summaryrefslogtreecommitdiffstats
path: root/private/ntos/fw/mips/j4reset.s
blob: 388c6d26b39ee23b9da54370e9c06943c7bf631f (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
#if defined(JAZZ) && defined(R4000) && !defined(DUO)
/*++

Copyright (c) 1991  Microsoft Corporation

Module Name:

    j4reset.s

Abstract:

    This module is the start of the prom code. This code will
    be the first run upon reset. It contains the self-test and
    initialization.

Author:

    Lluis Abello (lluis)  8-Jan-91

Environment:

    Executes in kernal mode.

Notes:

    ***** IMPORTANT *****

    This module must be linked such that it resides in the
    first page of the rom.

Revision History:

    Some code stolen from johncoop's "reset.s"

--*/
//
// include header file
//
#include <ksmips.h>
#include <jazzprom.h>
#include "dmaregs.h"
#include "selfmap.h"
#include "led.h"
#include "j4reset.h"

//TEMPTEMP

#define COPY_ENTRY 6

.text
.set noreorder
.set noat


        ALTERNATE_ENTRY(ResetVector)
/*++

Routine Description:

    This routine will provide the jump vectors located
    at the targets of the processor exception vectors.

    N.B. This routine must be located at the start of ROM which
    is the location of the reset vector.

Arguments:

    None.

Return Value:

    None.

--*/
//
// this instruction must be loaded at location 0 in the
// rom. This will appear as BFC00000 to the processor
//
        ori     zero,zero,0xffff        // this is a dummy instruction to
                                        // fix a bug where the first byte
                                        // fetched from the PROM is wrong
        b       ResetException
        nop

//
// This is the jump table for rom routines that other
// programs can call. They are placed here so that they
// will be unlikely to move.
//
//
// This becomes PROM_ENTRY(2) as defined in ntmips.h
//
        .align  4
        nop
//
// Entries 4 to 7 are used for the ROM Version and they
// must be zero in this file.
//

//
// This becomes PROM_ENTRYS(8,9...)
//
        .align 6
        nop                             // entry 8
        nop
        nop                             // entry 9
        nop
        b       TlbInit                 // entry 10
        nop
        nop                             // entry 11
        nop
        nop                             // entry 12
        nop
        nop                             // entry 13
        nop
        b       PutLedDisplay           // entry 14
        nop
        nop                             // entry 15
        nop
        nop                             // entry 16
        nop

RomRemoteSpeedValues:
//
// This table contains the default values for the remote speed regs.
//
        .byte REMSPEED1                 // ethernet
        .byte REMSPEED2                 // SCSI
        .byte REMSPEED3                 // Floppy
        .byte REMSPEED4                 // RTC
        .byte REMSPEED5                 // Kbd/Mouse
        .byte REMSPEED6                 // Serial port 1
        .byte REMSPEED7                 // Serial port 2
        .byte REMSPEED8                 // Parallel
        .byte REMSPEED9                 // NVRAM
        .byte REMSPEED10                // Int src reg
        .byte REMSPEED11                // PROM
        .byte REMSPEED12                // Sound
        .byte REMSPEED13                // New dev
        .byte REMSPEED14                // External Eisa latch
        .byte REMSPEED15                // LED

        .align  4

//
// New TLB Entries can be added to the following table
// The format of the table is:
//      entryhi; entrylo0; entrylo1; pagemask
//
#define TLB_HI      0
#define TLB_LO0     4
#define TLB_LO1     8
#define TLB_MASK   12

TlbEntryTable:
        .word   ((PROM_VIRTUAL_BASE >> 13) << ENTRYHI_VPN2)
        .word   ((PROM_PHYSICAL_BASE >> 12) << ENTRYLO_PFN) + (1 << ENTRYLO_G) + \
                (1 << ENTRYLO_V) + (2 << ENTRYLO_C)
#ifdef PROM256
        .word   (1 << ENTRYLO_G)            // set global bit even if page not used
        .word   (PAGEMASK_256KB << PAGEMASK_PAGEMASK)
#endif
#ifdef PROM128
        .word   (((PROM_PHYSICAL_BASE+0x10000) >> 12) << ENTRYLO_PFN) + (1 << ENTRYLO_G) + \
                (1 << ENTRYLO_V) + (2 << ENTRYLO_C)
        .word   (PAGEMASK_64KB << PAGEMASK_PAGEMASK)
#endif
#ifdef  PROM64
        .word   (1 << ENTRYLO_G)            // set global bit even if page not used
        .word   (PAGEMASK_64KB << PAGEMASK_PAGEMASK)
#endif
//
// I/O Device space non-cached, valid, dirty
//
        .word   ((DEVICE_VIRTUAL_BASE >> 13) << ENTRYHI_VPN2)
        .word   ((DEVICE_PHYSICAL_BASE >> 12) << ENTRYLO_PFN) + (1 << ENTRYLO_G) + \
                (1 << ENTRYLO_V) + (1 << ENTRYLO_D) + (2 << ENTRYLO_C)
        .word   (1 << ENTRYLO_G)            // set global bit even if page not used
        .word   (PAGEMASK_64KB << PAGEMASK_PAGEMASK)
//
// Interrupt source register space
// non-cached - read/write
//
        .word   ((INTERRUPT_VIRTUAL_BASE >> 13) << ENTRYHI_VPN2)
        .word   ((INTERRUPT_PHYSICAL_BASE >> 12) << ENTRYLO_PFN) + (1 << ENTRYLO_G) + \
                (1 << ENTRYLO_D) + (1 << ENTRYLO_V) + (2 << ENTRYLO_C)
        .word   (1 << ENTRYLO_G)            // set global bit even if page not used
        .word   (PAGEMASK_4KB << PAGEMASK_PAGEMASK)
//
// video control 2MB non-cached read/write.
//
        .word   ((VIDEO_CONTROL_VIRTUAL_BASE >> 13) << ENTRYHI_VPN2)
        .word   ((VIDEO_CONTROL_PHYSICAL_BASE >> 12) << ENTRYLO_PFN) + (1 << ENTRYLO_G) + \
                (1 << ENTRYLO_V) + (1 << ENTRYLO_D) + (2 << ENTRYLO_C)
        .word   (((VIDEO_CONTROL_PHYSICAL_BASE+0x100000) >> 12) << ENTRYLO_PFN) + (1 << ENTRYLO_G) + \
                (1 << ENTRYLO_V) + (1 << ENTRYLO_D) + (2 << ENTRYLO_C)
        .word   (PAGEMASK_1MB << PAGEMASK_PAGEMASK)
//
// extended video control 2MB non-cached read/write.
//
        .word   ((EXTENDED_VIDEO_CONTROL_VIRTUAL_BASE >> 13) << ENTRYHI_VPN2)
        .word   ((EXTENDED_VIDEO_CONTROL_PHYSICAL_BASE >> 12) << ENTRYLO_PFN) + (1 << ENTRYLO_G) + \
                (1 << ENTRYLO_V) + (1 << ENTRYLO_D) + (2 << ENTRYLO_C)
        .word   (((EXTENDED_VIDEO_CONTROL_PHYSICAL_BASE+0x100000) >> 12) << ENTRYLO_PFN) + (1 << ENTRYLO_G) + \
                (1 << ENTRYLO_V) + (1 << ENTRYLO_D) + (2 << ENTRYLO_C)
        .word   (PAGEMASK_1MB << PAGEMASK_PAGEMASK)
//
// video memory space 8Mb non-cached read/write
//
        .word   ((VIDEO_MEMORY_VIRTUAL_BASE >> 13) << ENTRYHI_VPN2)
        .word   ((VIDEO_MEMORY_PHYSICAL_BASE >> 12) << ENTRYLO_PFN) + (1 << ENTRYLO_G) + \
                (1 << ENTRYLO_V) + (1 << ENTRYLO_D) + (2 << ENTRYLO_C)
        .word   (((VIDEO_MEMORY_PHYSICAL_BASE+0x400000) >> 12) << ENTRYLO_PFN) + (1 << ENTRYLO_G) + \
                (1 << ENTRYLO_V) + (1 << ENTRYLO_D) + (2 << ENTRYLO_C)
        .word   (PAGEMASK_4MB << PAGEMASK_PAGEMASK)
//
// EISA I/O 16Mb non-cached read/write
// EISA MEM 16Mb non-cached read/write
//
        .word   ((EISA_IO_VIRTUAL_BASE >> 13) << ENTRYHI_VPN2)
        .word   ((EISA_IO_PHYSICAL_BASE >> 12) << ENTRYLO_PFN) + (1 << ENTRYLO_G) + \
                (1 << ENTRYLO_V) + (1 << ENTRYLO_D) + (2 << ENTRYLO_C)
        .word   ((0x100000) << ENTRYLO_PFN) + (1 << ENTRYLO_G) + \
                (1 << ENTRYLO_V) + (1 << ENTRYLO_D) + (2 << ENTRYLO_C)
        .word   (PAGEMASK_16MB << PAGEMASK_PAGEMASK)
//
// EISA I/O page 0 non-cached read/write
// EISA I/O page 1 non-cached read/write
//
        .word   ((EISA_EXTERNAL_IO_VIRTUAL_BASE >> 13) << ENTRYHI_VPN2)
        .word   ((0 >> 12) << ENTRYLO_PFN) + (1 << ENTRYLO_G) + \
                (1 << ENTRYLO_V) + (1 << ENTRYLO_D) + (2 << ENTRYLO_C)
        .word   (((EISA_IO_PHYSICAL_BASE + 1 * PAGE_SIZE) >> 12) << ENTRYLO_PFN) + (1 << ENTRYLO_G) + \
                (1 << ENTRYLO_V) + (1 << ENTRYLO_D) + (2 << ENTRYLO_C)
        .word   (PAGEMASK_4KB << PAGEMASK_PAGEMASK)
//
// EISA I/O page 2 non-cached read/write
// EISA I/O page 3 non-cached read/write
//
        .word   (((EISA_EXTERNAL_IO_VIRTUAL_BASE + 2 * PAGE_SIZE) >> 13) << ENTRYHI_VPN2)
        .word   (((EISA_IO_PHYSICAL_BASE + 2 * PAGE_SIZE) >> 12) << ENTRYLO_PFN) + (1 << ENTRYLO_G) + \
                (1 << ENTRYLO_V) + (1 << ENTRYLO_D) + (2 << ENTRYLO_C)
        .word   (((EISA_IO_PHYSICAL_BASE + 3 * PAGE_SIZE) >> 12) << ENTRYLO_PFN) + (1 << ENTRYLO_G) + \
                (1 << ENTRYLO_V) + (1 << ENTRYLO_D) + (2 << ENTRYLO_C)
        .word   (PAGEMASK_4KB << PAGEMASK_PAGEMASK)
//
// EISA I/O page 4 non-cached read/write
// EISA I/O page 5 non-cached read/write
//
        .word   (((EISA_EXTERNAL_IO_VIRTUAL_BASE + 4 * PAGE_SIZE) >> 13) << ENTRYHI_VPN2)
        .word   (((EISA_IO_PHYSICAL_BASE + 4 * PAGE_SIZE) >> 12) << ENTRYLO_PFN) + (1 << ENTRYLO_G) + \
                (1 << ENTRYLO_V) + (1 << ENTRYLO_D) + (2 << ENTRYLO_C)
        .word   (((EISA_IO_PHYSICAL_BASE + 5 * PAGE_SIZE) >> 12) << ENTRYLO_PFN) + (1 << ENTRYLO_G) + \
                (1 << ENTRYLO_V) + (1 << ENTRYLO_D) + (2 << ENTRYLO_C)
        .word   (PAGEMASK_4KB << PAGEMASK_PAGEMASK)
//
// EISA I/O page 6 non-cached read/write
// EISA I/O page 7 non-cached read/write
//
        .word   (((EISA_EXTERNAL_IO_VIRTUAL_BASE + 6 * PAGE_SIZE) >> 13) << ENTRYHI_VPN2)
        .word   (((EISA_IO_PHYSICAL_BASE + 6 * PAGE_SIZE) >> 12) << ENTRYLO_PFN) + (1 << ENTRYLO_G) + \
                (1 << ENTRYLO_V) + (1 << ENTRYLO_D) + (2 << ENTRYLO_C)
        .word   (((EISA_IO_PHYSICAL_BASE + 7 * PAGE_SIZE) >> 12) << ENTRYLO_PFN) + (1 << ENTRYLO_G) + \
                (1 << ENTRYLO_V) + (1 << ENTRYLO_D) + (2 << ENTRYLO_C)
        .word   (PAGEMASK_4KB << PAGEMASK_PAGEMASK)
//
// EISA I/O pages 8,9,a,b non-cached read/write
// EISA I/O pages c,d,e,f non-cached read/write
//
        .word   (((EISA_EXTERNAL_IO_VIRTUAL_BASE + 8 * PAGE_SIZE) >> 13) << ENTRYHI_VPN2)
        .word   (((EISA_IO_PHYSICAL_BASE + 8 * PAGE_SIZE) >> 12) << ENTRYLO_PFN) + (1 << ENTRYLO_G) + \
                (1 << ENTRYLO_V) + (1 << ENTRYLO_D) + (2 << ENTRYLO_C)
        .word   (((EISA_IO_PHYSICAL_BASE + 12 * PAGE_SIZE) >> 12) << ENTRYLO_PFN) + (1 << ENTRYLO_G) + \
                (1 << ENTRYLO_V) + (1 << ENTRYLO_D) + (2 << ENTRYLO_C)
        .word   (PAGEMASK_16KB << PAGEMASK_PAGEMASK)
//
// Map PCR for kernel debugger.
//
        .word   ((PCR_VIRTUAL_BASE >> 13) << ENTRYHI_VPN2)
        .word   (1 << ENTRYLO_G)        // set global bit even if page not used
        .word   ((PCR_PHYSICAL_BASE >> 12) << ENTRYLO_PFN) + (1 << ENTRYLO_G) + \
                  (1 << ENTRYLO_V) + (1 << ENTRYLO_D) + (2 << ENTRYLO_C)
        .word   (PAGEMASK_4KB << PAGEMASK_PAGEMASK)
//
// Map 64KB of memory for the video prom code&data cached.
//
        .word   ((VIDEO_PROM_CODE_VIRTUAL_BASE >> 13) << ENTRYHI_VPN2)
        .word   ((VIDEO_PROM_CODE_PHYSICAL_BASE >> 12) << ENTRYLO_PFN) + (1 << ENTRYLO_G) + \
                  (1 << ENTRYLO_V) + (1 << ENTRYLO_D) + (3 << ENTRYLO_C)
        .word   (1 << ENTRYLO_G)        // set global bit even if page not used
        .word   (PAGEMASK_64KB << PAGEMASK_PAGEMASK)
TlbEntryEnd:
        .byte   0


