summaryrefslogtreecommitdiffstats
path: root/private/ntos/fw/mips/duosync.c
blob: 09b51525883e050272b1b02a99ac12c48b53cc99 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
#ifdef DUO
/*++

Copyright (c) 1990  Microsoft Corporation

Module Name:

    duosync.c

Abstract:

    This module contains the routines that perform synchronization
    among processors.

Author:

    Lluis Abello (lluis) 06-Apr-1993

Environment:


Revision History:

--*/

#include "fwp.h"
#include "iodevice.h"
#include "led.h"
#include "selfmap.h"
#include "selftest.h"
#include "ioaccess.h"
#include "fwstring.h"

volatile PROCESSOR_B_TASK_VECTOR ProcessorBTask;
extern BOOLEAN ProcessorBEnabled;

VOID
InitializePCR(
    );



MEMORY_TEST_DATA BMemTest1 = {
                    0xA0100000,
                    0x100000,
                    0,
                    LED_B_MEMORY_TEST_1
                    };


MEMORY_TEST_DATA BMemTest2 = {
                    0x80200000,
                    0x100000,
                    0,
                    LED_B_MEMORY_TEST_2
                    };


MEMORY_TEST_DATA BMemTest3 = {
                    VIDEO_MEMORY_VIRTUAL_BASE+1280*1024,  // start adr = end of visible screen
                    0x200000-1280*1024,                   // size = rest of video memory.
                    0,
                    LED_VIDEOMEM
                    };

//
// The following table defines the selftest routines that will be executed
// by processor B.
//

PROCESSOR_B_TEST ProcessorBSelfTests[] = {
                    {ProcessorBMemoryTest,&BMemTest1},
                    {ProcessorBMemoryTest,&BMemTest2},
                    {ProcessorBVideoMemoryTest,&BMemTest3},
                    {NULL,0}
                    };

ULONG
ExecuteOnProcessorB(
    IN PPROCESSOR_TASK_ROUTINE Routine,
    IN PVOID Data
    )
/*++

Routine Description:

    This routine puts the supplied Routine and Data in processor B task vector
    and issues an IP interrupt to processor B which will then execute
    it and set the return value.

Arguments:

    None

Return Value:

    None

--*/

{

    PPROCESSOR_B_TASK_VECTOR TaskVector;

    if (!ProcessorBEnabled) {
        return 0;
    }

    //
    // Get a non pointer to the Task Vector
    //
    TaskVector = (PPROCESSOR_B_TASK_VECTOR)&ProcessorBTask;

    TaskVector->Routine = Routine;
    TaskVector->Data = Data;
    //
    // Issue an IP interrupt to notify processor B that a task has
    // been scheduled for execution.
    //
    WRITE_REGISTER_ULONG(&DMA_CONTROL->IpInterruptRequest.Long,2);

    //
    // If timeout or Return Value indicates error, stop here.
    //

    if (WaitForIpInterrupt(5000) == FALSE) {
        FwPrint("\r\nTimeout waiting for B to execute %lx\r\n",Routine);
    }

    return (TaskVector->ReturnValue);
}


VOID
ProcessorBMain(
    )
/*++

Routine Description:

    This is the main routine for processor B.
    It jumps here after initialization.
    The startup sequence is as follows:

    ProcessorA sets the address of this routine in the ProcessorBTask vector.
    ProcessorA Enables Processor B in the Global Configuration register.
    ProcessorA Calls WaitForIPInterrupt.

    When Processor B is enabled it runs at the PROM reset vector, it
    initializes itself and jumps to the routine pointed to by ProcessorTask
    which is this routine.

    Once here processor B Wakes up processor A by issuing an IP interrupt
    and Loops for ever waiting for IP interrupts and executing the Task
    pointed to by ProcessorBTask.

Arguments:

    None

Return Value:

    None

--*/

{
    PPROCESSOR_TASK_ROUTINE Task;
    PVOID TaskData;
    ULONG ReturnValue;

    //
    // Get a pointer to the Task Vector
    //

    PPROCESSOR_B_TASK_VECTOR TaskVector = (PPROCESSOR_B_TASK_VECTOR)&ProcessorBTask;

    //
    // Enable IP interrupts.
    // All interrupts are disabled in the psr.
    //
    WRITE_REGISTER_ULONG(&DMA_CONTROL->InterruptEnable.Long,ENABLE_IP_INTERRUPTS);

    for (;;) {

        //
        // Wake up processor A
        //
        WRITE_REGISTER_ULONG(&DMA_CONTROL->IpInterruptRequest.Long,1);

        WaitForIpInterrupt(0);

        //
        //  Execute Task
        //
        Task = TaskVector->Routine;
        TaskData = TaskVector->Data;
        ReturnValue = Task(TaskData);
        TaskVector->ReturnValue = ReturnValue;
    }
}


ULONG
ProcessorBMemoryTest(
    IN PMEMORY_TEST_DATA MemoryData
    )

/*++

Routine Description:

    This routine tests the portion of memory supplied by Data.

