summaryrefslogtreecommitdiffstats
path: root/private/ntos/nthals/halacr/mips/j4cache.s
blob: 98332fb3b0ec060f4d666b3f3f83e8fbff0611ed (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
#if defined(R4000)

//      TITLE("Cache Flush")
//++
//
// Copyright (c) 1991  Microsoft Corporation
//
// Module Name:
//
//    j4cache.s
//
// Abstract:
//
//    This module implements the code necessary for cache operations on
//    a MIPS R4000.
//
// Author:
//
//    David N. Cutler (davec) 19-Dec-1991
//
// Environment:
//
//    Kernel mode only.
//
// Revision History:
//
//--

#include "halmips.h"

//
// Define cache operations constants.
//

#define COLOR_BITS (7 << PAGE_SHIFT)    // color bit (R4000 - 8kb cache)
#define COLOR_MASK (0x7fff)             // color mask (R4000 - 8kb cache)
#define FLUSH_BASE 0xfffe0000           // flush base address
#define PROTECTION_BITS ((1 << ENTRYLO_V) | (1 << ENTRYLO_D)) //

        SBTTL("Change Color Page")
//++
//
// VOID
// HalChangeColorPage (
//    IN PVOID NewColor,
//    IN PVOID OldColor,
//    IN ULONG PageFrame
//    )
//
// Routine Description:
//
//    This function changes the color of a page if the old and new colors
//    do not match.
//
//    The algorithm used to change colors for a page is as follows:
//
//       1. Purge (hit/invalidate) the page from the instruction cache
//          using the old color.
//
//       2. Purge (hit/invalidate) the page from the data cache using
//          the old color.
//
// Arguments:
//
//    NewColor (a0) - Supplies the page aligned virtual address of the
//       new color of the page to change.
//
//    OldColor (a1) - Supplies the page aligned virtual address of the
//       old color of the page to change.
//
//    PageFrame (a2) - Supplies the page frame number of the page that
//       is changed.
//
// Return Value:
//
//    None.
//
//--

        .struct 0
        .space  3 * 4                   // fill
CpRa:   .space  4                       // saved return address
CpFrameLength:                          // length of stack frame
CpA0:   .space  4                       // (a0)
CpA1:   .space  4                       // (a1)
CpA2:   .space  4                       // (a2)
CpA3:   .space  4                       // (a3)

        NESTED_ENTRY(HalChangeColorPage, CpFrameLength, zero)

        subu    sp,sp,CpFrameLength     // allocate stack frame
        sw      ra,CpRa(sp)             // save return address

        PROLOGUE_END

        and     a0,a0,COLOR_BITS        // isolate new color bits
        and     a1,a1,COLOR_BITS        // isolate old color bits
        beq     a0,a1,10f               // if eq, colors match
        sw      a1,CpA1(sp)             // save old color bits
        sw      a2,CpA2(sp)             // save page frame

//
// Purge the instruction cache using the old page color.
//

        move    a0,a1                   // set color value
        move    a1,a2                   // set page frame number
        li      a2,PAGE_SIZE            // set length of purge
        jal     HalPurgeIcachePage      // purge instruction cache page

//
// Flush the data cache using the old page color.
//

        lw      a0,CpA1(sp)             // get old color bits
        lw      a1,CpA2(sp)             // get page frame number
        li      a2,PAGE_SIZE            // set length of purge
        jal     HalFlushDcachePage      // purge data cache page
10:     lw      ra,CpRa(sp)             // get return address
        addu    sp,sp,CpFrameLength     // deallocate stack frame
        j       ra                      // return

        .end    HalChangeColorPage

        SBTTL("Flush Data Cache Page")
//++
//
// VOID
// HalFlushDcachePage (
//    IN PVOID Color,
//    IN ULONG PageFrame,
//    IN ULONG Length
//    )
//
// Routine Description:
//
//    This function flushes (hit/writeback/invalidate) up to a page of data
//    from the data cache.
//
// Arguments:
//
//    Color (a0) - Supplies the starting virtual address and color of the
//       data that is flushed.
//
//    PageFrame (a1) - Supplies the page frame number of the page that
//       is flushed.
//
//    Length (a2) - Supplies the length of the region in the page that is
//       flushed.
//
// Return Value:
//
//    None.
//
//--