//
// these next vectors should be loaded at BFC00200,BFC00300,
// and BFC00380. They are for the TLBmiss, cache_error, and
// common exceptions respectively.
//
        .align 9
        LEAF_ENTRY(UserTlbMiss200)
UserTlbMiss:
        li      k0,KSEG1_BASE
        lw      k0,0x1018(k0)           // Load address of UTBMiss handler
        nop
        jal     k1,k0                   // jump to handler saving return
        nop                             // address in k1
        mtc0    k0,epc                  // Handler returns return address in K0
        nop                             // 2 cycle Hazard
        nop
        eret                            // restore from exception
        .end    UserTlbMiss200


        LEAF_ENTRY(TlbInit)
/*++

Routine Description:

    This routine will initialize the TLB for virtual addressing.
    It sets the TLB according to a table of TLB entries.
    Mapping:
        I/O device        E0000000 - E00FFFFF
        Intr src reg      E0100000 - E0100FFF
        video cntr        E0200000 - E0203FFF
        video memory      40000000 - 40200000
        prom space        E1000000 - E100FFFF
        eisa i/o space    E2000000 - E2FFFFFF
        eisa mem space    E3000000 - E3FFFFFF
        reserved          E4000000 -

    All other unused TLB entries will be zeroed and therefore invalidated.

    N.B. This routine must be loaded in the first page of the rom and must
    be called using BFC00XXXX addresses.

Arguments:

    None.

Return Value:

    None.

Revision History:

--*/
//
// zero the whole TLB
//
        mtc0    zero,entrylo0           // tag data to store
        mtc0    zero,entrylo1
        li      t0,KSEG0_BASE           // set entry hi
        mtc0    t0,entryhi
        mtc0    zero,pagemask
        move    s0,zero                 // tlb entry index
        li      t0, 48                  // get last index (TB_SIZE)
        mtc0    s0,index                // entry pointer
tlbzeroloop:
        addiu   s0,s0,1<<INDEX_INDEX    // increment counter
        tlbwi                           // store it
        bne     s0,t0,tlbzeroloop       // loop if less than max entries
        mtc0    s0,index                // entry pointer

//
// Get address and boundary of Table
//
        la      t1, TlbEntryTable - LINK_ADDRESS + RESET_VECTOR
        la      t2, TlbEntryEnd - LINK_ADDRESS + RESET_VECTOR
        li      s0, COPY_ENTRY+1        // tlb entry index
10:
        lw      t3, TLB_HI(t1)          // get entryhi
        lw      t4, TLB_LO0(t1)         // get entrylo0
        lw      t5, TLB_LO1(t1)         // get entrylo1
        lw      t6, TLB_MASK(t1)        // get pagemask
        mtc0    t3,entryhi              // write entryhi
        mtc0    t4,entrylo0             // write entrylo0
        mtc0    t5,entrylo1             // write entrylo1
        mtc0    t6,pagemask             // write pagemask
        mtc0    s0,index                // write index
        addiu   s0,s0,1                 // compute index for next tlb entry
        tlbwi                           // write tlb entry
        addiu   t1,t1,16                // set pointer to next entry
        bne     t1,t2,10b               // if not last go for next

        li      t0,TRANSFER_VECTOR      // get address of transfer vector
        sw      s0,4(t0)                // set next free TB entry index
        j       ra
        nop
        .end    TlbInit

ParityError:
//
// Copy the firmware from PROM to memory.
//
//
// Copy the firmware.
//
	la	s0,Decompress-LINK_ADDRESS+KSEG1_BASE
					// address of decompression routine in cached space
	la	a0,end			// end of this file is start of selftest
        li      a1,RAM_TEST_DESTINATION_ADDRESS
                                        // destination is uncached link address.
        jal     s0                      // jump to decompress
        nop
//
//      Initialize the stack to the low memory and Call Rom tests.
//
        li      t0,RAM_TEST_DESTINATION_ADDRESS // address of copied code
        li      sp,RAM_TEST_STACK_ADDRESS | KSEG1_BASE // init stack non cached
        move    a1,s5                   // Pass cacheerr register as 2nd arg
        jal     t0                      // jump to self-test in memory
        li      a0,3                    // pass cause of exception as argument.

//
// This becomes the entry point of a Cache Error Exception.
// It should be located at address BFC00300
//
        .align 8
/*++
ParityHandler();
Routine Description:

        This routine is called as a result of a Cache Error exception.
        Changes KSEG0 coherency to non cached in the config register.
        Reinitializes the TLB.
        Copies the firmware to memory and jumps to it.
        A message is printed.

Arguments:

        This routine doesn't preserve state.

Return Value:

        None.

--*/
        LEAF_ENTRY(ParityHandler300)
        //
        // Should save state.
        //
	li	k0,(1<<PSR_BEV) | (1 << PSR_CU1) | (1<<PSR_ERL)
        mtc0    k0,psr                  // Clear interrupt bit while ERL still set
        nop
        li      k0,(1<<PSR_BEV) | (1 << PSR_CU1)
        nop
        mtc0    k0,psr                  // Clear ERL bit
        nop
	bal	TlbInit 		// reinitialize the tlb
        mfc0    s5,cacheerr             // Load cache error register
        bal     PutLedDisplay
        ori     a0,zero,LED_PARITY      //
        mfc0    k0,config               // get config register
        li      k1,~(7 << CONFIG_K0)    // mask to clear Kseg0 coherency bits
        and     k0,k0,k1                // clear bits
        ori     k0,(2 << CONFIG_K0)     // make kseg0 non cached
        mtc0    k0,config               //
//
// Copy the copy routines to memory
//
        la      a0,MemoryRoutines       // source
        la      a1,MemoryRoutines-LINK_ADDRESS+KSEG1_BASE // destination location
        la      t2,EndMemoryRoutines    // end
        bal     DataCopy                // copy code to memory
        subu    a2,t2,a0                // length of code
        b       ParityError
        nop
        .end    ParityHandler300
//
// This becomes the entry point of a General Exception.
// It should be located at address BFC00380
//
        .align 7
        LEAF_ENTRY(GeneralException380)
        li      k0,KSEG1_BASE
        lw      k0,0x1014(k0)           // Load address of GE handler
        nop
        jal     k1,k0                   // jump to handler saving return
        nop                             // address in k1
        mtc0    k0,epc                  // Handler returns return address in K0
        nop                             // 2 cycle Hazard
        nop
        eret                            // restore from exception
        nop
        .end    GeneralException380

        ALTERNATE_ENTRY(ResetException)
        ALTERNATE_ENTRY(_start)
/*++

Routine Description:

    This is the handler for the reset exception. It first checks the cause
    of the exception. If it is an NMI, then control is passed to the
    exception dispatch routine. Otherwise the machine is initialized.

    The basic  are:
    1) Map the I/O devices.
    2) Test the processor.
    3) Test the MCTADR
    4) Map ROM. Perform a ROM checksum.
    5) Test a portion of Memory
    6) Test TLB
    7) Copy routines to memory
    8) Initialize caches
    9) Initialize stack for C language calls and other stack operations
    10) Copy selftest and firmware code to memory and jump to it.

    N.B. This routine must be loaded into the first page of rom.

Arguments:

    None.

Return Value:

    None.

--*/
//
// Initialize the TLB.
//

        bal     TlbInit                 // reinitialize the tlb
        nop
//
// Check cause of exception, if SR bit in PSR is set treat it as a soft reset
// or an NMI, otherwise it's a cold reset.
//
        mfc0    k0,psr                  // get cause register
        li      k1,(1<<PSR_SR)          // bit indicates soft reset.
        mtc0    zero,watchlo            // initialize the watch
        mtc0    zero,watchhi            // address registers
        and     k1,k1,k0                // mask PSR with SR bit
        li      k0,(1<<PSR_BEV) | (1 << PSR_CU1) | (1<<PSR_ERL)
        mtc0    k0,psr                  // Clear interrupt bit while ERL still set
        nop
        beq     k1,zero,ResetCPU        // go if cold reset
        li      k0,(1<<PSR_BEV) | (1 << PSR_CU1)
        nop
        mtc0    k0,psr                  // Clear ERL bit
        li      k0,DMA_VIRTUAL_BASE     // load base address of MCT_ADR
        lw      k1,DmaInterruptSource(k0) // Read the interrupt source register.
        nop
        andi    k0,k1,(1<<11)           // test for NMI
        bne     k0,zero,20f             // if bit set this is an NMI
        nop                             // otherwise is a softreset.

        b       SoftReset               // jump to soft reset
        ori     s5,zero,1               // set s5 to tell that selftest can be skipped

20:
        //
        // Nmi Handler jump to firmware to print message.
        //

        bal     PutLedDisplay           // set a dash in the LED
        ori     a0,zero,LED_NMI         //

        //
        // Copy the copy routines to memory
        //

        la      a0,MemoryRoutines       // source
        la      a1,MemoryRoutines-LINK_ADDRESS+KSEG1_BASE // destination location
        la      t2,EndMemoryRoutines    // end
        bal     DataCopy                // copy code to memory
        sub     a2,t2,a0                // length of code

        la      t2,InvalidateICache-LINK_ADDRESS+KSEG1_BASE // non-cached space
        jal     t2                      // Invalidate the instruction cache
        nop
        la      k0,NMI                  // Join common code
        mfc0    s6,errorepc             // get error epc
        j       k0                      // running at PROM Vaddress.
        li      s5,2                    // indicate exception is NMI.

