summaryrefslogtreecommitdiffstats
path: root/private/ntos/nthals/halacr/mips/jxhwsup.c
blob: 927b9bec1245acfdfa27d2df96f2833e9e6774f8 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
/*++

Copyright (c) 1990-1993  Microsoft Corporation

Module Name:

    jxhwsup.c

Abstract:

    This module contains the HalpXxx routines for the NT I/O system that
    are hardware dependent.  Were these routines not hardware dependent,
    they would normally reside in the internal.c module.


--*/

#include "halp.h"
#include "bugcodes.h"
#include "jazzint.h"
#include "eisa.h"

//
// Put all code for HAL initialization in the INIT section. It will be
// deallocated by memory management when phase 1 initialization is
// completed.
//

#if defined(ALLOC_PRAGMA)

#pragma alloc_text(INIT, HalpCreateDmaStructures)

#endif

extern POBJECT_TYPE IoAdapterObjectType;

#define ACER

#if defined(ACER)
#define INTERNAL_DMA_CHANNEL 4
#else
#define INTERNAL_DMA_CHANNEL 8
#endif
#define IOBUS_DMA_CHANNEL 8



//
// The jazz DMA controller has a larger number of map registers which may be used
// by any adapter channel.  In order to pool all of the map registers a master
// adapter object is used.  This object is allocated and saved internal to this
// file.  It contains a bit map for allocation of the registers and a queue
// for requests which are waiting for more map registers.  This object is
// allocated during the first request to allocate an adapter.
//

PADAPTER_OBJECT MasterAdapterObject;

//
// The following is the interrupt object used for DMA controller interrupts.
// DMA controller interrupts occur when a memory parity error occurs or a
// programming error occurs to the DMA controller.
//

KINTERRUPT HalpDmaChannelInterrupt;

UCHAR DmaChannelMsg[] = "\nHAL: DMA channel x interrupted.  ";

//
// Pointer to phyiscal memory for map registers.
//

ULONG  HalpMapRegisterPhysicalBase;

//
// The following function is called when a DMA channel interrupt occurs.
//

BOOLEAN
HalpDmaChannel(
    IN PKINTERRUPT Interrupt,
    IN PVOID ServiceContext
    );

//
// The following is an array of adapter object structures for the internal DMA
// channels.
//

PADAPTER_OBJECT HalpInternalAdapters[INTERNAL_DMA_CHANNEL];

IO_ALLOCATION_ACTION
HalpAllocationRoutine (
    IN PDEVICE_OBJECT DeviceObject,
    IN PIRP Irp,
    IN PVOID MapRegisterBase,
    IN PVOID Context
    );

ULONG
HalpReadEisaData (
    IN ULONG BusNumber,
    IN ULONG SlotNumber,
    IN PVOID Buffer,
    IN ULONG Offset,
    IN ULONG Length
    );

NTSTATUS
HalAllocateAdapterChannel(
    IN PADAPTER_OBJECT AdapterObject,
    IN PWAIT_CONTEXT_BLOCK Wcb,
    IN ULONG NumberOfMapRegisters,
    IN PDRIVER_CONTROL ExecutionRoutine
    )
/*++

Routine Description:

    This routine allocates the adapter channel specified by the adapter object.
    This is accomplished by placing the device object of the driver that wants
    to allocate the adapter on the adapter's queue.  If the queue is already
    "busy", then the adapter has already been allocated, so the device object
    is simply placed onto the queue and waits until the adapter becomes free.

    Once the adapter becomes free (or if it already is), then the driver's
    execution routine is invoked.

    Also, a number of map registers may be allocated to the driver by specifying
    a non-zero value for NumberOfMapRegisters.  Then the map register must be
    allocated from the master adapter.  Once there are a sufficient number of
    map registers available, then the execution routine is called and the
    base address of the allocated map registers in the adapter is also passed
    to the driver's execution routine.

Arguments:

    AdapterObject - Pointer to the adapter control object to allocate to the
        driver.

    Wcb - Supplies a wait context block for saving the allocation parameters.
        The DeviceObject, CurrentIrp and DeviceContext should be initalized.

    NumberOfMapRegisters - The number of map registers that are to be allocated
        from the channel, if any.

    ExecutionRoutine - The address of the driver's execution routine that is
        invoked once the adapter channel (and possibly map registers) have been
        allocated.

Return Value:

    Returns STATUS_SUCESS unless too many map registers are requested.

Notes:

    Note that this routine MUST be invoked at DISPATCH_LEVEL or above.

--*/

{
    PADAPTER_OBJECT MasterAdapter;
    BOOLEAN Busy = FALSE;
    IO_ALLOCATION_ACTION Action;
    LONG MapRegisterNumber;
    KIRQL Irql;
    ULONG Hint;

    //
    // Begin by obtaining a pointer to the master adapter associated with this
    // request.
    //

    if (AdapterObject->MasterAdapter != NULL) {
        MasterAdapter = AdapterObject->MasterAdapter;
    } else {
        MasterAdapter = AdapterObject;
    }

    //
    // Initialize the device object's wait context block in case this device
    // must wait before being able to allocate the adapter.
    //

    Wcb->DeviceRoutine = ExecutionRoutine;
    Wcb->NumberOfMapRegisters = NumberOfMapRegisters;

    //
    // Allocate the adapter object for this particular device.  If the
    // adapter cannot be allocated because it has already been allocated
    // to another device, then return to the caller now;  otherwise,
    // continue.
    //

    if (!KeInsertDeviceQueue( &AdapterObject->ChannelWaitQueue,
                              &Wcb->WaitQueueEntry )) {

        //
        // The adapter was not busy so it has been allocated.  Now check
        // to see whether this driver wishes to allocate any map registers.
        // If so, then queue the device object to the master adapter queue
        // to wait for them to become available.  If the driver wants map
        // registers, ensure that this adapter has enough total map registers
        // to satisfy the request.
        //