        LEAF_ENTRY(HalFlushDcachePage)

#if DBG

        lw      t0,KeDcacheFlushCount   // get address of dcache flush count
        lw      t1,0(t0)                // increment the count of flushes
        addu    t1,t1,1                 //
        sw      t1,0(t0)                // store result

#endif

        .set    noreorder
        .set    noat
        lw      v0,KiPcr + PcAlignedCachePolicy(zero) // get cache policy
        and     a0,a0,COLOR_MASK        // isolate color and offset bits
        li      t0,FLUSH_BASE           // get base flush address
        or      t0,t0,a0                // compute color virtual address
        sll     t1,a1,ENTRYLO_PFN       // shift page frame into position
        or      t1,t1,PROTECTION_BITS   // merge protection bits
        or      t1,t1,v0                // merge cache policy
        and     a0,a0,0x1000            // isolate TB entry index
        beql    zero,a0,10f             // if eq, first entry
        move    t2,zero                 // set second page table entry
        move    t2,t1                   // set second page table entry
        move    t1,zero                 // set first page table entry
10:     mfc0    t3,wired                // get TB entry index
        lw      v0,KiPcr + PcSecondLevelDcacheFillSize(zero) // get 2nd fill size
        lw      t4,KiPcr + PcFirstLevelDcacheFillSize(zero) // get 1st fill size
        bnel    zero,v0,15f             // if ne, second level cache present
        move    t4,v0                   // set flush block size
        .set    at
        .set    reorder

//
// Flush a page from the data cache.
//

15:     DISABLE_INTERRUPTS(t5)          // disable interrupts

        .set    noreorder
        .set    noat
        mfc0    t6,entryhi              // get current PID and VPN2
        srl     t7,t0,ENTRYHI_VPN2      // isolate VPN2 of virtual address
        sll     t7,t7,ENTRYHI_VPN2      //
        and     t6,t6,0xff << ENTRYHI_PID // isolate current PID
        or      t7,t7,t6                // merge PID with VPN2 of virtual address
        mtc0    t7,entryhi              // set VPN2 and PID for probe
        mtc0    t1,entrylo0             // set first PTE value
        mtc0    t2,entrylo1             // set second PTE value
        mtc0    t3,index                // set TB index value
        nop                             // fill
        tlbwi                           // write TB entry - 3 cycle hazzard
        subu    t6,t4,1                 // compute block size minus one
        and     t7,t0,t6                // compute offset in block
        addu    a2,a2,t6                // round up to next block
        addu    a2,a2,t7                //
        nor     t6,t6,zero              // complement block size minus one
        and     a2,a2,t6                // truncate length to even number
        beq     zero,a2,30f             // if eq, no blocks to flush
        and     t8,t0,t6                // compute starting virtual address
        addu    t9,t8,a2                // compute ending virtual address
        bne     zero,v0,40f             // if ne, second level cache present
        subu    t9,t9,t4                // compute ending loop address

//
// Flush the primary data cache only.
//

20:     cache   HIT_WRITEBACK_INVALIDATE_D,0(t8) // invalidate cache block
        bne     t8,t9,20b               // if ne, more blocks to invalidate
        addu    t8,t8,t4                // compute next block address
        .set    at
        .set    reorder

30:     ENABLE_INTERRUPTS(t5)           // enable interrupts

        j       ra                      // return

//
// Flush the primary and secondary data caches.
//

        .set    noreorder
        .set    noat
40:     cache   HIT_WRITEBACK_INVALIDATE_SD,0(t8) // invalidate cache block
        bne     t8,t9,40b               // if ne, more blocks to invalidate
        addu    t8,t8,t4                // compute next block address
        .set    at
        .set    reorder