ResetCPU:
        move    s5,zero                 // clear s5 to indicate cold reset
SoftReset:
//
// Initialize PSR to BEV and COP1 enabled. It's important to clear ERL since
// the ErrorEPC is undefined and further exceptions will set ERL or EXL
// according to the nature of the exception.
//
        li      k0,(1<<PSR_BEV) | (1 << PSR_CU1)
        mtc0    k0,psr
        nop
        nop

//
// If there is no secondary cache or the secondary cache block size is greater
// than 16 bytes, set the primary instruction cache block size to
// 32 bytes, otherwise set to 16 bytes.
//

        mfc0    t0,config
        li      t1, (1 << CONFIG_IB) + (0 << CONFIG_DB) + (0 << CONFIG_CU) + \
                    (3 << CONFIG_K0)

        srl     t2,t0,CONFIG_SC         // check for secondary cache
        and     t2,t2,1                 // isolate the bit
        bne     t2,zero,10f             // if none, block size stays 32 bytes
        srl     t2,t0,CONFIG_SB         // check secondary cache block size
        and     t2,t2,3                 // isolate the bit
        bne     t2,zero,10f             // if not 16 bytes, size stays 32 bytes
        nop

        li      t1, (0 << CONFIG_IB) + (0 << CONFIG_DB) + (0 << CONFIG_CU) + \
                    (3 << CONFIG_K0)
10:
        li      t2, 0xFFFFFFC0
        and     t0,t0,t2                // clear soft bits in config
        or      t0,t0,t1                // set soft bits in config
        mtc0    t0,config
        nop
        nop

        bal     PutLedDisplay           // BLANK the LED
        ori     a0,zero,LED_BLANK<<TEST_SHIFT

//
// now go to the virtual address instead of using the page
// 1FC00000 that is mapped by the address chip.
//
        la      t0,Virtual
        j       t0
        nop
Virtual:

        beq     s5,1,SkipProcessorTest  // Skip processor test if softreset
        nop
        bal     PutLedDisplay           // Show processor test is staring
        ori     a0,zero,LED_PROCESSOR_TEST
        bal     ProcessorTest           // Test the processor
        nop
        move    s5,zero                 // clear s5 to indicate cold reset

SkipProcessorTest:
        bal     PutLedDisplay           // Show MCT_ADR reset test is starting
        ori     a0,zero,LED_MCTADR_RESET
        bal     MctadrResetTest
        nop

        bal     PutLedDisplay           // Show MCT_ADR register test is starting
        ori     a0,zero,LED_MCTADR_REG
        bal     MctadrRegisterTest
        nop

        beq     s5,1,SkipRomChecksum    // Skip checksum if softreset
        nop
//
// Perform a ROM Checksum.
//
        bal     PutLedDisplay           // Display in the LED that
        ori     a0,zero,LED_ROM_CHECKSUM // ROM Checksum is being executed
        li      a0,PROM_VIRTUAL_BASE    // address of PROM
        li      t0,ROM_SIZE
        add     a1,a0,t0                // end of loop address
        move    t0,zero                 // init sum register

RomCheckSum:
        lw      t1,0(a0)                // fetch word
        lw      t2,4(a0)                // fetch second word
        addu    t0,t0,t1                // calculate checksum add from ofs 0
        lw      t1,8(a0)
        addu    t0,t0,t2                // calculate checksum add from ofs 4
        lw      t2,0xC(a0)
        addu    t0,t0,t1                // calculate checksum add from ofs 8
        addiu   a0,a0,16                // compute next address
        bne     a0,a1,RomCheckSum       // check end of loop condition
        addu    t0,t0,t2                // calculate checksum add from ofs c

//
// if test passes, jump to next part of initialization code.
//
        beq     t0,zero,TestMemory      // Branch if calculated checksum is correct
        move    s5,zero                 // clear s5 this tells to run selftest
        lui     a0,LED_BLINK            // otherwise hang
        bal     PutLedDisplay           // by calling PutLedDisplay
        ori     a0,a0,LED_ROM_CHECKSUM  // blinking the test number

SkipRomChecksum:
TestMemory:
        bal     PutLedDisplay           // call PutLedDisplay to show that
        ori     a0,zero,LED_MEMORY_TEST_1 // Mem test is starting
//
// Call memory test routine to test small portion of memory.
// a0 is start of tested memory. a1 is length in bytes to test
//
//
// Disable Parity exceptions for the first memory test. Otherwise
// if something is wrong with the memory we jump to the moon.
//
        li      t0, (1<<PSR_DE) | (1 << PSR_CU1) | (1 << PSR_BEV)
        mtc0    t0,psr
        nop
        li      a0,KSEG1_BASE           // start of mem test
        ori     a1,zero,MEMTEST_SIZE    // length to test in bytes
        ctc1    zero,fsr                // clear floating status
        nop
        bal     WriteNoXorAddressTest
        move    a2,zero                 // xor pattern zero
        bal     CheckNoXorAddressTest
        ori     a3,zero,LED_MEMORY_TEST_1 // set Test/Subtest ID
//
// Do the same flipping all bits
//
        bal     WriteAddressTest
        li      a2,-1                   // Xor pattern = FFFFFFFF
        bal     CheckAddressTest
        nop
//
// Do the same flipping some bits to be sure parity bits are flipped in each byte
//
        lui     a2,0x0101
        bal     WriteAddressTest
        ori     a2,a2,0x0101            // Xor pattern = 01010101
        bal     CheckAddressTest
        nop

        bal     SizeMemory              // start by sizing the memory.
        nop                             //

//
// The next step is to copy a number of routines to memory so they can
// be executed more quickly. Calculate the arguments for DataCopy call:
// a0 is source of data, a1 is dest, a2 is length in bytes
//
        la      a0,MemoryRoutines       // source
        la      a1,MemoryRoutines-LINK_ADDRESS+KSEG1_BASE // destination location
        la      t2,EndMemoryRoutines    // end
        bal     DataCopy                // copy code to memory
        sub     a2,t2,a0                // length of code

//
// Call cache initialization routine in non-cached memory
//
        bal     PutLedDisplay           // display that cache init
        ori     a0,zero,LED_CACHE_INIT  // is starting
        la      s1,R4000CacheInit-LINK_ADDRESS+KSEG1_BASE // non-cached address
        jal     s1                      // initialize caches
        nop

//
// call routine now in cached memory to test bigger portion of memory
//
        bal     PutLedDisplay           // display that memory test
        ori     a0,zero,LED_WRITE_MEMORY_2 // is starting
        li      a0,KSEG1_BASE+MEMTEST_SIZE // start of memory to write non cached
        li      a1,FW_TOP_ADDRESS-MEMTEST_SIZE  // test the memory needed to copy the code
                                                // to memory, the stack and the video prom.
        la      s1,WriteNoXorAddressTest-LINK_ADDRESS+KSEG0_BASE // address of routine in memory cached
        jal     s1                      // Write and therefore init mem.
        move    a2,zero                 // xor pattern
        la      s2,CheckNoXorAddressTest-LINK_ADDRESS+KSEG0_BASE // address of routine in memory
        jal     s2                      // Check written memory
        ori     a3,zero,LED_READ_MEMORY_2 // load LED value if memory test fails
        la      s1,WriteAddressTest-LINK_ADDRESS+KSEG0_BASE // address of routine cached
        li      a0,KSEG0_BASE+MEMTEST_SIZE // start of memory now cached
        li      a2,0xDFFFFFFF           // to flipp all bits
        jal     s1                      // Write second time now cached.
        la      s2,CheckAddressTest-LINK_ADDRESS+KSEG0_BASE // address of routine in memory
        jal     s2                      // check also cached.
        nop
        lui     a2,0x0101
        jal     s1                      // Write third time cached.
        ori     a2,a2,0x0101            // flipping some bits
        jal     s2                      // check also cached.
        nop
//
// if we come back, the piece of memory is tested and therefore initialized.
//

//
// If an NMI occurred. s5 contains the erorrepc.
// the Tlb has already been initialized and the I cache flushed.
// Copy the firmware to memory and display a message from there.
//

NMI:
//
// Invalidate the data caches so that the firmware can be copied to
// noncached space without a conflict.
//

        bal     InvalidateDCache
        nop
        bal     InvalidateSCache
        nop

//
// Copy the firmware.
//
        la      s0,Decompress-LINK_ADDRESS+KSEG0_BASE
					// address of decompression routine in cached space
	la	a0,end			// end of this file is start of selftest
        li      a1,RAM_TEST_DESTINATION_ADDRESS
                                        // destination is uncached link address.
        jal     s0                      // jump to decompress
        nop
        bal     InvalidateICache        // Invalidate the instruction cache
        nop

//
// Zero the memory up to the firmware.
//
        li      t0,KSEG0_BASE           // start of memory to zero
        li      t1,RAM_TEST_LINK_ADDRESS  // at the start of the firmware.
        mtc1    zero,f0                 // zero f0
        mtc1    zero,f1                 // zero f1
ZeroFirst:
        addi    t0,8                    // increment by a doubleword
        bne     t0,t1,ZeroFirst         // branch if not done
        sdc1    f0,-8(t0)               // write doubleword

//
// Flush the data cache
//
        bal     FlushDCache
        nop

//
//      Initialize the stack to the low memory and Call Rom tests.
//
        li      t0,RAM_TEST_LINK_ADDRESS // address of copied code
        li      sp,RAM_TEST_STACK_ADDRESS // init stack
        move    a1,s6
        jal     t0                      // jump to self-test in memory
        move    a0,s5                   // pass cause of exception as argument.
99:
        b       99b                     // hang if we get here.
        nop                             //


//
// Routines between MemoryRoutines and EndMemoryRoutines are copied
// into memory to run them cached.
//

        .align 4                            // Align it to 16 bytes boundary so that
        ALTERNATE_ENTRY(MemoryRoutines)     // DataCopy doesn't need to check alignments
/*++
VOID
PutLedDisplay(
    a0 - display value.
    )
Routine Description:

    This routine will display in the LED the value specified as argument
    a0.

    bits [31:16] specify the mode.
    bits [7:4]   specify the Test number.
    bits [3:0]   specify the Subtest number.

    The mode can be:

        LED_NORMAL          Display the Test number
        LED_BLINK           Loop displaying Test - Dot - Subtest
        LED_LOOP_ERROR      Display the Test number with the dot iluminated

    N.B. This routine must reside in the first page of ROM because it is
    called before mapping the rom!!

Arguments:

    a0 value to display.

    Note: The value of the argument is preserved

Return Value:

    If a0 set to LED_BLINK does not return.

--*/
        LEAF_ENTRY(PutLedDisplay)
        li      t0,DIAGNOSTIC_VIRTUAL_BASE  // load address of display
LedBlinkLoop:
        srl     t1,a0,16                    // get upper bits of a0 in t1
        srl     t3,a0,4                     // get test number
        li      t4,LED_LOOP_ERROR           //
        bne     t1,t4, DisplayTestID
        andi    t3,t3,0xF                   // clear other bits.
        ori     t3,t3,LED_DECIMAL_POINT     // Set decimal point
DisplayTestID:
        li      t4,LED_BLINK                // check if need to hung
        sb      t3,0(t0)                    // write test ID to led.
        beq     t1,t4, ShowSubtestID
        nop
        j       ra                          // return to caller.
        nop

ShowSubtestID:
        li      t2,LED_DELAY_LOOP           // get delay value.
TestWait:
        bne     t2,zero,TestWait            // loop until zero
        addiu   t2,t2,-1                    // decrement counter
        li      t3,LED_DECIMAL_POINT+LED_BLANK
        sb      t3,0(t0)                    // write decimal point
        li      t2,LED_DELAY_LOOP/2         // get delay value.
DecPointWait:
        bne     t2,zero,DecPointWait        // loop until zero
        addiu   t2,t2,-1                    // decrement counter
        andi    t3,a0,0xF                   // get subtest number
        sb      t3,0(t0)                    // write subtest in LED
        li      t2,LED_DELAY_LOOP           // get delay value.
SubTestWait:
        bne     t2,zero,SubTestWait         // loop until zero
        addiu   t2,t2,-1                    // decrement counter
        b       LedBlinkLoop                // go to it again
        nop
        .end    PutLedDisplay

        LEAF_ENTRY(InvalidateICache)
/*++

Routine Description:

    This routine invalidates the contents of the instruction cache.