        AdapterObject->CurrentWcb = Wcb;
        AdapterObject->NumberOfMapRegisters = Wcb->NumberOfMapRegisters;

        if (NumberOfMapRegisters != 0) {
            if (NumberOfMapRegisters > MasterAdapter->MapRegistersPerChannel) {
                AdapterObject->NumberOfMapRegisters = 0;
                IoFreeAdapterChannel(AdapterObject);
                return(STATUS_INSUFFICIENT_RESOURCES);
            }

            //
            // Lock the map register bit map and the adapter queue in the
            // master adapter object. The channel structure offset is used as
            // a hint for the register search.
            //

            KeAcquireSpinLock( &MasterAdapter->SpinLock, &Irql );

            MapRegisterNumber = -1;

            if (IsListEmpty( &MasterAdapter->AdapterQueue)) {

               Hint = AdapterObject->PagePort ? (0x100000 / PAGE_SIZE) : 0;

               MapRegisterNumber = RtlFindClearBitsAndSet(
                    MasterAdapter->MapRegisters,
                    NumberOfMapRegisters,
                    Hint
                    );

               //
               // Make sure this map register is valid for this adapter.
               //

               if ((ULONG) MapRegisterNumber < Hint) {

                   //
                   // Make it look like there are no map registers.
                   //

                   RtlClearBits(
                        MasterAdapter->MapRegisters,
                        MapRegisterNumber,
                        NumberOfMapRegisters
                        );

                   MapRegisterNumber = -1;
               }
            }

            if (MapRegisterNumber == -1) {

               //
               // There were not enough free map registers.  Queue this request
               // on the master adapter where is will wait until some registers
               // are deallocated.
               //

               InsertTailList( &MasterAdapter->AdapterQueue,
                               &AdapterObject->AdapterQueue
                               );
               Busy = 1;

            } else {
               AdapterObject->MapRegisterBase = (PVOID) ((PTRANSLATION_ENTRY) MasterAdapter->MapRegisterBase + MapRegisterNumber);
            }

            KeReleaseSpinLock( &MasterAdapter->SpinLock, Irql );
        }

        //
        // If there were either enough map registers available or no map
        // registers needed to be allocated, invoke the driver's execution
        // routine now.
        //

        if (!Busy) {

            Action = ExecutionRoutine( Wcb->DeviceObject,
                                       Wcb->CurrentIrp,
                                       AdapterObject->MapRegisterBase,
                                       Wcb->DeviceContext
                                       );

            //
            // If the driver wishes to keep the map registers then set the number
            // allocated to zero and set the action to deallocate object.
            //

            if (Action == DeallocateObjectKeepRegisters) {
                AdapterObject->NumberOfMapRegisters = 0;
                Action = DeallocateObject;
            }

            //
            // If the driver would like to have the adapter deallocated,
            // then deallocate any map registers allocated and then release
            // the adapter object.
            //

            if (Action == DeallocateObject) {
                IoFreeAdapterChannel( AdapterObject );
            }
        }
    }

    return(STATUS_SUCCESS);

}

PVOID
HalAllocateCommonBuffer(
    IN PADAPTER_OBJECT AdapterObject,
    IN ULONG Length,
    OUT PPHYSICAL_ADDRESS LogicalAddress,
    IN BOOLEAN CacheEnabled
    )

/*++

Routine Description:

    This function allocates the memory for a common buffer and maps so that it
    can be accessed by a master device and the CPU.

Arguments:

    AdapterObject - Supplies a pointer to the adapter object used by this
        device.

    Length - Supplies the length of the common buffer to be allocated.

    LogicalAddress - Returns the logical address of the common buffer.

    CacheEnable - Indicates whether the memeory is cached or not.

Return Value:

    Returns the virtual address of the common buffer.  If the buffer cannot be
    allocated then NULL is returned.

--*/

{
    PVOID virtualAddress;
    PVOID mapRegisterBase;
    ULONG numberOfMapRegisters;
    ULONG mappedLength;
    WAIT_CONTEXT_BLOCK wcb;
    KEVENT allocationEvent;
    NTSTATUS status;
    PMDL mdl;
    KIRQL irql;

    numberOfMapRegisters = BYTES_TO_PAGES(Length);

    //
    // Allocate the actual buffer.
    //

    if (CacheEnabled != FALSE) {
        virtualAddress = ExAllocatePool(NonPagedPoolCacheAligned, Length);

    } else {
        virtualAddress = MmAllocateNonCachedMemory(Length);
    }

    if (virtualAddress == NULL) {
        return(virtualAddress);

    }

    //
    // Initialize an event.
    //

    KeInitializeEvent( &allocationEvent, NotificationEvent, FALSE);

    //
    // Initialize the wait context block.  Use the device object to indicate
    // where the map register base should be stored.
    //

    wcb.DeviceObject = &mapRegisterBase;
    wcb.CurrentIrp = NULL;
    wcb.DeviceContext = &allocationEvent;

    //
    // Allocate the adapter and the map registers.
    //

    KeRaiseIrql(DISPATCH_LEVEL, &irql);

    status = HalAllocateAdapterChannel(
        AdapterObject,
        &wcb,
        numberOfMapRegisters,
        HalpAllocationRoutine
        );

    KeLowerIrql(irql);

    if (!NT_SUCCESS(status)) {

        //
        // Cleanup and return NULL.
        //

        if (CacheEnabled != FALSE) {
            ExFreePool(virtualAddress);

        } else {
            MmFreeNonCachedMemory(virtualAddress, Length);
        }

        return(NULL);

    }

    //
    // Wait for the map registers to be allocated.
    //

    status = KeWaitForSingleObject(
        &allocationEvent,
        Executive,
        KernelMode,
        FALSE,
        NULL
        );

    if (!NT_SUCCESS(status)) {

        //
        // Cleanup and return NULL.
        //

        if (CacheEnabled != FALSE) {
            ExFreePool(virtualAddress);