        ENABLE_INTERRUPTS(t5)           // enable interrupts

        j       ra                      // return

        .end    HalFlushDcachePage

        SBTTL("Purge Data Cache Page")
//++
//
// VOID
// HalPurgeDcachePage (
//    IN PVOID Color,
//    IN ULONG PageFrame,
//    IN ULONG Length
//    )
//
// Routine Description:
//
//    This function purges (hit/invalidate) up to a page of data from the
//    data cache.
//
// Arguments:
//
//    Color (a0) - Supplies the starting virtual address and color of the
//       data that is purged.
//
//    PageFrame (a1) - Supplies the page frame number of the page that
//       is purged.
//
//    Length (a2) - Supplies the length of the region in the page that is
//       purged.
//
// Return Value:
//
//    None.
//
//--

        LEAF_ENTRY(HalPurgeDcachePage)

#if DBG

        lw      t0,KeDcacheFlushCount   // get address of dcache flush count
        lw      t1,0(t0)                // increment the count of flushes
        addu    t1,t1,1                 //
        sw      t1,0(t0)                // store result

#endif

        .set    noreorder
        .set    noat
        lw      v0,KiPcr + PcAlignedCachePolicy(zero) // get cache policy
        and     a0,a0,COLOR_MASK        // isolate color bits
        li      t0,FLUSH_BASE           // get base flush address
        or      t0,t0,a0                // compute color virtual address
        sll     t1,a1,ENTRYLO_PFN       // shift page frame into position
        or      t1,t1,PROTECTION_BITS   // merge protection bits
        or      t1,t1,v0                // merge cache policy
        and     a0,a0,0x1000            // isolate TB entry index
        beql    zero,a0,10f             // if eq, first entry
        move    t2,zero                 // set second page table entry
        move    t2,t1                   // set second page table entry
        move    t1,zero                 // set first page table entry
10:     mfc0    t3,wired                // get TB entry index
        lw      v0,KiPcr + PcSecondLevelDcacheFillSize(zero) // get 2nd fill size
        lw      t4,KiPcr + PcFirstLevelDcacheFillSize(zero) // get 1st fill size
        bnel    zero,v0,15f             // if ne, second level cache present
        move    t4,v0                   // set purge block size
        .set    at
        .set    reorder

//
// Purge data from the data cache.
//

15:     DISABLE_INTERRUPTS(t5)          // disable interrupts

        .set    noreorder
        .set    noat
        mfc0    t6,entryhi              // get current PID and VPN2
        srl     t7,t0,ENTRYHI_VPN2      // isolate VPN2 of virtual address
        sll     t7,t7,ENTRYHI_VPN2      //
        and     t6,t6,0xff << ENTRYHI_PID // isolate current PID
        or      t7,t7,t6                // merge PID with VPN2 of virtual address
        mtc0    t7,entryhi              // set VPN2 and PID for probe
        mtc0    t1,entrylo0             // set first PTE value
        mtc0    t2,entrylo1             // set second PTE value
        mtc0    t3,index                // set TB index value
        nop                             // fill
        tlbwi                           // write TB entry - 3 cycle hazzard
        subu    t6,t4,1                 // compute block size minus one
        and     t7,t0,t6                // compute offset in block
        addu    a2,a2,t6                // round up to next block
        addu    a2,a2,t7                //
        nor     t6,t6,zero              // complement block size minus one
        and     a2,a2,t6                // truncate length to even number
        beq     zero,a2,30f             // if eq, no blocks to purge
        and     t8,t0,t6                // compute starting virtual address
        addu    t9,t8,a2                // compute ending virtual address
        bne     zero,v0,40f             // if ne, second level cache present
        subu    t9,t9,t4                // compute ending loop address