    The instruction cache is invalidated by writing an invalid tag to
    each cache line, therefore nothing is written back to memory.

Arguments:

    None.

Return Value:

    None.

--*/
//
// invalid state
//
        mfc0    t5,config               // read config register
        li      t0,(PRIMARY_CACHE_INVALID << TAGLO_PSTATE)
        mtc0    t0,taglo                // set tag registers to invalid
        mtc0    zero,taghi

        srl     t0,t5,CONFIG_IC         // compute instruction cache size
        and     t0,t0,0x7               //
        addu    t0,t0,12                //
        li      t6,1                    //
        sll     t6,t6,t0                // t6 = I cache size
        srl     t0,t5,CONFIG_IB         // compute instruction cache line size
        and     t0,t0,1                 //
        li      t7,16                   //
        sll     t7,t7,t0                // t7 = I cache line size
//
// store tag to all icache lines
//
        li      t1,KSEG0_BASE+(1<<20)   // get virtual address to index cache
        addu    t0,t1,t6                // get last index address
        subu    t0,t0,t7
WriteICacheTag:
        cache   INDEX_STORE_TAG_I,0(t1) // store tag in Instruction cache
        bne     t1,t0,WriteICacheTag    // loop
        addu    t1,t1,t7                // increment index
        j       ra
        nop
        .end    InvalidateICache


        LEAF_ENTRY(InvalidateDCache)
/*++

Routine Description:

    This routine invalidates the contents of the D cache.

    Data cache is invalidated by writing an invalid tag to each cache
    line, therefore nothing is written back to memory.

Arguments:

    None.

Return Value:

    None.

--*/
//
// invalid state
//
        mfc0    t5,config               // read config register for cache size
        li      t0, (PRIMARY_CACHE_INVALID << TAGLO_PSTATE)
        mtc0    t0,taglo                // set tag to invalid
        mtc0    zero,taghi
        srl     t0,t5,CONFIG_DC         // compute data cache size
        and     t0,t0,0x7               //
        addu    t0,t0,12                //
        li      t6,1                    //
        sll     t6,t6,t0                // t6 = data cache size
        srl     t0,t5,CONFIG_DB         // compute data cache line size
        and     t0,t0,1                 //
        li      t7,16                   //
        sll     t7,t7,t0                //  t7 = data cache line size

//
// store tag to all Dcache
//
        li      t1,KSEG0_BASE+(1<<20)   // get virtual address to index cache
        addu    t2,t1,t6                // add cache size
        subu    t2,t2,t7                // adjust for cache line size.
WriteDCacheTag:
        cache   INDEX_STORE_TAG_D,0(t1) // store tag in Data cache
        bne     t1,t2,WriteDCacheTag    // loop
        addu    t1,t1,t7                // increment index by cache line
        j       ra
        nop
        .end    InvalidateDCache


        LEAF_ENTRY(FlushDCache)
/*++

Routine Description:

        This routine flushes the whole contents of the Dcache

Arguments:

    None.

Return Value:

    None.

--*/
        mfc0    t5,config               // read config register
        li      t1,KSEG0_BASE+(1<<20)   // get virtual address to index cache
        srl     t0,t5,CONFIG_DC         // compute data cache size
        and     t0,t0,0x7               //
        addu    t0,t0,12                //
        li      t6,1                    //
        sll     t6,t6,t0                // t6 = data cache size
        srl     t0,t5,CONFIG_DB         // compute data cache line size
        and     t0,t0,1                 //
        li      t7,16                   //
        sll     t7,t7,t0                //  t7 = data cache line size
        addu    t0,t1,t6                // compute last index address
        subu    t0,t0,t7
FlushDCacheTag:
        cache   INDEX_WRITEBACK_INVALIDATE_D,0(t1)      // Invalidate  data cache
        bne     t1,t0,FlushDCacheTag        // loop
        addu    t1,t1,t7                    // increment index

//
// check for a secondary cache.
//

        li      t1,(1 << CONFIG_SC)
        and     t0,t5,t1
        bne     t0,zero,10f             // if non-zero no secondary cache

        li      t6,SECONDARY_CACHE_SIZE // t6 = secondary cache size
        srl     t0,t5,CONFIG_SB         // compute secondary cache line size
        and     t0,t0,3                 //
        li      t7,16                   //
        sll     t7,t7,t0                // t7 = secondary cache line size
//
// invalidate all secondary lines
//
        li      t1,KSEG0_BASE+(1<<20)   // get virtual address to index cache
        addu    t0,t1,t6                // get last index address
        subu    t0,t0,t7
FlushSDCacheTag:
        cache   INDEX_WRITEBACK_INVALIDATE_SD,0(t1)     // invalidate secondary cache
        bne     t1,t0,FlushSDCacheTag   // loop
        addu    t1,t1,t7                // increment index
10:
        j       ra
        nop
        .end    FlushDCache


        LEAF_ENTRY(InvalidateSCache)
/*++

Routine Description:

    This routine invalidates the contents of the secondary cache.

    The secondary cache is invalidated by writing an invalid tag to
    each cache line, therefore nothing is written back to memory.

Arguments:

    None.

Return Value:

    None.

--*/
        mfc0    t5,config               // read config register

//
// check for a secondary cache.
//

        li      t1,(1 << CONFIG_SC)
        and     t0,t5,t1
        bne     t0,zero,NoSecondaryCache        // if non-zero no secondary cache

        li      t0,(SECONDARY_CACHE_INVALID << TAGLO_SSTATE)
        mtc0    t0,taglo                // set tag registers to invalid
        mtc0    zero,taghi

        li      t6,SECONDARY_CACHE_SIZE // t6 = secondary cache size
        srl     t0,t5,CONFIG_SB         // compute secondary cache line size
        and     t0,t0,3                 //
        li      t7,16                   //
        sll     t7,t7,t0                // t7 = secondary cache line size
//
// store tag to all secondary lines
//
        li      t1,KSEG0_BASE+(1<<20)   // get virtual address to index cache
        addu    t0,t1,t6                // get last index address
        subu    t0,t0,t7
WriteSICacheTag:
        cache   INDEX_STORE_TAG_SD,0(t1) // store tag in secondary cache
        bne     t1,t0,WriteSICacheTag   // loop
        addu    t1,t1,t7                // increment index

NoSecondaryCache:
        j       ra
        nop
        .end    InvalidateSCache


        LEAF_ENTRY(InitDataCache)
/*++

Routine Description:

    This routine initializes the data fields of the primary and
    secondary data caches.

Arguments:

    None.

Return Value:

    None.

--*/
        mfc0    t5,config               // read config register

//
// check for a secondary cache.
//

        li      t1,(1 << CONFIG_SC)
        and     t0,t5,t1
        bne     t0,zero,NoSecondaryCache1 // if non-zero no secondary cache

        li      t6,SECONDARY_CACHE_SIZE // t6 = secondary cache size
        srl     t0,t5,CONFIG_SB         // compute secondary cache line size
        and     t0,t0,3                 //
        li      t7,16                   //
        sll     t7,t7,t0                // t7 = secondary cache line size
//
// store tag and data to all secondary lines
//
        mtc1    zero,f0                 // zero f0
        mtc1    zero,f1                 // zero f1
        li      t1,KSEG0_BASE+(1<<20)   // get virtual address to index cache
        addu    t0,t1,t6                // get last index address
        subu    t0,t0,t7
        andi    t4,t7,16                // isolate secondary cache line size
WriteSCacheDe:
        cache   CREATE_DIRTY_EXCLUSIVE_SD,0(t1) // store tag in secondary cache
        nop                             // MIPS does this
        bne     t4,zero,10f             //
        sdc1    f0,0(t1)                // write
        sdc1    f0,16(t1)               // write
        sdc1    f0,24(t1)               // write
10:     sdc1    f0,8(t1)                // write
        bne     t1,t0,WriteSCacheDe     // loop
        addu    t1,t1,t7                // increment index
//
// Flush the primary data cache to the secondary cache
//
        li      t1,KSEG0_BASE+(1<<20)   // get virtual address to index cache
        srl     t0,t5,CONFIG_DC         // compute data cache size
        and     t0,t0,0x7               //
        addu    t0,t0,12                //
        li      t6,1                    //
        sll     t6,t6,t0                // t6 = data cache size
        srl     t0,t5,CONFIG_DB         // compute data cache line size
        and     t0,t0,1                 //
        li      t7,16                   //
        sll     t7,t7,t0                //  t7 = data cache line size
        addu    t0,t1,t6                // compute last index address
        subu    t0,t0,t7
FlushPDCacheTag:
        cache   INDEX_WRITEBACK_INVALIDATE_D,0(t1) // Invalidate  data cache
        bne     t1,t0,FlushPDCacheTag   // loop
        addu    t1,t1,t7                // increment index

        j       ra                      // return
        nop

NoSecondaryCache1:

        srl     t0,t5,CONFIG_DC         // compute data cache size
        and     t0,t0,0x7               //
        addu    t0,t0,12                //
        li      t6,1                    //
        sll     t6,t6,t0                // t6 = data cache size
        srl     t0,t5,CONFIG_DB         // compute data cache line size
        and     t0,t0,1                 //
        li      t7,16                   //
        sll     t7,t7,t0                //  t7 = data cache line size

//
// create dirty exclusive to all Dcache
//
        mtc1    zero,f0                 // zero f0
        mtc1    zero,f1                 // zero f1
        li      t1,KSEG0_BASE+(1<<20)   // get virtual address to index cache
        addu    t2,t1,t6                // add cache size
        subu    t2,t2,t7                // adjust for cache line size.
WriteDCacheDe:
        cache   CREATE_DIRTY_EXCLUSIVE_D,0(t1) // store tag in Data cache
        nop
        sdc1    f0,0(t1)                // write
        sdc1    f0,8(t1)                // write
        bne     t1,t2,WriteDCacheDe     // loop
        addu    t1,t1,t7                // increment index by cache line

        j       ra                      // return
        nop
        .end    InitDataCache

        LEAF_ENTRY(R4000CacheInit)
/*++

Routine Description:

    This routine will initialize the cache tags and data for the
    primary data cache, primary instruction cache, and the secondary cache
    (if present).

    Subroutines are called to invalidate all of the tags in the
    instruction and data caches.

Arguments:

    None.

Return Value:

    None.

--*/
        move    s0,ra                   // save ra.

//
// Disable Cache Error exceptions.
//

        li      t0, (1<<PSR_DE) | (1 << PSR_CU1) | (1 << PSR_BEV)
        mtc0    t0,psr

//
// Invalidate the caches
//

        bal     InvalidateICache
        nop

        bal     InvalidateDCache
        nop

        bal     InvalidateSCache
        nop

//
// Initialize the data cache(s)
//

        bal     InitDataCache
        nop

//
// Fill the Icache,  all icache lines
//

        mfc0    t5,config               // read config register
        nop
        srl     t0,t5,CONFIG_IC         // compute instruction cache size
        and     t0,t0,0x7               //
        addu    t0,t0,12                //
        li      s1,1                    //
        sll     s1,s1,t0                // s1 = I cache size
        srl     t0,t5,CONFIG_IB         // compute instruction cache line size
        and     t0,t0,1                 //
        li      s2,16                   //
        sll     s2,s2,t0                // s2 = I cache line size

ICacheStart:
        li      t1,KSEG0_BASE+(1<<20)       // get virtual address to index cache
        addu    t0,t1,s1                    // add I cache size
        subu    t0,t0,s2                    // sub line size.
FillICache:
        cache   INDEX_FILL_I,0(t1)          // Fill I cache from memory
        bne     t1,t0,FillICache            // loop
        addu    t1,t1,s2                    // increment index

//
// Invalidate the caches again
//
        bal     InvalidateICache
        nop

        bal     InvalidateDCache
        nop

        bal     InvalidateSCache
        nop

//
// Enable cache error exception.
//
        li      t1, (1 << PSR_CU1) | (1 << PSR_BEV)
        mtc0    t1,psr
        nop
        nop
        nop
        move    ra,s0                   // move return address back to ra
        j       ra                      // return from routine
        nop
        .end    R4000CacheInit


/*++
VOID
WriteAddressTest(
    StartAddress
    Size
    Xor pattern
    )
Routine Description:

    This routine will store the address of each location xored with
    the Pattern into each location.