        } else {
            MmFreeNonCachedMemory(virtualAddress, Length);
        }

        return(NULL);

    }

    //
    // Create an mdl to use with call to I/O map transfer.
    //

    mdl = IoAllocateMdl(
        virtualAddress,
        Length,
        FALSE,
        FALSE,
        NULL
        );

    MmBuildMdlForNonPagedPool(mdl);

    //
    // Map the transfer so that the controller can access the memory.
    //

    mappedLength = Length;
    *LogicalAddress = IoMapTransfer(
        NULL,
        mdl,
        mapRegisterBase,
        virtualAddress,
        &mappedLength,
        TRUE
        );

    IoFreeMdl(mdl);

    if (mappedLength < Length) {

        //
        // Cleanup and indicate that the allocation failed.
        //

        HalFreeCommonBuffer(
            AdapterObject,
            Length,
            *LogicalAddress,
            virtualAddress,
            FALSE
            );

        return(NULL);
    }

    //
    // The allocation completed successfully.
    //

    return(virtualAddress);

}

PVOID
HalAllocateCrashDumpRegisters(
    IN PADAPTER_OBJECT AdapterObject,
    PULONG NumberOfMapRegisters
    )
/*++

Routine Description:

    This routine is called during the crash dump disk driver's initialization
    to allocate a number map registers permanently.

Arguments:

    AdapterObject - Pointer to the adapter control object to allocate to the
        driver.
    NumberOfMapRegisters - Required number of map registers. Updated to show
        actual number allocated.

Return Value:

    Returns STATUS_SUCESS if map registers allocated.

--*/

{
    PADAPTER_OBJECT MasterAdapter;
    ULONG MapRegisterNumber;
    ULONG Hint;

    //
    // Begin by obtaining a pointer to the master adapter associated with this
    // request.
    //

    if (AdapterObject->MasterAdapter) {
        MasterAdapter = AdapterObject->MasterAdapter;
    } else {
        MasterAdapter = AdapterObject;
    }

    //
    // Ensure that this adapter has enough total map registers to satisfy
    // the request.
    //

    if (*NumberOfMapRegisters > AdapterObject->MapRegistersPerChannel) {
        AdapterObject->NumberOfMapRegisters = 0;
        return NULL;
    }

    //
    // Attempt to allocate the required number of map registers w/o
    // affecting those registers that were allocated when the system
    // crashed.  Note that once again the map registers to be allocated
    // must be above the 1MB range if this is an EISA bus device.
    //

    MapRegisterNumber = (ULONG)-1;

    Hint = AdapterObject->PagePort ? (0x100000 / PAGE_SIZE) : 0;

    MapRegisterNumber = RtlFindClearBitsAndSet(
         MasterAdapter->MapRegisters,
         *NumberOfMapRegisters,
         Hint
         );

    //
    // Ensure that any allocated map registers are valid for this adapter.
    //

    if ((ULONG) MapRegisterNumber < Hint) {

        //
        // Make it appear as if there are no map registers.
        //

        RtlClearBits(
            MasterAdapter->MapRegisters,
            MapRegisterNumber,
            *NumberOfMapRegisters
            );

        MapRegisterNumber = (ULONG)-1;
    }

    if (MapRegisterNumber == (ULONG)-1) {

        //
        // Not enough free map registers were found, so they were busy
        // being used by the system when it crashed.  Force the appropriate
        // number to be "allocated" at the base by simply overjamming the
        // bits and return the base map register as the start.
        //

        RtlSetBits(
            MasterAdapter->MapRegisters,
            Hint,
            *NumberOfMapRegisters
            );
        MapRegisterNumber = Hint;

    }

    //
    // Calculate the map register base from the allocated map
    // register and base of the master adapter object.
    //

    AdapterObject->MapRegisterBase = (PVOID) ((PTRANSLATION_ENTRY) MasterAdapter->MapRegisterBase + MapRegisterNumber);

    return AdapterObject->MapRegisterBase;
}

BOOLEAN
HalFlushCommonBuffer(
    IN PADAPTER_OBJECT AdapterObject,
    IN ULONG Length,
    IN PHYSICAL_ADDRESS LogicalAddress,
    IN PVOID VirtualAddress
    )
/*++

Routine Description:

    This function is called to flush any hardware adapter buffers when the
    driver needs to read data written by an I/O master device to a common
    buffer.

Arguments:

    AdapterObject - Supplies a pointer to the adapter object used by this
        device.

    Length - Supplies the length of the common buffer. This should be the same
        value used for the allocation of the buffer.

    LogicalAddress - Supplies the logical address of the common buffer.  This
        must be the same value return by HalAllocateCommonBuffer.

    VirtualAddress - Supplies the virtual address of the common buffer.  This
        must be the same value return by HalAllocateCommonBuffer.

Return Value:

    Returns TRUE if no errors were detected; otherwise, FALSE is return.

--*/

{

    return(TRUE);

}

VOID
HalFreeCommonBuffer(
    IN PADAPTER_OBJECT AdapterObject,
    IN ULONG Length,
    IN PHYSICAL_ADDRESS LogicalAddress,
    IN PVOID VirtualAddress,
    IN BOOLEAN CacheEnabled
    )
/*++

Routine Description:

    This function frees a common buffer and all of the resouces it uses.

Arguments:

    AdapterObject - Supplies a pointer to the adapter object used by this
        device.

    Length - Supplies the length of the common buffer. This should be the same
        value used for the allocation of the buffer.

    LogicalAddress - Supplies the logical address of the common buffer.  This
        must be the same value return by HalAllocateCommonBuffer.

    VirtualAddress - Supplies the virtual address of the common buffer.  This
        must be the same value return by HalAllocateCommonBuffer.

    CacheEnable - Indicates whether the memeory is cached or not.