//
// Purge the primary data cache only.
//

20:     cache   HIT_INVALIDATE_D,0(t8)  // invalidate cache block
        bne     t8,t9,20b               // if ne, more blocks to invalidate
        addu    t8,t8,t4                // compute next block address
        .set    at
        .set    reorder

30:     ENABLE_INTERRUPTS(t5)           // enable interrupts

        j       ra                      // return

//
// Purge the primary and secondary data caches.
//

        .set    noreorder
        .set    noat
40:     cache   HIT_INVALIDATE_SD,0(t8) // invalidate cache block
        bne     t8,t9,40b               // if ne, more blocks to invalidate
        addu    t8,t8,t4                // compute next block address
        .set    at
        .set    reorder

        ENABLE_INTERRUPTS(t5)           // enable interrupts

        j       ra                      // return

        .end    HalPurgeDcachePage

        SBTTL("Purge Instruction Cache Page")
//++
//
// VOID
// HalPurgeIcachePage (
//    IN PVOID Color,
//    IN ULONG PageFrame,
//    IN ULONG Length
//    )
//
// Routine Description:
//
//    This function purges (hit/invalidate) up to a page fo data from the
//    instruction cache.
//
// Arguments:
//
//    Color (a0) - Supplies the starting virtual address and color of the
//       data that is purged.
//
//    PageFrame (a1) - Supplies the page frame number of the page that
//       is purged.
//
//    Length (a2) - Supplies the length of the region in the page that is
//       purged.
//
// Return Value:
//
//    None.
//
//--

        LEAF_ENTRY(HalPurgeIcachePage)

#if DBG

        lw      t0,KeIcacheFlushCount   // get address of icache flush count
        lw      t1,0(t0)                // increment the count of flushes
        addu    t1,t1,1                 //
        sw      t1,0(t0)                // store result

#endif

        .set    noreorder
        .set    noat
        lw      v0,KiPcr + PcAlignedCachePolicy(zero) // get cache policy
        and     a0,a0,COLOR_MASK        // isolate color bits
        li      t0,FLUSH_BASE           // get base flush address
        or      t0,t0,a0                // compute color virtual address
        sll     t1,a1,ENTRYLO_PFN       // shift page frame into position
        or      t1,t1,PROTECTION_BITS   // merge protection bits
        or      t1,t1,v0                // merge cache policy
        and     a0,a0,0x1000            // isolate TB entry index
        beql    zero,a0,10f             // if eq, first entry
        move    t2,zero                 // set second page table entry
        move    t2,t1                   // set second page table entry
        move    t1,zero                 // set first page table entry
10:     mfc0    t3,wired                // get TB entry index
        lw      v0,KiPcr + PcSecondLevelIcacheFillSize(zero) // get 2nd fill size
        lw      t4,KiPcr + PcFirstLevelIcacheFillSize(zero) // get 1st fill size
        bnel    zero,v0,15f             // if ne, second level cache present
        move    t4,v0                   // set purge block size
        .set    at
        .set    reorder

//
// Purge data from the instruction cache.
//

15:     DISABLE_INTERRUPTS(t5)          // disable interrupts

        .set    noreorder
        .set    noat
        mfc0    t6,entryhi              // get current PID and VPN2
        srl     t7,t0,ENTRYHI_VPN2      // isolate VPN2 of virtual address
        sll     t7,t7,ENTRYHI_VPN2      //
        and     t6,t6,0xff << ENTRYHI_PID // isolate current PID
        or      t7,t7,t6                // merge PID with VPN2 of virtual address
        mtc0    t7,entryhi              // set VPN2 and PID for probe
        mtc0    t1,entrylo0             // set first PTE value
        mtc0    t2,entrylo1             // set second PTE value
        mtc0    t3,index                // set TB index value
        nop                             // fill
        tlbwi                           // write TB entry - 3 cycle hazzard
        subu    t6,t4,1                 // compute block size minus one
        and     t7,t0,t6                // compute offset in block
        addu    a2,a2,t6                // round up to next block
        addu    a2,a2,t7                //
        nor     t6,t6,zero              // complement block size minus one
        and     a2,a2,t6                // truncate length to even number
        beq     zero,a2,30f             // if eq, no blocks to purge
        and     t8,t0,t6                // compute starting virtual address
        addu    t9,t8,a2                // compute ending virtual address
        bne     zero,v0,40f             // if ne, second level cache present
        subu    t9,t9,t4                // compute ending loop address