Arguments:

    a0 - supplies start of memory area to test
    a1 - supplies length of memory area in bytes
    a2 - supplies the pattern to Xor with.

    Note: the values of the arguments are preserved.

Return Value:

    This routine returns no value.
--*/
        LEAF_ENTRY(WriteAddressTest)
        add     t1,a0,a1                // t1 = last address.
        xor     t0,a0,a2                // t0 value to write
        move    t2,a0                   // t2=current address
writeaddress:
        sw      t0,0(t2)                // store
        addiu   t2,t2,4                 // compute next address
        xor     t0,t2,a2                // next pattern
        sw      t0,0(t2)
        addiu   t2,t2,4                 // compute next address
        xor     t0,t2,a2                // next pattern
        sw      t0,0(t2)
        addiu   t2,t2,4                 // compute next address
        xor     t0,t2,a2                // next pattern
        sw      t0,0(t2)
        addiu   t2,t2,4                 // compute next address
        bne     t2,t1, writeaddress     // check for end condition
        xor     t0,t2,a2                // value to write
        j       ra
        nop
        .end    WriteAddressTest

/*++
VOID
WriteNoXorAddressTest(
    StartAddress
    Size
    )
Routine Description:

    This routine will store the address of each location
    into each location.

Arguments:

    a0 - supplies start of memory area to test
    a1 - supplies length of memory area in bytes

    Note: the values of the arguments are preserved.

Return Value:

    This routine returns no value.
--*/
        LEAF_ENTRY(WriteNoXorAddressTest)
        nop
        nop
        nop
        nop
        add     t1,a0,a1                // t1 = last address.
        addiu   t1,t1,-4
        move    t2,a0                   // t2=current address
writenoXoraddress:
        sw      t2,0(t2)                // store first address
        addiu   t2,t2,4                 // compute next address
        sw      t2,0(t2)                // store first address
        addiu   t2,t2,4                 // compute next address
        sw      t2,0(t2)                // store first address
        addiu   t2,t2,4                 // compute next address
        sw      t2,0(t2)                // store
        bne     t2,t1, writenoXoraddress // check for end condition
        addiu   t2,t2,4                 // compute next address
        j       ra
        nop
        .end    WriteNoXorAddressTest


/*++
VOID
CheckAddressTest(
    StartAddress
    Size
    Xor pattern
    LedDisplayValue
    )
Routine Description:


    This routine will check that each location contains it's address
    xored with the Pattern as written by WriteAddressTest. The memory
    is read cached or non cached according to the address specified by a0.
    if WriteAddressTest used a KSEG1_ADR to write the data and this
    routine is called to read KSEG0_ADR in order to read the data cached,
    then the XOR_PATTERN Must be such that:

    KSEG0_ADR ^ KSEG0_XOR = KSEG1_ADR ^ KSEG1_XOR

    Examples:

        If XorPattern with which WriteAddressTest was called is KSEG1_XOR
        then the XorPattern this routine needs is KSEG0_XOR:

    KSEG1_XOR     Written    KSEG0_XOR    So that
    0x00000000  0xA00000000  0x20000000   0x8000000 ^ 0x2000000  = 0xA0000000
    0xFFFFFFFF  0x5F0000000  0xDFFFFFFF   0x8000000 ^ 0xDF00000  = 0x5F000000
    0x01010101  0xA10000000  0x21010101   0x8000000 ^ 0x2100000  = 0xA1000000

    This allows to write non cached to initialize memory and check the same
    data trough cached addresses.

Arguments:

    a0 - supplies start of memory area to test
    a1 - supplies length of memory area in bytes
    a2 - supplies the pattern to Xor with.
    a3 - suplies the value to display in the led in case of failure

    Note: the values of the arguments are preserved.

Return Value:

    Returns a zero if no error is found.

    If errors are found, this routine behaves different depending
    on where the caller resides:
    - If the caller is executing in KSEG0 or KSEG1 returns 1
    - If the caller is executing im ROM_VIRT addresses the
    routine hangs blinking the LED or looping if the loop on error
    bit is set in the config register.

--*/
        LEAF_ENTRY(CheckAddressTest)
        move    t3,a0                   // t3 first address.
        add     t2,t3,a1                // last address.
checkaddress:
        lw      t1,0(t3)                // load from first location
        xor     t0,t3,a2                // first expected value
        bne     t1,t0,PatternFail
        addiu   t3,t3,4                 // compute next address
        lw      t1,0(t3)                // load from first location
        xor     t0,t3,a2                // first expected value
        bne     t1,t0,PatternFail
        addiu   t3,t3,4                 // compute next address
        lw      t1,0(t3)                // load from first location
        xor     t0,t3,a2                // first expected value
        bne     t1,t0,PatternFail
        addiu   t3,t3,4                 // compute next address
        lw      t1,0(t3)                // load from first location
        xor     t0,t3,a2                // first expected value
        bne     t1,t0,PatternFail       // check last one.
        addiu   t3,t3,4                 // compute next address
        bne     t3,t2, checkaddress     // check for end condition
        move    v0,zero                 // set return value to zero.
        j       ra                      // return a zero to the caller

PatternFail:
        //
        // check if we are in loop on error
        //
        li      t0,DIAGNOSTIC_VIRTUAL_BASE  // get base address of diag register
        lb      t0,0(t0)                    // read register value.
        li      t1,LOOP_ON_ERROR_MASK       // get value to compare
        andi    t0,DIAGNOSTIC_MASK          // mask diagnostic bits.
        li      v0,PROM_ENTRY(14)           // load address of PutLedDisplay
        beq     t1,t0,10f                   // brnach if loop on error.
        move    s8,a0                       // save register a0
        lui     t0,LED_BLINK                // get LED blink code
        jal     v0                          // Blink LED and hang.
        or      a0,a3,t0                    // pass a3 as argument in a0
10:
        lui     t0,LED_LOOP_ERROR           // get LED LOOP_ERROR code
        jal     v0                          // Set LOOP ON ERROR on LED
        or      a0,a3,t0                    // pass a3 as argument in a0
        b       CheckAddressTest            // Loop back to test again.
        move    a0,s8                       // restoring arguments.
        .end    CheckAddressTest

/*++
VOID
CheckNoXorAddressTest(
    StartAddress
    Size
    not used
    LedDisplayValue
    )
Routine Description:

    This routine will check that each location contains it's address.
    as written by WriteNoXorAddressTest.

Arguments:

    Note: the values of the arguments are preserved.

    a0 - supplies start of memory area to test
    a1 - supplies length of memory area in bytes
    a2 - Not used
    a3 - suplies the value to display in the led in case of failure

Return Value:

    This routine returns no value.
    The routine hangs blinking the LED or looping if the loop on error
    bit is set in the config register.
--*/
        LEAF_ENTRY(CheckNoXorAddressTest)
        addiu   t3,a0,-4                // t3 first address-4
        add     t2,a0,a1                // last address.
        addiu   t2,t2,-8                // adjust
        move    t1,t3                   // get copy of t3 just for first check
checkaddressNX:
        bne     t1,t3,PatternFailNX
        lw      t1,4(t3)                // load from first location
        addiu   t3,t3,4                 // compute next address
        bne     t1,t3,PatternFailNX
        lw      t1,4(t3)                // load from next location
        addiu   t3,t3,4                 // compute next address
        bne     t1,t3,PatternFailNX
        lw      t1,4(t3)                // load from next  location
        addiu   t3,t3,4                 // compute next address
        bne     t1,t3,PatternFailNX     // check
        lw      t1,4(t3)                // load from next location
        bne     t3,t2, checkaddressNX   // check for end condition
        addiu   t3,t3,4                 // compute next address
        bne     t1,t3,PatternFailNX     // check last
        nop
        j       ra                      // return a zero to the caller
        move    v0,zero                 //
PatternFailNX:
        //
        // check if we are in loop on error
        //
        li      t0,DIAGNOSTIC_VIRTUAL_BASE  // get base address of diag register
        lb      t0,0(t0)                    // read register value.
        li      t1,LOOP_ON_ERROR_MASK       // get value to compare
        andi    t0,DIAGNOSTIC_MASK          // mask diagnostic bits.
        li      v0,PROM_ENTRY(14)           // load address of PutLedDisplay
        beq     t1,t0,10f                   // brnach if loop on error.
        move    s8,a0                       // save register a0
        lui     t0,LED_BLINK                // get LED blink code
        jal     v0                          // Blink LED and hang.
        or      a0,a3,t0                    // pass a3 as argument in a0
10:
        lui     t0,LED_LOOP_ERROR           // get LED LOOP_ERROR code
        jal     v0                          // Set LOOP ON ERROR on LED
        or      a0,a3,t0                    // pass a3 as argument in a0
        b       CheckNoXorAddressTest       // Loop back to test again.
        move    a0,s8                       // restoring arguments.
        .end    CheckNoXorAddressTest


/*++
VOID
ZeroMemory(
    ULONG   StartAddress
    ULONG   Size
    );
Routine Description:

    This routine will zero a range of memory.

Arguments:

    a0 - supplies start of memory
    a1 - supplies length of memory in bytes

Return Value:

    None.

--*/
        LEAF_ENTRY(ZeroMemory)
        add     a1,a1,a0                        // Compute End address
        addiu   a1,a1,-4                        // adjust address
ZeroMemoryLoop:
        sw      zero,0(a0)                      // zero memory.
        bne     a0,a1,ZeroMemoryLoop            // loop until done.
        addiu   a0,a0,4                         // compute next address
        j       ra                              // return
        nop
        ALTERNATE_ENTRY(ZeroMemoryEnd)
        nop
        .end    ZeroMemory

//++
//
//PULONG
//Decompress(
//        IN PULONG InputImage,
//        IN PULONG OutputImage
//        )
//
//
//Routine Description:
//
//    This routine decompresses the input image.
//
//Arguments:
//
//    InputImage (a0) - byte pointer to the image to be decompressed.
//    OutputImage (a1) - byte pointer to the area to write decompressed image.
//
//    N.B. The first ULONG of the InputImage contains the decompressed length in bytes.
//    See romcomp.c for a description of method.
//
//Return Value:
//
//    None.
//
//--

.set reorder
        LEAF_ENTRY(Decompress)

        lw      a2,(a0)                 // get the target size.
        srl     a2,a2,2                 // get size of output in words/symbols.
        addiu   a0,a0,4                 // address of next word
        move    a3,a1                   // stash output image base

//
// Calculate the offset width from the size.  Assume size > 2 ULONG.
//
#define SHORT_INDEX_WIDTH 10

        li      t8,1                    // start at two
        srl     t0,a2,1                 // offset must only span half the image.
5:
        addiu   t8,t8,1                 // next bit
        srl     t1,t0,t8                // shift off low bits
        bgtz    t1,5b                   // quit when we find the highest set bit.