Return Value:

    None

--*/

{
    PTRANSLATION_ENTRY mapRegisterBase;
    ULONG numberOfMapRegisters;
    ULONG mapRegisterNumber;

    //
    // Calculate the number of map registers, the map register number and
    // the map register base.
    //

    numberOfMapRegisters = ADDRESS_AND_SIZE_TO_SPAN_PAGES(VirtualAddress, Length);
    mapRegisterNumber = LogicalAddress.LowPart >> PAGE_SHIFT;

    mapRegisterBase = (PTRANSLATION_ENTRY) MasterAdapterObject->MapRegisterBase
        + mapRegisterNumber;

    //
    // Free the map registers.
    //

    IoFreeMapRegisters(
        AdapterObject,
        (PVOID) mapRegisterBase,
        numberOfMapRegisters
        );

    //
    // Free the memory for the common buffer.
    //

    if (CacheEnabled != FALSE) {
        ExFreePool(VirtualAddress);

    } else {
        MmFreeNonCachedMemory(VirtualAddress, Length);
    }

    return;

}

PADAPTER_OBJECT
HalGetAdapter(
    IN PDEVICE_DESCRIPTION DeviceDescription,
    IN OUT PULONG NumberOfMapRegisters
    )

/*++

Routine Description:

    This function returns the appropriate adapter object for the device defined
    in the device description structure.  Three bus types are supported for the
    Jazz system: Internal, Isa, and Eisa.

Arguments:

    DeviceDescription - Supplies a description of the deivce.

    NumberOfMapRegisters - Returns the maximum number of map registers which
        may be allocated by the device driver.

Return Value:

    A pointer to the requested adapter object or NULL if an adapter could not
    be created.

--*/

{
    PADAPTER_OBJECT adapterObject;

    //
    // Make sure this is the correct version.
    //

    if (DeviceDescription->Version > DEVICE_DESCRIPTION_VERSION1) {

        return(NULL);

    }

    //
    // Return number of map registers requested based on the maximum
    // transfer length.
    //

    *NumberOfMapRegisters = BYTES_TO_PAGES(DeviceDescription->MaximumLength) + 1;

    if (*NumberOfMapRegisters > DMA_REQUEST_LIMIT) {
        *NumberOfMapRegisters = DMA_REQUEST_LIMIT;
    }

    if (DeviceDescription->InterfaceType == Internal) {


        //
        // Return the adapter pointer for internal adapters.
        //
        // If this is a master controler such as the SONIC then return the
        // last channel.
        //

        if (DeviceDescription->Master) {

            //
            // Create an adapter if necessary.
            //

            if (HalpInternalAdapters[INTERNAL_DMA_CHANNEL-1] == NULL) {

                HalpInternalAdapters[INTERNAL_DMA_CHANNEL-1] = HalpAllocateAdapter(
                    0,
                    (PVOID) &(DMA_CONTROL)->Channel[INTERNAL_DMA_CHANNEL-1],
                    NULL
                    );

            }

            return(HalpInternalAdapters[INTERNAL_DMA_CHANNEL-1]);

        }

        //
        // Make sure the DMA channel range is valid.  Only use channels 0-6.
        //

        if (DeviceDescription->DmaChannel >= (INTERNAL_DMA_CHANNEL-1)) {

            return(NULL);
        }

        //
        // If necessary allocate an adapter; otherwise,
        // just return the adapter for the requested channel.
        //

        if (HalpInternalAdapters[DeviceDescription->DmaChannel] == NULL) {

            HalpInternalAdapters[DeviceDescription->DmaChannel] =
                HalpAllocateAdapter(
                    0,
                    (PVOID) &(DMA_CONTROL)->Channel[DeviceDescription->DmaChannel],
                    NULL
                    );

        }

         if (*NumberOfMapRegisters > MasterAdapterObject->MapRegistersPerChannel / 4) {

             *NumberOfMapRegisters = MasterAdapterObject->MapRegistersPerChannel / 4;
         }

         return(HalpInternalAdapters[DeviceDescription->DmaChannel]);
    }

    //
    // If the request is for a unsupported bus then return NULL.
    //

    if (DeviceDescription->InterfaceType != Isa &&
        DeviceDescription->InterfaceType != Eisa) {

        //
        // This bus type is unsupported return NULL.
        //

        return(NULL);
    }

    //
    // Create an adapter object.
    //

    adapterObject = HalpAllocateEisaAdapter( DeviceDescription );

     if (*NumberOfMapRegisters > MasterAdapterObject->MapRegistersPerChannel / 4) {

         *NumberOfMapRegisters = MasterAdapterObject->MapRegistersPerChannel / 4;
     }

    return(adapterObject);
}

BOOLEAN
HalTranslateBusAddress(
    IN INTERFACE_TYPE  InterfaceType,
    IN ULONG BusNumber,
    IN PHYSICAL_ADDRESS BusAddress,
    IN OUT PULONG AddressSpace,
    OUT PPHYSICAL_ADDRESS TranslatedAddress
    )

/*++

Routine Description:

    This function returns the system physical address for a specified I/O bus
    address.  The return value is suitable for use in a subsequent call to
    MmMapIoSpace.

Arguments:

    InterfaceType - Supplies the type of bus which the address is for.

    BusNumber - Supplies the bus number for the device.

    BusAddress - Supplies the bus relative address.

    AddressSpace - Supplies the address space number for the device: 0 for
        memory and 1 for I/O space.  Returns the address space on this system.

    TranslatedAddress - Supplies a pointer to return the translated address

Return Value:

    A return value of TRUE indicates that a system physical address
    corresponding to the supplied bus relative address and bus address
    number has been returned in TranslatedAddress.