Arguments:

    MemoryData - Pointer to a data structure describing the range of
                 memory to be tested.

Return Value:

    None

--*/


{
    PutLedDisplay(MemoryData->LedDisplayValue);
    WriteMemoryAddressTest(MemoryData->StartAddress,MemoryData->Size,MemoryData->XorPattern);
    CheckMemoryAddressTest(MemoryData->StartAddress,MemoryData->Size,MemoryData->XorPattern,MemoryData->LedDisplayValue);
    return 1;
}


ULONG
ProcessorBVideoMemoryTest(
    IN PMEMORY_TEST_DATA MemoryData
    )

/*++

Routine Description:

    This routine tests the portion of video memory supplied by Data.

Arguments:

    MemoryData - Pointer to a data structure describing the range of
                 memory to be tested.

Return Value:

    None

--*/


{
    PutLedDisplay(MemoryData->LedDisplayValue);
    WriteVideoMemoryAddressTest(MemoryData->StartAddress,MemoryData->Size);
    CheckVideoMemoryAddressTest(MemoryData->StartAddress,MemoryData->Size);
    return 1;
}

ULONG
CoherencyTest(
    IN PVOID CoherentPage
    )
/*++

Routine Description:

     This routine performs a coherency test. This routine will be executed
     simultaneously by both processors.

     Processor A stores even bytes and Processor B stores the odd bytes.
     To make sure that cache blocks are passed back and forth, a semaphore
     locks it's access so that the cache line ping pongs from processor to
     processor.


Arguments:

     CoherentPage. Pointer aligned to a page boundary. Which is marked
                   either Exclusive or Shared in the TLB.

     The first ulong is used as the semaphore. The rest of the page
     is used as data.


Return Value:

     Number of errors found.

--*/


{
    volatile PULONG Semaphore = (PULONG)CoherentPage;
    PULONG CoherentData = Semaphore+64/sizeof(ULONG);
    ULONG  Counter;
    ULONG  Processor;
    ULONG  DataLong;
    ULONG  Errors = 0;
    if (READ_REGISTER_ULONG(&DMA_CONTROL->WhoAmI.Long)) {
        //
        // Processor B
        //
        Processor = 1;
        DataLong = 0xB0B00000;
    } else {
        Processor = 0;
        DataLong = 0xA0A00000;
    }

    for (Counter = 0; Counter < (0x1000-64)/sizeof(ULONG); Counter += 2) {

        //
        // Wait for counter.
        // No need for interlocks since each processor waits
        // for a different value.
        //

        while (*Semaphore != Counter+Processor) {
        }
        *(CoherentData+Processor) = DataLong | Counter;
        *Semaphore = Counter+Processor+1;
        CoherentData += 2;
    }

    //
    // Both processors check all the data.
    //
    CoherentData = Semaphore+64/sizeof(ULONG);;
    for (Counter = 0; Counter < (0x1000-64)/sizeof(ULONG); Counter +=2) {
        if (*CoherentData != (Counter | 0xA0A00000)) {
            Errors++;
        }
        CoherentData++;
        if (*CoherentData != (Counter | 0xB0B00000)) {
            Errors++;
        }
        CoherentData++;
    }
    return Errors;
}


BOOLEAN
ProcessorBSelftest(
    IN VOID
    )
/*++

Routine Description:

     This routine sets the different tasks to be executed by processor
     b and waits for them to complete. This routine is executed by the
     master processor.

Arguments:

     None.