//
// Set the symbol register bit count to zero so that on the first iteration of the loop we will
// get the first symbol longword.  Add one to the symbol count to allow for first loop entry.
//

        li      t1,0                    // number of valid bits
        addiu   a2,a2,1                 // increment symbol count

//
// Loop, decompressing the data.  There is always at least one bit in the register at this point.
//

10:

//
// Decrement the symbol count and exit the loop when done.
//

        addiu   a2,a2,-1                // decrement symbol count
        beq     zero,a2,99f             // return

//
// Load symbol register if it is empty.
//

        bne     zero,t1,12f             // check for lack of bits
        lw      t0,(a0)                 // get the next word
        addiu   a0,a0,4                 // address of next word
        li      t1,32                   // number of valid bits
12:

//
// Test first bit of symbol
//

        andi    t2,t0,0x1               // test the low bit
        addiu   t1,t1,-1                // decrement bit count
        srl     t0,t0,1                 // shift symbol
        bne     zero,t1,20f             // check for lack of bits
        lw      t0,(a0)                 // get the next word
        addiu   a0,a0,4                 // address of next word
        li      t1,32                   // number of valid bits
20:
        bne     zero,t2,50f             // if not zero then this is an index

30:

//
// First bit of symbol is zero, this is the zero or unique case.  Check the next bit.
//

        andi    t2,t0,0x1               // test the low bit
        addiu   t1,t1,-1                // decrement bit count
        srl     t0,t0,1                 // shift symbol
        bne     zero,t2,40f             // if not zero then this is a unique word symbol

//
// This is the zero case. 0b00
//

        sw      zero,(a1)               // store the zero
        addiu   a1,a1,4                 // increment the output image pointer
        b       10b                     // go get the next symbol.

//
// The symbol is a unique word. 0b10.  Get the next 32 bits and write them to the output.
//
// The symbol register contains 0 to 31 bits of the word to be written.  Get the next
// word, shift and merge it with the existing symbol to produce a complete word.  The remainder
// of the new word becomes the next symbol register contents.
//
// Note that since we read a new word we don't have to decrement the bit counter since it runs
// mod 32.
//

40:
        lw      t3,(a0)                 // get next word
        addiu   a0,a0,4                 // address of next word

        sll     t2,t3,t1                // shift it by the bit count
        or      t0,t0,t2                // put it in with the existing contents of the symbol register

        sw      t0,(a1)                 // store the word
        addiu   a1,a1,4                 // increment the output image pointer

        li      t2,32                   // get shift count for new word to make new symbol register
        subu    t2,t2,t1                //
        srl     t0,t3,t2                // new contents of symbol register.  For bit count zero case
                                        // this is a nop

        b       10b                     // go get the next symbol.

//
// This is the index case. 0bX1.  Now the next bit determines whether the offset is relative(1) or
// absolute(0).  Stash the next bit for when we use the offset.
//

50:
        andi    t4,t0,0x1               // get the relative/absolute bit
        addiu   t1,t1,-1                // decrement bit count
        srl     t0,t0,1                 // shift symbol
        bne     zero,t1,55f             // check for lack of bits
        lw      t0,(a0)                 // get the next word
        addiu   a0,a0,4                 // address of next word
        li      t1,32                   // number of valid bits
55:

//
// Get the next bit.  This tells us whether we have a long(0) or a short(1) index.
//

        andi    t2,t0,0x1               // test the low bit
        addiu   t1,t1,-1                // decrement bit count
        srl     t0,t0,1                 // shift symbol
        bne     zero,t1,60f             // check for lack of bits
        lw      t0,(a0)                 // get the next word
        addiu   a0,a0,4                 // address of next word
        li      t1,32                   // number of valid bits
60:
        li      t5,SHORT_INDEX_WIDTH    // preload with short index width
        bne     zero,t2,70f             // if not zero then this is a short index.
        move    t5,t8                   // use long index width

//
// Get the index based on the width.  If the currently available bits are less than the
// number that we need then we must read another word.
//
70:
        li      t7,0                    // zero the remainder
        sub     t2,t5,t1                // get difference between what we need and what we have
        blez    t2,75f                  // if we got what we need

        lw      t6,(a0)                 // get next word
        addiu   a0,a0,4                 // address of next word
        sll     t7,t6,t1                // shift new bits into position
        or      t0,t0,t7                // move new bits into symbol register
        srl     t7,t6,t2                // adjust remainder
        addiu   t1,t1,32                // pre-bias the bit count for later decrement.

75:
        li      t3,1                    // grab a one
        sll     t3,t3,t5                // shift it by number of bits we will extract
        addiu   t3,t3,-1                // make a mask
        and     t2,t0,t3                // grab the index
        sll     t2,t2,2                 // make it a byte index
        srl     t0,t0,t5                // shift out bits we used.
        or      t0,t0,t7                // merge in remainder if any.
        sub     t1,t1,t5                // decrement the bit count, correct regardless

//
// Use index to write output based on the absolute(0)/relative(1) bit.
//
80:
        bne     zero,t4,85f             // test for the relative case.
        addu    t3,a3,t2                // address by absolute
        b       87f                     // go move the word
85:
        subu    t3,a1,t2                // address by relative

//
// Move the byte.
//
87:
        lw      t2,(t3)                 // get the word
        sw      t2,(a1)                 // store the word
        addiu   a1,a1,4                 // increment output pointer
        b       10b                     // go do next symbol

//
// Return
//

99:

        j       ra                      // return

        .end    Decompress
.set noreorder

/*++
VOID
DataCopy(
    ULONG SourceAddress
    ULONG DestinationAddress
    ULONG Length
    );
Routine Description:

    This routine will copy data from one location to another
    Source, destination, and length must be dword aligned.

Arguments:

    a0 - supplies source of data
    a1 - supplies destination of data
    a2 - supplies length of data in bytes

Return Value:

    None.
--*/

        LEAF_ENTRY(DataCopy)
        add     a2,a2,a0                        // get last address
CopyLoop:
        ldc1    f0,0(a0)                        // load 1st double word
        ldc1    f2,8(a0)                        // load 2nd double word
        addiu   a0,a0,16                        // increment source pointer
        sdc1    f0,0(a1)                        // store 1st double word
        sdc1    f2,8(a1)                        // store 2nd double word
        bne     a0,a2,CopyLoop                  // loop until address=last address
        addiu   a1,a1,16                        // increment destination pointer
        j       ra                              // return
        nop
        .align 4                                // Align it to 16 bytes boundary so that
        ALTERNATE_ENTRY(EndMemoryRoutines)      // DataCopy doesn't need to check alignments
        nop
        .end    DataCopy

/*++
VOID
ProcessorTest(
    VOID
    );

Routine Description:

    This routine tests the processor. Test uses all registers and almost all
    the instructions.

    N.B. This routine destroys the values in all of the registers.

Arguments:

    None.

Return Value:

    None, but will hang flashing the led if an error occurs.

--*/
        LEAF_ENTRY(ProcessorTest)
        lui     a0,0x1234               // a0=0x12340000
        ori     a1,a0,0x4321            // a1=0x12344321
        add     a2,zero,a0              // a2=0x12340000
        addiu   a3,zero,-0x4321         // a3=0xFFFFBCDF
        subu    AT,a2,a3                // AT=0x12344321
        bne     a1,AT,ProcessorError    // branch if no match match
        andi    v0,a3,0xFFFF            // v0=0x0000BCDF
        ori     v1,v0,0xFFFF            // v1=0x0000FFFF
        sll     t0,v1,16                // t0=0xFFFF0000
        xor     t1,t0,v1                // t1=0xFFFFFFFF
        sra     t2,t0,16                // t2=0xFFFFFFFF
        beq     t1,t2,10f               // if eq good
        srl     t3,t0,24                // t3=0x000000FF
        j       ProcessorError          // if wasn't eq error.
10:     sltu    s0,t0,v1                // S0=0 because t0 > v1
        bgtz    s0,ProcessorError       // if s0 > zero error
        or      t4,AT,v0                // t4=X
        bltz    s0,ProcessorError       // if s0 < zero error
        nor     t5,v0,AT                // t5=~X
        and     t6,t4,t5                // t6=0
        move    s0,ra                   // save ra in s0
        bltzal  t6,ProcessorError       // if t6 < 0  error, load ra in case
        nop
RaAddress:
        //la      t7,RaAddress - LINK_ADDRESS + RESET_VECTOR // get expected address in ra
        la      t7,RaAddress            // get expected address in ra
        bne     ra,t7,ProcessorError    // error if don't match
        move    ra,s0                   // put ra back
        ori     s1,zero,0x100           // load constant
        mult    s1,t3                   // 0x100*0xFF
        mfhi    s3                      // s3=0
        mflo    s2                      // s2=0xFF00
        blez    s3,10f                  // branch if correct
        sll     s4,t3,zero              // move t3 into s4
        addiu   s4,100                  // change value in s4 to produce an error
10:     divu    s5,s2,s4                // divide 0xFF00/0xFF
        nop
        nop
        mfhi    s6                      // remainder s6=0
        bne     s5,s1,ProcessorError
        nop
        blez    s6,10f                  // branch if no error
        nop
        j       ProcessorError
10:     sub     s7,s5,s4                // s7=1
        mthi    s7
        mtlo    AT
        xori    gp,s5,0x2566            // gp=0x2466
        move    s0,sp                   // save sp for now
        srl     sp,gp,s7                // sp=0x1233
        mflo    s8                      // s8=0x12344321
        mfhi    k0                      // k0=1
        ori     k1,zero,16              // k1=16
        sra     k1,s8,k1                // k1=0x1234
        add     AT,sp,k0                // AT=0x1234
        bne     k1,AT,ProcessorError    // branch on error
        nop
#ifdef  R4001
        //
        // Some extra stuff added to verify that the R4000 bug is fixed
        // If it hangs a minus sign will be displayed in the LED
        //
        li      t0,DIAGNOSTIC_VIRTUAL_BASE
        li      t1,0xB                  // value to display '-' in the LED
        sw      t1,0(t0)                // write to the LED should be sb
        lw      t2,8(t0)                // do something
        sll     t5,t0,t1                // 2 cycle instruction
#endif
        j       ra                      // return
        nop
ProcessorError:
        lui     a0,LED_BLINK            // blink also means that
        bal     PutLedDisplay           // the routine hangs.
        ori     a0,LED_PROCESSOR_TEST   // displaying this value.
        .end    ProcessorTest


/*++
VOID
MctadrReset(
    VOID
    );

Routine Description:

    This routine tests the reset values of the MCT_ADR asic.

Arguments:

    None.

Return Value:

    None, but will hang flashing the led if an error occurs.