    A return value of FALSE occurs if the translation for the address was
    not possible

--*/

{
    TranslatedAddress->HighPart = 0;

    //
    // If this is for the internal bus then just return the passed parameter.
    //

    if (InterfaceType == Internal) {

        //
        // Return the passed parameters.
        //

        TranslatedAddress->LowPart = BusAddress.LowPart;
        return(TRUE);
    }

    if (InterfaceType != Isa && InterfaceType != Eisa) {

        //
        // Not on this system return nothing.
        //

        *AddressSpace = 0;
        TranslatedAddress->LowPart = 0;
        return(FALSE);
    }

    //
    // Jazz only has one I/O bus which is an EISA, so the bus number is unused.
    //
    // Determine the address based on whether the bus address is in I/O space
    // or bus memory space.
    //

    if (*AddressSpace) {

        //
        // The address is in I/O space.
        //

        *AddressSpace = 0;
        TranslatedAddress->LowPart = BusAddress.LowPart + EISA_CONTROL_PHYSICAL_BASE;
        if (TranslatedAddress->LowPart < BusAddress.LowPart) {

            //
            // A carry occurred.
            //

            TranslatedAddress->HighPart = 1;
        }
        return(TRUE);

    } else {

        //
        // The address is in memory space.
        //

        *AddressSpace = 0;

#if defined(ACER)
        // For the Acer ARC PC does not have the revision register
        TranslatedAddress->LowPart = BusAddress.LowPart + EISA_MEMORY_PHYSICAL_BASE;
#else
        if (DMA_CONTROL->RevisionLevel.Long < 2) {
            TranslatedAddress->LowPart = BusAddress.LowPart + EISA_MEMORY_PHYSICAL_BASE;
        } else {
            TranslatedAddress->LowPart = BusAddress.LowPart + EISA_MEMORY_VERSION2_LOW;
            TranslatedAddress->HighPart = EISA_MEMORY_VERSION2_HIGH;
        }
#endif

        if (TranslatedAddress->LowPart < BusAddress.LowPart) {

            //
            // A carry occurred.
            //

            TranslatedAddress->HighPart = 1;
        }
        return(TRUE);

    }
}

PADAPTER_OBJECT
HalpAllocateAdapter(
    IN ULONG MapRegistersPerChannel,
    IN PVOID AdapterBaseVa,
    IN PVOID MapRegisterBase
    )

/*++

Routine Description:

    This routine allocates and initializes an adapter object to represent an
    adapter or a DMA controller on the system.

Arguments:

    MapRegistersPerChannel - Unused.

    AdapterBaseVa - Base virtual address of the adapter itself.  If AdapterBaseVa
       is NULL then the MasterAdapterObject is allocated.

    MapRegisterBase - Unused.

Return Value:

    The function value is a pointer to the allocate adapter object.

--*/

{

    PADAPTER_OBJECT AdapterObject;
    OBJECT_ATTRIBUTES ObjectAttributes;
    ULONG Size;
    ULONG BitmapSize;
    HANDLE Handle;
    NTSTATUS Status;
    ULONG Mode;


    //
    // Initalize the master adapter if necessary.
    //

    if (MasterAdapterObject == NULL && AdapterBaseVa != NULL ) {

       MasterAdapterObject = HalpAllocateAdapter( 0,
                                          NULL,
                                          NULL
                                          );

       //
       // If we could not allocate the master adapter then give up.
       //

       if (MasterAdapterObject == NULL) {
          return(NULL);
       }
    }

    //
    // Begin by initializing the object attributes structure to be used when
    // creating the adapter object.
    //

    InitializeObjectAttributes( &ObjectAttributes,
                                NULL,
                                OBJ_PERMANENT,
                                (HANDLE) NULL,
                                (PSECURITY_DESCRIPTOR) NULL
                              );

    //
    // Determine the size of the adapter object. If this is the master object
    // then allocate space for the register bit map; otherwise, just allocate
    // an adapter object.
    //

    if (AdapterBaseVa == NULL) {


       BitmapSize = (((sizeof( RTL_BITMAP ) +
            ((DMA_TRANSLATION_LIMIT / sizeof( TRANSLATION_ENTRY)) + 7 >> 3))
            + 3) & ~3);

       Size = sizeof( ADAPTER_OBJECT ) + BitmapSize;

    } else {

       Size = sizeof( ADAPTER_OBJECT );

    }

    //
    // Now create the adapter object.
    //

    Status = ObCreateObject( KernelMode,
                             *((POBJECT_TYPE *)IoAdapterObjectType),
                             &ObjectAttributes,
                             KernelMode,
                             (PVOID) NULL,
                             Size,
                             0,
                             0,
                             (PVOID *)&AdapterObject );

    //
    // If the adapter object was successfully created, then attempt to insert
    // it into the the object table.
    //

    if (NT_SUCCESS( Status )) {

        Status = ObInsertObject( AdapterObject,
                                 NULL,
                                 FILE_READ_DATA | FILE_WRITE_DATA,
                                 0,
                                 (PVOID *) NULL,
                                 &Handle );

        if (NT_SUCCESS( Status )) {

            //
            // Initialize the adapter object itself.
            //

            AdapterObject->Type = IO_TYPE_ADAPTER;
            AdapterObject->Size = (SHORT)Size;
            AdapterObject->MapRegistersPerChannel =
                DMA_TRANSLATION_LIMIT / sizeof( TRANSLATION_ENTRY);
            AdapterObject->AdapterBaseVa = AdapterBaseVa;
            AdapterObject->MasterAdapter = MasterAdapterObject;
            AdapterObject->PagePort = NULL;

            //
            // Initialize the channel wait queue for this
            // adapter.
            //

            KeInitializeDeviceQueue( &AdapterObject->ChannelWaitQueue );

            //
            // If this is the MasterAdatper then initialize the register bit map,
            // AdapterQueue and the spin lock.
            //

            if ( AdapterBaseVa == NULL ) {
               ULONG MapRegisterSize;

               KeInitializeSpinLock( &AdapterObject->SpinLock );

               InitializeListHead( &AdapterObject->AdapterQueue );