Return Value:

     TRUE if passed FALSE otherwise


--*/
{
    BOOLEAN ReturnValue;
    BOOLEAN Timeout;

    //
    // Get a pointer to the Task Vector
    //
    PPROCESSOR_B_TASK_VECTOR TaskVector = (PPROCESSOR_B_TASK_VECTOR)&ProcessorBTask;
    PPROCESSOR_B_TEST ProcessorBTestList = ProcessorBSelfTests;

    //
    // Place each task of the SelftestTable in the TaskVector to be executed
    // by processor B.
    //
    while (ProcessorBTestList->Routine != NULL) {
        TaskVector->Routine = ProcessorBTestList->Routine;
        TaskVector->Data = ProcessorBTestList->Data;
        //
        // Issue an IP interrupt to notify processor B that a task has
        // been scheduled for execution.
        //
        WRITE_REGISTER_ULONG(&DMA_CONTROL->IpInterruptRequest.Long,2);

        //
        // If timeout or Return Value indicates error, stop here.
        //
        if (((Timeout = WaitForIpInterrupt(5000)) == FALSE) || (TaskVector->ReturnValue == FALSE)) {
            if (!Timeout) {
                FwPrint("\r\n Wait for Processor B timeout occurred");
            } else {
                FwPrint("\r\n Processor B failed a test");
            }
            FwPrint(" Failed test = %08lx\r\n", (ULONG)ProcessorBTestList->Routine);
            //return FALSE;
        }

        //
        // Next test.
        //
        ProcessorBTestList++;
    }

    //
    // Now perform two CoherencyTest
    //

    FwPrint("\r\n Coherency Test.");
    ReturnValue = TRUE;

    //
    // Zero the page. Set the Task and notify processor B.
    // And execute the test simultaneously.
    //
    RtlZeroMemory((PVOID)EXCLUSIVE_PAGE_VIRTUAL_BASE,0x1000);
    FwFlushAllCaches();
    TaskVector->Routine = CoherencyTest;
    TaskVector->Data = (PVOID)EXCLUSIVE_PAGE_VIRTUAL_BASE;
    WRITE_REGISTER_ULONG(&DMA_CONTROL->IpInterruptRequest.Long,2);

    if (CoherencyTest((PVOID)EXCLUSIVE_PAGE_VIRTUAL_BASE) != 0) {
        FwPrint(" Processor A Failed.");
        ReturnValue = FALSE;
    } else {
        FwPrint("...");
    }

    //
    // Get and display results from B
    //
    WaitForIpInterrupt(1000);
    if (TaskVector->ReturnValue != 0) {
        FwPrint(" Processor B Failed.");
        ReturnValue = FALSE;
    } else {
        FwPrint("...");
    }

    //
    // Do the same with a shared page
    //
    RtlZeroMemory((PVOID)SHARED_PAGE_VIRTUAL_BASE,0x1000);
    FwFlushAllCaches();
    TaskVector->Routine = CoherencyTest;
    TaskVector->Data = (PVOID)SHARED_PAGE_VIRTUAL_BASE;
    WRITE_REGISTER_ULONG(&DMA_CONTROL->IpInterruptRequest.Long,2);
    if (CoherencyTest((PVOID)SHARED_PAGE_VIRTUAL_BASE) != 0) {
        FwPrint(" Processor A Failed.");
        ReturnValue = FALSE;
    } else {
        FwPrint("...");
    }
    WaitForIpInterrupt(1000);
    if (TaskVector->ReturnValue != 0) {
        FwPrint(" Processor B Failed.");
        ReturnValue = FALSE;
    } else {
        FwPrint("...");
    }

    //
    //  Make processor B initialize its PCR
    //

    TaskVector->Routine = (PPROCESSOR_TASK_ROUTINE)InitializePCR;
    TaskVector->Data = 0;
    //
    // Issue an IP interrupt to notify processor B that a task has
    // been scheduled for execution.
    //

    WRITE_REGISTER_ULONG(&DMA_CONTROL->IpInterruptRequest.Long,2);

    //
    // If timeout or Return Value indicates error, stop here.
    //
    if (WaitForIpInterrupt(5000) == FALSE) {
//        FwPrint("\r\n Wait for Processor B timeout occurred in init PCR\r\n");
        return FALSE;
    }

    //
    //  Make processor B cleanup it's caches.
    //

    TaskVector->Routine = (PPROCESSOR_TASK_ROUTINE)HalSweepDcache;
    TaskVector->Data = 0;
    //
    // Issue an IP interrupt to notify processor B that a task has
    // been scheduled for execution.
    //

    WRITE_REGISTER_ULONG(&DMA_CONTROL->IpInterruptRequest.Long,2);

    //
    // If timeout or Return Value indicates error, stop here.
    //
    if (WaitForIpInterrupt(5000) == FALSE) {
//        FwPrint("\r\n Wait for Processor B timeout occurred Hal sweep d cachew\r\n");
        return FALSE;
    }
    FwPrint(FW_OK_MSG);
    return ReturnValue;
}


#endif  // DUO