--*/
        LEAF_ENTRY(MctadrResetTest)
        move    s0,ra                   // save return address.
//
// Test the mctadr reset values.
//
MctadrReset:
        li      t0,DMA_VIRTUAL_BASE     // Get base address of MCTADR
        lw      v0,DmaConfiguration(t0) // Check Config reset value
        li      t1,CONFIG_RESET_MCTADR_REV1 // Check for REV1 ASIC, i.e. JAZZ
        beq     v0,t1,10f
        li      t1,CONFIG_RESET_MCTADR_REV2 // Check for REV2 ASIC, i.e. FIS/USION
        bne     v0,t1,MctadrResetError
        lw      v0,DmaRevisionLevel(t0) // Get revision level register
        slti    t1,v0,3                 // Check for REV3 ASIC
        bnez    t1,5f                   // If not REV3 or greater, enable interrupts
        nop
        mfc0    t1,config               // Get R4000 config register
        srl     t2,t1,CONFIG_SC         // check for secondary cache
        and     t2,t2,1                 // isolate the bit
        beq     t2,zero,5f              // if secondary cache, enable interrupts
        nop
        b       10f                     // Fision with REV3 or greater, don't
        nop                             // enable interrups over the bus

5:
        addiu   t1,t0,DmaRemoteSpeed15  // DmaRemoteSpeed15 is the interrupt
                                        // enable register in REV2
        li      v0,0x3f                 // MCTADR interrupt enable mask
        sw      v0,0(t1)                // Enable interrupts in MCTADR

10:
        lw      v0,DmaInvalidAddress(t0)
        lw      v1,DmaTranslationBase(t0)
        bne     v0,zero,MctadrResetError // Check LFAR reset value
        lw      v0,DmaTranslationLimit(t0)
        bne     v1,zero,MctadrResetError // Check Ttable base reset value
        lw      v1,DmaRemoteFailedAddress(t0)
        bne     v0,zero,MctadrResetError // Check TT limit reset value
        lw      v0,DmaMemoryFailedAddress(t0)
        bne     v1,zero,MctadrResetError // Check RFAR reset value
        lw      v1,DmaByteMask(t0)
        bne     v0,zero,MctadrResetError // Check MFAR reset value
        addiu   t1,t0,DmaRemoteSpeed0   // address of REM_SPEED 0
        bne     v1,zero,MctadrResetError // Check TT_BMASK reset value
        addiu   t2,t0,DmaRemoteSpeed14  // address of REM_SPEED 14
                                        // Don't check 15 because this is
                                        // the interrupt enable for REV2
        lw      v0,0(t1)                // read register
        li      t3,REMSPEED_RESET       //
        addiu   t1,t1,8                 // next register address.
NextRemSpeed:
        bne     v0,t3,MctadrResetError  // Check Rem speed reg reset value
        lw      v0,0(t1)                // read next rem speed
        bne     t1,t2,NextRemSpeed
        addiu   t1,t1,8                 // next register address.
        bne     v0,t3,MctadrResetError  // Check last Rem speed reg reset value
        addiu   t1,t0,DmaChannel0Mode   // address of first channel register
        addiu   t2,t0,DmaChannel7Address // address of last channel register
        lw      v0,0(t1)                // read register
        addiu   t1,t1,8                 // next register address.
NextChannelReg:
        bne     v0,zero,MctadrResetError // Check channel reg reset value
        lw      v0,0(t1)                // read next channel
        bne     t1,t2,NextChannelReg
        addiu   t1,t1,8                 // next register address.
        bne     v0,zero,MctadrResetError // Checklast  channel reg reset value
        lw      v0,DmaInterruptSource(t0)// read DMA Channel interrupt
        lw      v1,DmaErrortype(t0)     // read eisa/ethernet error reg
        bne     v0,zero,MctadrResetError // check Intpend
        lw      v0,DmaRefreshRate(t0)
        bne     v1,zero,MctadrResetError // check Eisa error type reset value
        li      t1,REFRRATE_RESET
        bne     v0,t1,MctadrResetError  // check Refresh rate reset value
        lw      v0,DmaSystemSecurity(t0)
        li      t1,SECURITY_RESET
        bne     v0,t1,MctadrResetError  // check Security reg reset value
        lw      v0,DmaInterruptAcknowledge(t0)  // read register but don't check
        j       s0                      // return to caller
MctadrResetError:
        li      t0,DIAGNOSTIC_VIRTUAL_BASE // get base address of diag register
        lb      t0,0(t0)                // read register value.
        li      t1,LOOP_ON_ERROR_MASK   // get value to compare
        andi    t0,DIAGNOSTIC_MASK      // mask diagnostic bits.
        beq     t1,t0,10f               // branch if loop on error.
        ori     a0,zero,LED_MCTADR_RESET// load LED display value.
        lui     t0,LED_BLINK            // get LED blink code
        bal     PutLedDisplay           // Blink LED and hang.
        or      a0,a0,t0                // pass argument in a0
10:
        lui     t0,LED_LOOP_ERROR       // get LED LOOP_ERROR code
        bal     PutLedDisplay           // Set LOOP ON ERROR on LED
        or      a0,a0,t0                // pass argument in a0
        b       MctadrReset
        nop
        .end    MctadrResetTest


/*++
VOID
MctadrRegisterTest(
    VOID
    );

Routine Description:

    This routine tests the MCT_ADR registers.

Arguments:

    None.

Return Value:

    None, but will hang flashing the led if an error occurs.

--*/
        LEAF_ENTRY(MctadrRegisterTest)
        move    s0,ra                   // save return address.
//
// Check the data path between R4K and Mctadr by writing to Byte mask reg.
//
MctadrReg:
        li      t0,DMA_VIRTUAL_BASE
        lw      v0,DmaConfiguration(t0) // Check Config reset value
        li      t1,CONFIG_RESET_MCTADR_REV1 // Check for REV1 ASIC, i.e. JAZZ
        beq     v0,t1,10f
        li      t1,0x17F                // For Jazz, 2Mb Video, 64 Mb Main
        li      t1,0x5fa                // For FIS/USION, 2MB Video, 256 MBytes Main
10:
        sw      t1,DmaConfiguration(t0) // Init Global Config
        lw      v0,DmaConfiguration(t0) // Read Configuration
        nop
        bne     v0,t1,MctadrRegError    // check GLOBAL CONFIG
        sw      zero,DmaCacheMaintenance(t0)// select cache block zero.
        li      t1,1
        sw      t1,DmaLogicalTag(t0)    // Set LFN=zero, Offset=0 , Direction=READ from memory, Valid
        li      t2,0x55555555
        sw      t2,DmaByteMask(t0)      // write pattern to Byte mask
        lw      v0,DmaByteMask(t0)      // read Byte mask
        sw      t1,DmaPhysicalTag(t0)   // PFN=0 and Valid
        bne     v0,t2,MctadrRegError    //
        addu    t2,t2,t2                // t1=0xAAAAAAAA
        sw      t2,DmaByteMask(t0)      // write patten to Byte mask
        lw      v0,DmaByteMask(t0)      // read Byte mask
        li      t2,0xFFFFFFFF           // expected value
        bne     v0,t2,MctadrRegError    // Check byte mask
        li      a0,0xA0000000           // get memory address zero.
        sw      zero,0(a0)              // write address zero -> flushes buffers
        lw      v0,DmaByteMask(t0)      // read Byte mask
        nop
        bne     v0,zero,MctadrRegError  // Check byte mask was cleared.
        li      t4,MEMORY_REFRESH_RATE  //
        sw      t4,DmaRefreshRate(t0)   //
        li      t2,0x1555000            //
        sw      t2,DmaTranslationBase(t0) // write base of Translation Table
        li      t3,0x5550
        sw      t3,DmaTranslationLimit(t0) // write to TT_limit
        lw      v1,DmaTranslationBase(t0) // read TT Base
        lw      v0,DmaTranslationLimit(t0) // read  TT_limit
        bne     v1,t2,MctadrRegError    // check TT-BASE
        lw      v1,DmaRefreshRate(t0)
        bne     v0,t3,MctadrRegError    // check TT-LIMIT
        li      t2,0xAAA0
        bne     v1,t4,MctadrRegError    // check REFRESH Rate
        li      t1,0x2AAA000
        sw      t1,DmaTranslationBase(t0) // write to Translation Base
        sw      t2,DmaTranslationLimit(t0) // write to Translation Limit
        lw      v0,DmaTranslationBase(t0) // read TT Base
        lw      v1,DmaTranslationLimit(t0) // read  TT limit
        bne     v0,t1,MctadrRegError    // check TT Base
        li      t1, TT_BASE_ADDRESS     // Init translation table base address
        sw      t1, DmaTranslationBase(t0) // Initialize TT Base
        bne     v1,t2,MctadrRegError    // check TT Limit
        nop
        sw      zero,DmaTranslationLimit(t0) // clear TT Limit
//
// Initialize remote speed registers.
//
        addiu   t1,t0,DmaRemoteSpeed1   // address of REM_SPEED 1
        la      a1,RomRemoteSpeedValues - LINK_ADDRESS + RESET_VECTOR //
        addiu   t2,a1,14                // addres of last value
WriteNextRemSpeed:
        lbu     v0,0(a1)                // load init value for rem speed
        addiu   a1,a1,1                 // compute next address
        sw      v0,0(t1)                // write to rem speed reg
        bne     a1,t2,WriteNextRemSpeed // check for end condition
        addiu   t1,t1,8                 // next register address
        addiu   a1,t2,-14               // address of first value for rem speed register
        addiu   t1,t0,DmaRemoteSpeed1   // address of REM_SPEED 1
        lbu     v1,0(a1)                // read expected value
CheckNextRemSpeed:
        lw      v0,0(t1)                // read register
        addiu   a1,a1,1                 // address of next value
        bne     v0,v1,MctadrRegError    // check register
        addiu   t1,t1,8                 // address of next register
        bne     a1,t2,CheckNextRemSpeed // check for end condition
        lbu     v1,0(a1)                // read expected value
//
// Now test the DMA channel registers
//
        addiu   t1,t0,DmaChannel0Mode   // address of channel 0
        addiu   t2,t1,8*DMA_CHANNEL_GAP // last address of channel regs
        li      a0,0x15                 // Mode
        li      a1,0x2                  // enable
        li      a2,0xAAAAA              // byte count
        li      a3,0x555555             // address
WriteNextChannel:
        sw      a0,0(t1)                // write mode
        sw      a1,0x8(t1)              // write enable
        sw      a2,0x10(t1)             // write byte count
        sw      a3,0x18(t1)             // write address
        addiu   t1,t1,DMA_CHANNEL_GAP   // compute address of next channel
        addiu   a2,a2,1                 // change addres
        bne     t1,t2,WriteNextChannel
        addiu   a3,a3,-1                // change Byte count
//
// Check channel regs.
//
        addiu   t1,t0,DmaChannel0Mode   // address of channel 0
        addiu   t2,t1,8*DMA_CHANNEL_GAP // last address of channel regs
        li      a2,0xAAAAA              // byte count
        li      a3,0x555555             // address
CheckNextChannel:
        lw      t4,0x0(t1)              // read mode
        lw      t5,0x8(t1)              // read enable
        bne     t4,a0,MctadrRegError    // check mode
        lw      t4,0x10(t1)             // read byte count
        bne     t5,a1,MctadrRegError    // check enable
        lw      t5,0x18(t1)             // read address
        bne     t4,a2,MctadrRegError    // check abyte count
        addiu   a2,a2,1                 // next expected byte count
        bne     t5,a3,MctadrRegError    // check address
        addiu   t1,t1,DMA_CHANNEL_GAP   // next channel address
        bne     t1,t2,CheckNextChannel
        addiu   a3,a3,-1
//
// Now do a second test on DMA channel registers
//
        addiu   t1,t0,DmaChannel0Mode   // address of channel 0
        addiu   t2,t1,8*DMA_CHANNEL_GAP // last address of channel regs
        li      a0,0x2A                 // Mode
        li      a2,0x55555              // byte count
        li      a3,0xAAAAAA             // address
WriteNextChannel2:
        sw      a0,0(t1)                // write mode
        sw      a2,0x10(t1)             // write byte count
        sw      a3,0x18(t1)             // write address
        addiu   t1,t1,DMA_CHANNEL_GAP   // compute address of next channel
        addiu   a2,a2,1                 // change addres
        bne     t1,t2,WriteNextChannel2
        addiu   a3,a3,-1                // change Byte count
//
// Check channel regs.
//
        addiu   t1,t0,DmaChannel0Mode   // address of channel 0
        addiu   t2,t1,8*DMA_CHANNEL_GAP // last address of channel regs
        li      a2,0x55555              // byte count
        li      a3,0xAAAAAA             // address
CheckNextChannel2:
        lw      t4,0x0(t1)              // read mode
        lw      t5,0x10(t1)             // read byte count
        bne     t4,a0,MctadrRegError    // check mode
        lw      t4,0x18(t1)             // read address
        bne     t5,a2,MctadrRegError    // check abyte count
        addiu   a2,a2,1                 // next expected byte count
        bne     t4,a3,MctadrRegError    // check address
        addiu   t1,t1,DMA_CHANNEL_GAP   // next channel address
        bne     t1,t2,CheckNextChannel2
        addiu   a3,a3,-1
//
// Now zero the channel registers
//
        addiu   t1,t0,DmaChannel0Mode   // address of channel 0
        addiu   t2,t1,8*DMA_CHANNEL_GAP // last address of channel regs
ZeroChannelRegs:
        addiu   t1,t1,8
        sw      zero,-8(t1)             // clear reg
        bne     t1,t2,ZeroChannelRegs
        nop                             //R4KFIX
        addiu   t1,t0,DmaChannel0Mode   // address of channel 0
        addiu   t2,t1,8*DMA_CHANNEL_GAP // last address of channel regs
CheckZeroedChannelRegs:
        lw      a0,0(t1)
        addiu   t1,t1,8                 // next channel
        bne     a0,zero,MctadrRegError  // check
        nop
        bne     t1,t2,CheckZeroedChannelRegs
        nop
        j       s0                      // return to caller.
MctadrRegError:
        li      t0,DIAGNOSTIC_VIRTUAL_BASE // get base address of diag register
        lb      t0,0(t0)                // read register value.
        li      t1,LOOP_ON_ERROR_MASK   // get value to compare
        andi    t0,DIAGNOSTIC_MASK      // mask diagnostic bits.
        beq     t1,t0,10f               // branch if loop on error.
        ori     a0,zero,LED_MCTADR_REG  // load LED display value.
        lui     t0,LED_BLINK            // get LED blink code
        bal     PutLedDisplay           // Blink LED and hang.
        or      a0,a0,t0                // pass argument in a0
10:
        lui     t0,LED_LOOP_ERROR       // get LED LOOP_ERROR code
        bal     PutLedDisplay           // Set LOOP ON ERROR on LED
        or      a0,a0,t0                // pass argument in a0
        b       MctadrReg
        nop
        .end    MctadrRegisterTest