//
// Purge the primary instruction cache only.
//

20:     cache   HIT_INVALIDATE_I,0(t8)  // invalidate cache block
        bne     t8,t9,20b               // if ne, more blocks to invalidate
        addu    t8,t8,t4                // compute next block address
        .set    at
        .set    reorder

30:     ENABLE_INTERRUPTS(t5)           // enable interrupts

        j       ra                      // return

//
// Purge the primary and secondary instruction caches.
//

        .set    noreorder
        .set    noat
40:     cache   HIT_INVALIDATE_SI,0(t8) // invalidate cache block
        bne     t8,t9,40b               // if ne, more blocks to invalidate
        addu    t8,t8,t4                // compute next block address
        .set    at
        .set    reorder

        ENABLE_INTERRUPTS(t5)           // enable interrupts

        j       ra                      // return

        .end    HalPurgeIcachePage

        SBTTL("Sweep Data Cache")
//++
//
// VOID
// HalSweepDcache (
//    VOID
//    )
//
// Routine Description:
//
//    This function sweeps (index/writeback/invalidate) the entire data cache.
//
// Arguments:
//
//    None.
//
// Return Value:
//
//    None.
//
//--

        LEAF_ENTRY(HalSweepDcache)

#if DBG

        lw      t0,KeDcacheFlushCount   // get address of dcache flush count
        lw      t1,0(t0)                // increment the count of flushes
        addu    t1,t1,1                 //
        sw      t1,0(t0)                // store result

#endif

        lw      t0,KiPcr + PcFirstLevelDcacheSize(zero) // get data cache size
        lw      t1,KiPcr + PcFirstLevelDcacheFillSize(zero) // get block size
        li      a0,KSEG0_BASE           // set starting index value
        addu    a1,a0,t0                // compute ending cache address
        subu    a1,a1,t1                // compute ending block address

//
// Sweep the primary data cache.
//

        .set    noreorder
        .set    noat
10:     cache   INDEX_WRITEBACK_INVALIDATE_D,0(a0) // writeback/invalidate on index
        bne     a0,a1,10b               // if ne, more to invalidate
        addu    a0,a0,t1                // compute address of next block
        .set    at
        .set    reorder

        lw      t0,KiPcr + PcSecondLevelDcacheSize(zero) // get data cache size
        lw      t1,KiPcr + PcSecondLevelDcacheFillSize(zero) // get block size
        beq     zero,t1,30f             // if eq, no second level cache
        li      a0,KSEG0_BASE           // set starting index value
        addu    a1,a0,t0                // compute ending cache address
        subu    a1,a1,t1                // compute ending block address

//
// Sweep the secondary data cache.
//

        .set    noreorder
        .set    noat
20:     cache   INDEX_WRITEBACK_INVALIDATE_SD,0(a0) // writeback/invalidate on index
        bne     a0,a1,20b               // if ne, more to invalidate
        addu    a0,a0,t1                // compute address of next block
        .set    at
        .set    reorder

30:     j       ra                      // return

        .end    HalSweepDcache

        SBTTL("Sweep Data Cache Range")
//++
//
// VOID
// HalSweepDcacheRange (
//    IN PVOID BaseAddress,
//    IN ULONG Length
//    )
//
// Routine Description:
//
//    This function sweeps (index/writeback/invalidate) the specified range
//    of virtual addresses from the primary data cache.
//
// Arguments:
//
//    BaseAddress (a0) - Supplies the base address of the range that is swept
//        from the data cache.
//
//    Length (a1) - Supplies the length of the range that is swept from the
//        data cache.
//
// Return Value:
//
//    None.
//
//--

