRESS)) {

               HalpCopyBufferMap(
                Mdl,
                translationEntry,
                CurrentVa,
                partialLength,
                WriteToDevice
                );
             }
           
             (PCCHAR) CurrentVa += partialLength;
             partialLength = PAGE_SIZE;

             //
             // Note that transferLength indicates the amount which will be
             // transfered after the next loop. thus it is updated with the
             // new partial length.
             // 

             transferLength += partialLength;
             pageFrame++;
             translationEntry++;
	   }
           
          // 
          // Process any remaining residue
          //

          partialLength = Length - transferLength + partialLength;
          if (partialLength && *pageFrame >= BYTES_TO_PAGES(MAXIMUM_ISA_PHYSICAL_ADDRESS)) {

              HalpCopyBufferMap(
                Mdl,
                translationEntry,
                CurrentVa,
                partialLength,
                WriteToDevice
                );

	    }

         }

     }

     //
     // If this is a master device, then there's no more work to do.

    if (masterDevice) {

       return(TRUE);

    }

    //
    // Mask the DMA request line so that DMA requests are inhibited
    //

    if (AdapterObject->AdapterNumber == 1) {

       //
       //  DMA controller 1
       //

       PDMA1_CONTROL dmaControl;

       dmaControl = AdapterObject->AdapterBaseVa;

       WRITE_PORT_UCHAR(
         &dmaControl->SingleMask,
         (UCHAR) (DMA_SETMASK | AdapterObject->ChannelNumber)
         );

     } else {

       //
       //  DMA controller 2
       //

       PDMA2_CONTROL dmaControl;

       dmaControl = AdapterObject->AdapterBaseVa;

       WRITE_PORT_UCHAR(
         &dmaControl->SingleMask,
         (UCHAR) (DMA_SETMASK | AdapterObject->ChannelNumber)
         );

      }
  
      return(TRUE);

}

PHYSICAL_ADDRESS
MmGetPhysicalAddress (
     IN PVOID BaseAddress
     )

/*++

Routine Description:

    This function returns the corresponding physical address for a
    valid virtual address.  I mask out the superpage mode bit, so that
    what is returned is a real physical address.

Arguments:

    BaseAddress - Supplies the virtual address for which to return the
                  physical address.

Return Value:

    Returns the corresponding physical address.

Environment:

    Kernel mode.  Any IRQL level.

--*/

{
  PHYSICAL_ADDRESS PhysicalAddress;

  PhysicalAddress.HighPart = 0;
  PhysicalAddress.LowPart = (ULONG)BaseAddress & 0x07fffffff;

  return(PhysicalAddress);
}

PVOID
MmAllocateNonCachedMemory (
    IN ULONG NumberOfBytes
    )

/*++

Routine Description:

        The MIPS description:

	This function allocates a range of noncached memory in
	the non-paged portion of the system address space.

	This routine is designed to be used by a driver's initialization
	routine to allocate a noncached block of virtual memory for
	various device specific buffers.

    The Alpha description:

    Since Alpha data caches are kept coherent with DMA, this just
    allocates a section of memory for the caller.  It may be in the
    cache.


Arguments:

    NumberOfBytes - Supplies the number of bytes to allocate.

Return Value:

    NULL - the specified request could not be satisfied.

    NON-NULL - Returns a pointer (virtual address in the nonpaged portion
               of the system) to the allocated physically contiguous
               memory.

Environment:

    Kernel mode, IRQL of APC_LEVEL or below.

--*/

{
    return (FwAllocatePool(NumberOfBytes));
}

PVOID
MmMapIoSpace (
     IN PHYSICAL_ADDRESS PhysicalAddress,
     IN ULONG NumberOfBytes,
     IN BOOLEAN CacheEnable
     )

/*++

Routine Description:

    This function returns the corresponding virtual address for a
    known physical I/O address.

Arguments:

    PhysicalAddress - Supplies the physical address.

    NumberOfBytes - Unused.

    CacheEnable - Unused.

Return Value:

    Returns the corresponding meta-virtual address.

Environment:

    Kernel mode.  Any IRQL level.

--*/

{

//
// For ISA machines, this routine should be null.
//

#ifdef EISA_PLATFORM

    PCCHAR VirtualAddress;

    //
    // switch on bits <33:32> of the physical address
    //

    switch (PhysicalAddress.HighPart & 3) {

    case 0:	/* memory space, this is an error. */
      return(NULL);
      break;

    case 1:	/* "Combo" space */
      VirtualAddress =
	(PVOID)
	  (COMBO_QVA |
	   0x800000 |
	   ((PhysicalAddress.LowPart >> COMBO_BIT_SHIFT) &
	    0x7fffff)
	   );
      break;

    case 2:	/* EISA memory space */
      VirtualAddress =
	(PVOID)
	  (EISA_QVA |
	   0x0000000 |
	   ((PhysicalAddress.LowPart >> EISA_BIT_SHIFT) &
	    0x1ffffff)
	   );
      break;

    case 3:	/* EISA I/O space */
      VirtualAddress =
	(PVOID)
	  (EISA_QVA |
	   0x8000000 |
	   ((PhysicalAddress.LowPart >> EISA_BIT_SHIFT) &
	    0x1ffffff)
	   );
      break;

    }

    return(VirtualAddress);

#endif  // EISA_PLATFORM

  }