               AdapterObject->MapRegisters = (PVOID) ( AdapterObject + 1);
               RtlInitializeBitMap( AdapterObject->MapRegisters,
                                    (PULONG) (((PCHAR) (AdapterObject->MapRegisters)) + sizeof( RTL_BITMAP )),
                                    DMA_TRANSLATION_LIMIT / sizeof( TRANSLATION_ENTRY)
                                    );
               RtlClearAllBits( AdapterObject->MapRegisters );

               //
               // The memory for the map registers was allocated by
               // HalpAllocateMapRegisters during phase 0 initialization.
               //

               MapRegisterSize = DMA_TRANSLATION_LIMIT;
               MapRegisterSize = ROUND_TO_PAGES(MapRegisterSize);

               //
               // Convert the physical address to a non-cached virtual address.
               //

               AdapterObject->MapRegisterBase = (PVOID)
                    (HalpMapRegisterPhysicalBase | KSEG1_BASE);

               WRITE_REGISTER_ULONG(
                    &DMA_CONTROL->TranslationBase.Long,
                    HalpMapRegisterPhysicalBase
                    );

               WRITE_REGISTER_ULONG(
                    &DMA_CONTROL->TranslationLimit.Long,
                    MapRegisterSize
                    );

                //
                // Initialize the DMA mode registers for the Floppy, SCSI and Sound.
                // The initialization values come fomr the Jazz System Specification.
                //

                Mode = 0;
                ((PDMA_CHANNEL_MODE) &Mode)->AccessTime = ACCESS_80NS;
                ((PDMA_CHANNEL_MODE) &Mode)->TransferWidth = WIDTH_16BITS;
                ((PDMA_CHANNEL_MODE) &Mode)->InterruptEnable = 0;
                ((PDMA_CHANNEL_MODE) &Mode)->BurstMode = 0;
                ((PDMA_CHANNEL_MODE) &Mode)->FastDmaCycle = 1;
                WRITE_REGISTER_ULONG(
                    &DMA_CONTROL->Channel[SCSI_CHANNEL].Mode.Long,
                    (ULONG) Mode
                    );

                ((PDMA_CHANNEL_MODE) &Mode)->AccessTime = ACCESS_120NS;
                ((PDMA_CHANNEL_MODE) &Mode)->TransferWidth = WIDTH_8BITS;
                ((PDMA_CHANNEL_MODE) &Mode)->InterruptEnable = 0;
                ((PDMA_CHANNEL_MODE) &Mode)->FastDmaCycle = 1;
                WRITE_REGISTER_ULONG(
                    &DMA_CONTROL->Channel[FLOPPY_CHANNEL].Mode.Long,
                    (ULONG) Mode
                    );

#if defined(ACER)

// For the Acer ARC PC does not have the on board sound

#else // For Jazz system

                ((PDMA_CHANNEL_MODE) &Mode)->AccessTime = ACCESS_80NS;
                ((PDMA_CHANNEL_MODE) &Mode)->TransferWidth = WIDTH_16BITS;
                ((PDMA_CHANNEL_MODE) &Mode)->InterruptEnable = 0;
                ((PDMA_CHANNEL_MODE) &Mode)->BurstMode = 1;
                WRITE_REGISTER_ULONG(
                    &DMA_CONTROL->Channel[SOUND_CHANNEL_A].Mode.Long,
                    (ULONG) Mode
                    );

                ((PDMA_CHANNEL_MODE) &Mode)->AccessTime = ACCESS_80NS;
                ((PDMA_CHANNEL_MODE) &Mode)->TransferWidth = WIDTH_16BITS;
                ((PDMA_CHANNEL_MODE) &Mode)->InterruptEnable = 0;
                ((PDMA_CHANNEL_MODE) &Mode)->BurstMode = 1;
                WRITE_REGISTER_ULONG(
                    &DMA_CONTROL->Channel[SOUND_CHANNEL_B].Mode.Long,
                    (ULONG) Mode
                    );
#endif
            }

        } else {

            //
            // An error was incurred for some reason.  Set the return value
            // to NULL.
            //

            AdapterObject = (PADAPTER_OBJECT) NULL;
        }
    } else {
        AdapterObject = (PADAPTER_OBJECT) NULL;
    }
    return AdapterObject;

    return (PADAPTER_OBJECT) NULL;
}

VOID
IoFreeMapRegisters(
   PADAPTER_OBJECT AdapterObject,
   PVOID MapRegisterBase,
   ULONG NumberOfMapRegisters
   )
/*++

Routine Description:

   This routine deallocates the map registers for the adapter.  If there are
   any queued adapter waiting for an attempt is made to allocate the next
   entry.

Arguments:

   AdapterObject - The adapter object to where the map register should be
        returned.

   MapRegisterBase - The map register base of the registers to be deallocated.

   NumberOfMapRegisters - The number of registers to be deallocated.

Return Value:

   None

--+*/

{
   PADAPTER_OBJECT MasterAdapter;
   LONG MapRegisterNumber;
   PLIST_ENTRY Packet;
   IO_ALLOCATION_ACTION Action;
   PWAIT_CONTEXT_BLOCK Wcb;
   KIRQL Irql;
   ULONG Hint;

    //
    // Begin by getting the address of the master adapter.
    //

    if (AdapterObject->MasterAdapter != NULL) {
        MasterAdapter = AdapterObject->MasterAdapter;
    } else {
        MasterAdapter = AdapterObject;
    }

   MapRegisterNumber = (PTRANSLATION_ENTRY) MapRegisterBase -
               (PTRANSLATION_ENTRY) MasterAdapter->MapRegisterBase;

   //
   // Acquire the master adapter spinlock which locks the adapter queue and the
   // bit map for the map registers.
   //

   KeAcquireSpinLock(&MasterAdapter->SpinLock, &Irql);

   //
   // Return the registers to the bit map.
   //

   RtlClearBits( MasterAdapter->MapRegisters,
                 MapRegisterNumber,
                 NumberOfMapRegisters
                 );