        LEAF_ENTRY(HalSweepDcacheRange)

#if DBG

        lw      t0,KeDcacheFlushCount   // get address of dcache flush count
        lw      t1,0(t0)                // increment the count of flushes
        addu    t1,t1,1                 //
        sw      t1,0(t0)                // store result conditionally

#endif

        and     a0,a0,COLOR_MASK        // isolate color and offset bits
        or      a0,a0,KSEG0_BASE        // convert to physical address
        lw      t0,KiPcr + PcFirstLevelDcacheFillSize(zero) // get block size
        addu    a1,a0,a1                // compute ending cache address
        subu    a1,a1,t0                // compute ending block address

//
// Sweep the primary data cache.
//

        .set    noreorder
        .set    noat
10:     cache   INDEX_WRITEBACK_INVALIDATE_D,0(a0) // writeback/invalidate on index
        bne     a0,a1,10b               // if ne, more to invalidate
        addu    a0,a0,t0                // compute address of next block
        .set    at
        .set    reorder

        j       ra                      // return

        .end    HalSweepDcacheRange

        SBTTL("Sweep Instruction Cache")
//++
//
// VOID
// HalSweepIcache (
//    VOID
//    )
//
// Routine Description:
//
//    This function sweeps (index/invalidate) the entire instruction cache.
//
// Arguments:
//
//    None.
//
// Return Value:
//
//    None.
//
//--

        LEAF_ENTRY(HalSweepIcache)

#if DBG

        lw      t0,KeIcacheFlushCount   // get address of icache flush count
        lw      t1,0(t0)                // increment the count of flushes
        addu    t1,t1,1                 //
        sw      t1,0(t0)                // store result

#endif

        lw      t0,KiPcr + PcSecondLevelIcacheSize(zero) // get instruction cache size
        lw      t1,KiPcr + PcSecondLevelIcacheFillSize(zero) // get fill size
        beq     zero,t1,20f             // if eq, no second level cache
        li      a0,KSEG0_BASE           // set starting index value
        addu    a1,a0,t0                // compute ending cache address
        subu    a1,a1,t1                // compute ending block address

//
// Sweep the secondary instruction cache.
//

        .set    noreorder
        .set    noat
10:     cache   INDEX_INVALIDATE_SI,0(a0) // invalidate cache line
        bne     a0,a1,10b               // if ne, more to invalidate
        addu    a0,a0,t1                // compute address of next block
        .set    at
        .set    reorder

20:     lw      t0,KiPcr + PcFirstLevelIcacheSize(zero) // get instruction cache size
        lw      t1,KiPcr + PcFirstLevelIcacheFillSize(zero) // get fill size
        li      a0,KSEG0_BASE           // set starting index value
        addu    a1,a0,t0                // compute ending cache address
        subu    a1,a1,t1                // compute ending block address

//
// Sweep the primary instruction cache.
//

        .set    noreorder
        .set    noat
30:     cache   INDEX_INVALIDATE_I,0(a0) // invalidate cache line
        bne     a0,a1,30b               // if ne, more to invalidate
        addu    a0,a0,t1                // compute address of next block
        .set    at
        .set    reorder

        j       ra                      // return

        .end    HalSweepIcache

        SBTTL("Sweep Instruction Cache Range")
//++
//
// VOID
// HalSweepIcacheRange (
//    IN PVOID BaseAddress,
//    IN ULONG Length
//    )
//
// Routine Description:
//
//    This function sweeps (index/invalidate) the specified range of addresses
//    from the instruction cache.
//
// Arguments:
//
//    BaseAddress (a0) - Supplies the base address of the range that is swept
//        from the instruction cache.
//
//    Length (a1) - Supplies the length of the range that is swept from the
//        instruction cache.
//
// Return Value:
//
//    None.
//
//--