/*++
SizeMemory(
    );
Routine Description:

    This routine sizes the memory and writes the proper value into
    the GLOBAL CONFIG register.  The way memory is sized is the following:

    For JAZZ:

        The global config is ALREADY set to 64MB
        for each bank base address i.e. 48,32,16,0 MB
          ID0 is written to offset 0 from base of bank
          ID4 is written to offset 4MB from base of bank
            if ID4 is found at offset 0 the current bank has 1MB SIMMs.
            if ID0 is found at offset 0 and ID4 is found at offset 4,
                the current bank has 4MB SIMMs.
            if data does not match or a parity exception is taken
               then memory is not present in that bank.

    For FIS/USION:

        The global config is ALREADY set to 256MB
        for each bank base address i.e. 192,128,64,0 MB
          ID0 is written to offset 0 from base of bank
          ID4 is written to offset 4MB from base of bank
          ID20 is written to offset 20MB from base of bank
            if ID20 is found at offset 0 the current bank has 1MB SIMMs.
            if ID0 is found at offset 0 and ID20 is found at offset 4,
                the current bank has 4MB SIMMs.
            if ID0 is found at offset 0 and ID4 is found at offset 4
                and ID20 is found at offset 20, the current bank has 16MB SIMMs.
            if data does not match or a parity exception is taken
               then memory is not present in that bank.

Arguments:

        None.

Return Value:

        If the installed memory is inconsistent, does not return
        and the LED flashes A.E

--*/
#define MEM_ID0     0x0A0A0A0A
#define MEM_ID4     0xF5F5F5F5
#define MEM_ID20    0xA0A0A0A0

        LEAF_ENTRY(SizeMemory)
        .set noat
        .set noreorder
        li      t0,DMA_VIRTUAL_BASE     // Get base address of MCTADR
        lw      v0,DmaConfiguration(t0) // Check Config reset value
        li      t1,0x5fa                // FIS/USION
        beq     v0,t1,Fission           // Branch if 256 MByte config value found
        li      t0,0xA3000000           // get address 48MB
        li      t1,MEM_ID0              // get ID0
        li      t2,0xA3400000           // get address 52MB
        li      t3,MEM_ID4              // get ID4
        li      s0,3                    // counts how many banks left to check
        move    t8,zero                 // t8 stores the present banks
        move    t9,zero                 // t9 stores the size of the banks
SizeBank:
        move    a1,zero                 // set current bank to 1 MB by default
        sw      t1,0x0(t0)              // fill whole memory line at base of bank
        sw      t1,0x4(t0)
        sw      t1,0x8(t0)
        sw      t1,0xC(t0)
        sw      t3,0x0(t2)              // fill whole memory line at base of bank + 4MB
        sw      t3,0x4(t2)
        sw      t3,0x8(t2)
        sw      t3,0xC(t2)
        //
        // Check written2data
        //
        lw      t4,0x0(t0)              // read whole memory line.
        lw      t5,0x4(t0)              // the four words must be identical
        lw      t6,0x8(t0)              //
        lw      t7,0xC(t0)              //
        move    a0,zero                 // tells that bank not present
        bne     t4,t5,10f               // check for consistency
        nop
        bne     t4,t6,10f               // check for consistency
        nop                             //
        bne     t4,t7,10f               // check for consistency
        nop                             //
        beq     t4,t3,10f               // If ID4 is found at PA 0
        li      a0,0x1                  // bank is present and SIMMS are 1 MB
        bne     t4,t1,10f               // if neither ID4 nor ID0 is found we are in trouble
        move    a0,zero                 // no memory in bank
        li      a0,0x1                  // bank is present and SIMMS
                                        // look like they are 4 MB
        //
        // ID written at Address 0 has been correctly checked
        // Now check the ID written at address 4MB
        //
        lw      t4,0x0(t2)              // read whole memory line.
        lw      t5,0x4(t2)              // the four words must be identical
        bne     t3,t4,10f               // check for consistency
        lw      t6,0x8(t2)              //
        bne     t3,t5,10f               // check for consistency
        lw      t7,0xC(t2)              //
        bne     t3,t6,10f               // check for consistency
        nop                             //
        bne     t3,t7,10f               // check for consistency
        nop
        li      a1,0x1                  // If all matches SIMMs are 4MB
10:     //
        // a0 has the value 0 if no memory in bank 1 if memory in bank
        // a1 has the value 0 if 1MB SIMMS 1 if 4MB SIMMS
        //
        or      t8,t8,a0                // accummulate present banks
        or      t9,t9,a1                // accummulate size of banks
        //
        //  Check if last bank
        //
        beq     s0,zero,Done
        //
        // Now set addresses to check next bank
        //
        li      AT,0x01000000           // load 16MB
        subu    t0,t0,AT                // subtract to base address
        subu    t2,t2,AT                // subtract to base address + 4MB
        sll     t8,t8,1                 // make room for next bank
        sll     t9,t9,1                 // make room for next bank
        b       SizeBank                // go to size next memory bank
        addiu   s0,s0,-1                // subtract one to the num of banks left
Done:   //
        // t8 has the present banks in bits 3-0 for banks 3-0
        // t9 has the size of the banks in bits 3-2 and 1-0
        //
        // Check that memory is present in bank zero
        //
        andi    t0,t8,1
        beq     t0,zero,WrongMemory

        sll     t8,t8,2                 // shift bank enable bits to bits 5-2
        andi    t9,t9,0x3               // get rid of bits 2-3
        or      t8,t9,t8                // or size of banks with present banks
        ori     v0,t8,0x340             // Set Video RAM size and map PROM bits
        li      t0,DMA_VIRTUAL_BASE     // Get base address of MCTADR
        sw      v0,DmaConfiguration(t0) // Store computed Config
        j       ra                      // return to caller.
        nop

Fission:
        li      t0,0xAC000000           // get address 196MB
        li      t1,MEM_ID0              // get ID0
        li      t2,0xAC400000           // get address 200MB
        li      t3,MEM_ID4              // get ID4
        li      t4,0xAD400000           // get address 216MB
        li      t5,MEM_ID20             // get ID20
        li      s0,3                    // counts how many banks left to check
        move    t8,zero                 // t8 stores the present banks
        move    t9,zero                 // t9 stores the size of the banks
FSizeBank:
        move    a1,zero                 // set current bank to 1 MB by default
        sw      t1,0x0(t0)              // fill whole memory line at base of bank
        sw      t1,0x4(t0)
        sw      t1,0x8(t0)
        sw      t1,0xC(t0)
        sw      t3,0x0(t2)              // fill whole memory line at base of bank + 4MB
        sw      t3,0x4(t2)
        sw      t3,0x8(t2)
        sw      t3,0xC(t2)
        sw      t5,0x0(t4)              // fill whole memory line at base of bank + 20MB
        sw      t5,0x4(t4)
        sw      t5,0x8(t4)
        sw      t5,0xC(t4)
        //
        // Check written data
        //
        lw      t6,0x0(t0)              // read some of the memory line.
        lw      t7,0xC(t0)              // the two words must be identical

        move    a0,zero                 // tells that bank not present
        bne     t6,t7,10f               // check for consistency
        nop
        beq     t6,t5,10f               // If ID20 is found at 0MB
        li      a0,0x1                  // bank is present and SIMMS are 1 MB
        bne     t6,t1,10f               // if neither ID20 nor ID0 is found we are in trouble
        move    a0,zero                 // no memory in bank
        li      a0,0x1                  // bank is present
        //
        // ID written at Address 0 has been correctly checked
        // Now check the ID written at address 4MB
        //
        lw      t6,0x0(t2)              // read some of the memory line.
        lw      t7,0xC(t2)              // the two words must be identical
        nop
        bne     t6,t7,WrongMemory       // check for consistency
        nop
        beq     t6,t5,10f               // If ID20 is found at 4MB
        li      a1,0x1                  // bank is present and SIMMS are 4 MB
        bne     t6,t3,WrongMemory       // if neither ID20 nor ID4 is found we are in trouble
        nop
        //
        // ID written at Address 4MB has been correctly checked
        // Now check the ID written at address 20MB
        //
        lw      t6,0x0(t4)              // read some of the memory line.
        lw      t7,0xC(t4)              // the two words must be identical
        nop
        bne     t6,t7,WrongMemory       // check for consistency
        nop
        bne     t6,t5,WrongMemory       // if ID20 is not found we are in trouble
        nop
        li      a1,0x2                  // If all matches SIMMs are 16MB
10:     //
        // a0 has the value 0 if no memory in bank, 1 if memory in bank
        // a1 has the value 0 if 1MB SIMMS, 1 if 4MB SIMMS, 2 if 16MB SIMMS
        //
        or      t8,t8,a0                // accummulate present banks
        or      t9,t9,a1                // accummulate size of banks
        //
        //  Check if last bank
        //
        beq     s0,zero,FDone
        nop
        //
        // Now set addresses to check next bank
        //

        beq     s0,2,Swizzle            // swizzle banks
        li      AT,0x04000000           // load +64
        li      AT,-0x08000000          // load -128MB
Swizzle:
        addu    t0,t0,AT                // add to base address
        addu    t2,t2,AT                // add to base address + 4MB
        addu    t4,t4,AT                // add to base address + 20MB

        sll     t8,t8,1                 // make room for next bank
        sll     t9,t9,2                 // make room for next bank
        b       FSizeBank               // go to size next memory bank
        addiu   s0,s0,-1                // subtract one to the num of banks left
FDone:   //
        // t8 has the present banks in bits 3-0 for banks 3-0
        // t9 has the size of the banks in bits 7:6, 5:4, 3:2, and 1:0
        //
        // Check that memory is present in bank zero
        //
        andi    t0,t8,1
        beq     t0,zero,WrongMemory

        sll     t8,t8,4                 // shift bank enable bits to bits 7-4
        andi    t9,t9,0xF               // get rid of size bits 7-4
        or      t8,t9,t8                // or size of banks with present banks
        ori     v0,t8,0x500             // Set Video RAM size and map PROM bits
        li      t0,DMA_VIRTUAL_BASE     // Get base address of MCTADR
        ori     v0,0x1000               // Enable timer interrupts for REV3 and
                                        // greater ASICS
        sw      v0,DmaConfiguration(t0) // Store computed Config
        j       ra                      // return to caller.
        nop
WrongMemory:
        //
        // Control reaches here if the memory can't be sized.
        //
        lui     a0,LED_BLINK            // Hang
        bal     PutLedDisplay           // blinking the error code
        ori     a0,a0,LED_WRONG_MEMORY  // in the LED
        .end    SizeMemory

#endif  // JAZZ && R4000