   //
   // Process any requests waiting for map registers in the adapter queue.
   // Requests are processed until a request cannot be satisfied or until
   // there are no more requests in the queue.
   //

   while(TRUE) {

      if ( IsListEmpty(&MasterAdapter->AdapterQueue) ){
         break;
      }

      Packet = RemoveHeadList( &MasterAdapter->AdapterQueue );
      AdapterObject = CONTAINING_RECORD( Packet,
                                         ADAPTER_OBJECT,
                                         AdapterQueue
                                         );
      Wcb = AdapterObject->CurrentWcb;

      //
      // Attempt to allocate map registers for this request. Use the previous
      // register base as a hint.
      //

      Hint = AdapterObject->PagePort ? (0x100000 / PAGE_SIZE) : 0;

      MapRegisterNumber = RtlFindClearBitsAndSet(
            MasterAdapter->MapRegisters,
            NumberOfMapRegisters,
            Hint
            );

       //
       // Make sure this map register is valid for this adapter.
       //

       if ((ULONG) MapRegisterNumber < Hint) {

           //
           // Make it look like there are no map registers.
           //

           RtlClearBits(
                MasterAdapter->MapRegisters,
                MapRegisterNumber,
                NumberOfMapRegisters
                );

           MapRegisterNumber = -1;
       }

      if (MapRegisterNumber == -1) {

         //
         // There were not enough free map registers.  Put this request back on
         // the adapter queue where is came from.
         //

         InsertHeadList( &MasterAdapter->AdapterQueue,
                         &AdapterObject->AdapterQueue
                         );

         break;

      }

     KeReleaseSpinLock( &MasterAdapter->SpinLock, Irql );

     AdapterObject->MapRegisterBase = (PVOID) ((PTRANSLATION_ENTRY) MasterAdapter->MapRegisterBase + MapRegisterNumber);

     //
     // Invoke the driver's execution routine now.
     //

     Action = Wcb->DeviceRoutine( Wcb->DeviceObject,
        Wcb->CurrentIrp,
        AdapterObject->MapRegisterBase,
        Wcb->DeviceContext
        );

      //
      // If the driver wishes to keep the map registers then set the number
      // allocated to zero and set the action to deallocate object.
      //

      if (Action == DeallocateObjectKeepRegisters) {
          AdapterObject->NumberOfMapRegisters = 0;
          Action = DeallocateObject;
      }

      //
      // If the driver would like to have the adapter deallocated,
      // then deallocate any map registers allocated and then release
      // the adapter object.
      //

      if (Action == DeallocateObject) {

             //
             // The map registers registers are deallocated here rather than in
             // IoFreeAdapterChannel.  This limits the number of times
             // this routine can be called recursively possibly overflowing
             // the stack.  The worst case occurs if there is a pending
             // request for the adapter that uses map registers and whos
             // excution routine decallocates the adapter.  In that case if there
             // are no requests in the master adapter queue, then IoFreeMapRegisters
             // will get called again.
             //

          if (AdapterObject->NumberOfMapRegisters != 0) {

             //
             // Deallocate the map registers and clear the count so that
             // IoFreeAdapterChannel will not deallocate them again.
             //

             KeAcquireSpinLock( &MasterAdapter->SpinLock, &Irql );

             RtlClearBits( MasterAdapter->MapRegisters,
                           MapRegisterNumber,
                           AdapterObject->NumberOfMapRegisters
                           );

             AdapterObject->NumberOfMapRegisters = 0;

             KeReleaseSpinLock( &MasterAdapter->SpinLock, Irql );
          }

          IoFreeAdapterChannel( AdapterObject );
      }

      KeAcquireSpinLock( &MasterAdapter->SpinLock, &Irql );

   }

   KeReleaseSpinLock( &MasterAdapter->SpinLock, Irql );
}

VOID
IoFreeAdapterChannel(
    IN PADAPTER_OBJECT AdapterObject
    )

/*++

Routine Description:

    This routine is invoked to deallocate the specified adapter object.
    Any map registers that were allocated are also automatically deallocated.
    No checks are made to ensure that the adapter is really allocated to
    a device object.  However, if it is not, then kernel will bugcheck.

    If another device is waiting in the queue to allocate the adapter object
    it will be pulled from the queue and its execution routine will be
    invoked.

Arguments:

    AdapterObject - Pointer to the adapter object to be deallocated.

Return Value:

    None.

--*/

{
    PKDEVICE_QUEUE_ENTRY Packet;
    PADAPTER_OBJECT MasterAdapter;
    BOOLEAN Busy = FALSE;
    IO_ALLOCATION_ACTION Action;
    PWAIT_CONTEXT_BLOCK Wcb;
    KIRQL Irql;
    LONG MapRegisterNumber;
    ULONG Hint;

    //
    // Begin by getting the address of the master adapter.
    //

    if (AdapterObject->MasterAdapter != NULL) {
        MasterAdapter = AdapterObject->MasterAdapter;
    } else {
        MasterAdapter = AdapterObject;
    }

    //
    // Pull requests of the adapter's device wait queue as long as the
    // adapter is free and there are sufficient map registers available.
    //

    while( TRUE ){

       //
       // Begin by checking to see whether there are any map registers that
       // need to be deallocated.  If so, then deallocate them now.
       //

       if (AdapterObject->NumberOfMapRegisters != 0) {
           IoFreeMapRegisters( AdapterObject,
                               AdapterObject->MapRegisterBase,
                               AdapterObject->NumberOfMapRegisters
                               );
       }

       //
       // Simply remove the next entry from the adapter's device wait queue.
       // If one was successfully removed, allocate any map registers that it
       // requires and invoke its execution routine.
       //

       Packet = KeRemoveDeviceQueue( &AdapterObject->ChannelWaitQueue );
       if (Packet == NULL) {

           //
           // There are no more requests break out of the loop.
           //

           break;
       }

       Wcb = CONTAINING_RECORD( Packet,
            WAIT_CONTEXT_BLOCK,
            WaitQueueEntry );