        LEAF_ENTRY(HalSweepIcacheRange)

#if DBG

        lw      t0,KeIcacheFlushCount   // get address of icache flush count
        lw      t1,0(t0)                // increment the count of flushes
        addu    t1,t1,1                 //
        sw      t1,0(t0)                // store result

#endif

        and     a0,a0,COLOR_MASK        // isolate color and offset bits
        or      a0,a0,KSEG0_BASE        // convert to physical address
        lw      t0,KiPcr + PcFirstLevelIcacheFillSize(zero) // get fill size
        addu    a1,a0,a1                // compute ending cache address
        subu    a1,a1,t0                // compute ending block address

//
// Sweep the primary instruction cache.
//

        .set    noreorder
        .set    noat
10:     cache   INDEX_INVALIDATE_I,0(a0) // invalidate cache line
        bne     a0,a1,10b               // if ne, more to invalidate
        addu    a0,a0,t0                // compute address of next block
        .set    at
        .set    reorder

        j       ra                      // return

        .end    HalSweepIcacheRange

        SBTTL("Zero Page")
//++
//
// VOID
// HalZeroPage (
//    IN PVOID NewColor,
//    IN PVOID OldColor,
//    IN ULONG PageFrame
//    )
//
// Routine Description:
//
//    This function zeros a page of memory.
//
//    The algorithm used to zero a page is as follows:
//
//       1. Purge (hit/invalidate) the page from the instruction cache
//          using the old color iff the old color is not the same as
//          the new color.
//
//       2. Purge (hit/invalidate) the page from the data cache using
//          the old color iff the old color is not the same as the new
//          color.
//
//       3. Create (create/dirty/exclusive) the page in the data cache
//          using the new color.
//
//       4. Write zeros to the page using the new color.
//
// Arguments:
//
//    NewColor (a0) - Supplies the page aligned virtual address of the
//       new color of the page that is zeroed.
//
//    OldColor (a1) - Supplies the page aligned virtual address of the
//       old color of the page that is zeroed.
//
//    PageFrame (a2) - Supplies the page frame number of the page that
//       is zeroed.
//
// Return Value:
//
//    None.
//
//--

        .struct 0
        .space  3 * 4                   // fill
ZpRa:   .space  4                       // saved return address
ZpFrameLength:                          // length of stack frame
ZpA0:   .space  4                       // (a0)
ZpA1:   .space  4                       // (a1)
ZpA2:   .space  4                       // (a2)
ZpA3:   .space  4                       // (a3)

        NESTED_ENTRY(HalZeroPage, ZpFrameLength, zero)

        subu    sp,sp,ZpFrameLength     // allocate stack frame
        sw      ra,ZpRa(sp)             // save return address

        PROLOGUE_END

        and     a0,a0,COLOR_BITS        // isolate new color bits
        and     a1,a1,COLOR_BITS        // isolate old color bits
        sw      a0,ZpA0(sp)             // save new color bits
        sw      a1,ZpA1(sp)             // save old color bits
        sw      a2,ZpA2(sp)             // save page frame

//
// Purge the instruction cache using the old page color iff the old page
// color is not equal to the new page color.
//

        beq     a0,a1,10f               // if eq, colors match
        move    a0,a1                   // set old color value
        move    a1,a2                   // set page frame number
        li      a2,PAGE_SIZE            // set length of purge
        jal     HalPurgeIcachePage      // purge instruction cache page

//
// Purge the data cache using the old page color iff the old page color is
// not equal to the new page color.
//

        lw      a0,ZpA1(sp)             // get old color value
        lw      a1,ZpA2(sp)             // get page frame number
        li      a2,PAGE_SIZE            // set length of purge
        jal     HalPurgeDcachePage      // purge data cache page

//
// Create dirty exclusive cache blocks and zero the data.
//

10:     lw      a3,ZpA0(sp)             // get new color bits
        lw      a1,ZpA2(sp)             // get page frame number

        .set    noreorder
        .set    noat
        lw      v0,KiPcr + PcAlignedCachePolicy(zero) // get cache polciy
        li      t0,FLUSH_BASE           // get base flush address
        or      t0,t0,a3                // compute new color virtual address
        sll     t1,a1,ENTRYLO_PFN       // shift page frame into position
        or      t1,t1,PROTECTION_BITS   // merge protection bits
        or      t1,t1,v0                // merge cache policy
        and     a3,a3,0x1000            // isolate TB entry index
        beql    zero,a3,20f             // if eq, first entry
        move    t2,zero                 // set second page table entry
        move    t2,t1                   // set second page table entry
        move    t1,zero                 // set first page table entry
20:     mfc0    t3,wired                // get TB entry index
        lw      t4,KiPcr + PcFirstLevelDcacheFillSize(zero) // get 1st fill size
        lw      v0,KiPcr + PcSecondLevelDcacheFillSize(zero) // get 2nd fill size
        .set    at
        .set    reorder

        DISABLE_INTERRUPTS(t5)          // disable interrupts

        .set    noreorder
        .set    noat
        mfc0    t6,entryhi              // get current PID and VPN2
        srl     t7,t0,ENTRYHI_VPN2      // isolate VPN2 of virtual address
        sll     t7,t7,ENTRYHI_VPN2      //
        and     t6,t6,0xff << ENTRYHI_PID // isolate current PID
        or      t7,t7,t6                // merge PID with VPN2 of virtual address
        mtc0    t7,entryhi              // set VPN2 and PID for probe
        mtc0    t1,entrylo0             // set first PTE value
        mtc0    t2,entrylo1             // set second PTE value
        mtc0    t3,index                // set TB index value
        nop                             // fill
        tlbwi                           // write TB entry - 3 cycle hazzard
        addu    t9,t0,PAGE_SIZE         // compute ending address of block
        dmtc1   zero,f0                 // set write pattern
        bne     zero,v0,50f             // if ne, second level cache present
        and     t8,t4,0x10              // test if 16-byte cache block

//
// Zero page in primary data cache only.
//

30:     cache   CREATE_DIRTY_EXCLUSIVE_D,0(t0) // create cache block
        addu    t0,t0,t4                // compute next block address
        bne     zero,t8,40f             // if ne, 16-byte cache line
        sdc1    f0,-16(t0)              //
        sdc1    f0,-24(t0)              // zero 16 bytes
        sdc1    f0,-32(t0)              //
40:     bne     t0,t9,30b               // if ne, more blocks to zero
        sdc1    f0,-8(t0)               // zero 16 bytes
        .set    at
        .set    reorder

        ENABLE_INTERRUPTS(t5)           // enable interrupts

        lw      ra,ZpRa(sp)             // get return address
        addu    sp,sp,ZpFrameLength     // deallocate stack frame
        j       ra                      // return

//
// Zero page in primary and secondary data caches.
//

        .set    noreorder
        .set    noat
50:     cache   CREATE_DIRTY_EXCLUSIVE_SD,0(t0) // create secondary cache block
        addu    v1,v0,t0                // compute ending primary block address
60:     addu    t0,t0,t4                // compute next block address
        bne     zero,t8,70f             // if ne, 16-byte primary cache line
        sdc1    f0,-16(t0)              //
        sdc1    f0,-24(t0)              // zero 16 bytes
        sdc1    f0,-32(t0)              //
70:     bne     t0,v1,60b               // if ne, more primary blocks to zero
        sdc1    f0,-8(t0)               // zero 16 bytes
        bne     t0,t9,50b               // if ne, more secondary blocks to zero
        nop                             // fill
        .set    at
        .set    reorder

        ENABLE_INTERRUPTS(t5)           // enable interrupts

        lw      ra,ZpRa(sp)             // get return address
        addu    sp,sp,ZpFrameLength     // deallocate stack frame
        j       ra                      // return

        .end    HalZeroPage

#endif