       AdapterObject->CurrentWcb = Wcb;
       AdapterObject->NumberOfMapRegisters = Wcb->NumberOfMapRegisters;

        //
        // Check to see whether this driver wishes to allocate any map
        // registers.  If so, then queue the device object to the master
        // adapter queue to wait for them to become available.  If the driver
        // wants map registers, ensure that this adapter has enough total
        // map registers to satisfy the request.
        //

        if (Wcb->NumberOfMapRegisters != 0) {
            if (Wcb->NumberOfMapRegisters > MasterAdapter->MapRegistersPerChannel) {
                KeBugCheck( INSUFFICIENT_SYSTEM_MAP_REGS );
            }

            //
            // Lock the map register bit map and the adapter queue in the
            // master adapter object. The channel structure offset is used as
            // a hint for the register search.
            //

            KeAcquireSpinLock( &MasterAdapter->SpinLock, &Irql );

            MapRegisterNumber = -1;

            if (IsListEmpty( &MasterAdapter->AdapterQueue)) {

               Hint = AdapterObject->PagePort ? (0x100000 / PAGE_SIZE) : 0;

               MapRegisterNumber = RtlFindClearBitsAndSet(
                    MasterAdapter->MapRegisters,
                    Wcb->NumberOfMapRegisters,
                    Hint
                    );

               //
               // Make sure this map register is valid for this adapter.
               //

               if ((ULONG) MapRegisterNumber < Hint) {

                   //
                   // Make it look like there are no map registers.
                   //

                   RtlClearBits(
                        MasterAdapter->MapRegisters,
                        MapRegisterNumber,
                        Wcb->NumberOfMapRegisters
                        );

                   MapRegisterNumber = -1;
               }

            }

            if (MapRegisterNumber == -1) {

               //
               // There were not enough free map registers.  Queue this request
               // on the master adapter where is will wait until some registers
               // are deallocated.
               //

               InsertTailList( &MasterAdapter->AdapterQueue,
                               &AdapterObject->AdapterQueue
                               );
               Busy = 1;

            } else {
               AdapterObject->MapRegisterBase = (PVOID) ((PTRANSLATION_ENTRY) MasterAdapter->MapRegisterBase + MapRegisterNumber);
            }

            KeReleaseSpinLock( &MasterAdapter->SpinLock, Irql );
        }

        //
        // If there were either enough map registers available or no map
        // registers needed to be allocated, invoke the driver's execution
        // routine now.
        //

        if (!Busy) {
            AdapterObject->CurrentWcb = Wcb;
            Action = Wcb->DeviceRoutine( Wcb->DeviceObject,
                Wcb->CurrentIrp,
                AdapterObject->MapRegisterBase,
                Wcb->DeviceContext
                );

            //
            // If the execution routine would like to have the adapter
            // deallocated, then release the adapter object.
            //

            if (Action == KeepObject) {

               //
               // This request wants to keep the channel a while so break
               // out of the loop.
               //

               break;
            }

            //
            // If the driver wants to keep the map registers then set the
            // number allocated to 0.  This keeps the deallocation routine
            // from deallocating them.
            //

            if (Action == DeallocateObjectKeepRegisters) {
                AdapterObject->NumberOfMapRegisters = 0;
            }
        } else {

           //
           // This request did not get the requested number of map registers so
           // out of the loop.
           //

           break;
        }
    }
}

BOOLEAN
HalpCreateDmaStructures (
    VOID
    )

/*++

Routine Description:

    This routine initializes the structures necessary for DMA operations
    and connects the intermediate interrupt dispatcher.  It also connects
    an interrupt handler to the DMA channel interrupt.

Arguments:

    None.

Return Value:

    If the second level interrupt dispatcher is connected, then a value of
    TRUE is returned. Otherwise, a value of FALSE is returned.

--*/

{

    //
    // Initialize the DMA interrupt dispatcher for Jazz I/O interrupts.
    //

    KeInitializeInterrupt( &HalpDmaChannelInterrupt,
                           HalpDmaChannel,
                           (PVOID) NULL,
                           (PKSPIN_LOCK) NULL,
                           DMA_LEVEL,
                           DMA_LEVEL,
                           DMA_LEVEL,
                           LevelSensitive,
                           FALSE,
                           0,
                           FALSE
                         );

    //
    // Don't fail if the interrupt cannot be connected.
    //

    KeConnectInterrupt( &HalpDmaChannelInterrupt );

    //
    // Directly connect the local device interrupt dispatcher to the local
    // device interrupt vector.
    //
    // N.B. This vector is reserved for exclusive use by the HAL (see
    //      interrupt initialization).
    //

    PCR->InterruptRoutine[DEVICE_LEVEL] = (PKINTERRUPT_ROUTINE)HalpDmaDispatch;

    //
    // Initialize EISA bus interrupts.
    //

    return HalpCreateEisaStructures ();
}

PHYSICAL_ADDRESS
IoMapTransfer(
    IN PADAPTER_OBJECT AdapterObject,
    IN PMDL Mdl,
    IN PVOID MapRegisterBase,
    IN PVOID CurrentVa,
    IN OUT PULONG Length,
    IN BOOLEAN WriteToDevice
    )

/*++

Routine Description:

    This routine is invoked to set up the map registers in the DMA controller
    to allow a transfer to or from a device.

Arguments:

    AdapterObject - Pointer to the adapter object representing the DMA
        controller channel that has been allocated.

    Mdl - Pointer to the MDL that describes the pages of memory that are
        being read or written.

    MapRegisterBase - The address of the base map register that has been
        allocated to the device driver for use in mapping the transfer.

    CurrentVa - Current virtual address in the buffer described by the MDL
        that the transfer is being done to or from.

    Length - Supplies the length of the transfer.  This determines the
        number of map registers that need to be written to map the transfer.
        Returns the length of the transfer which was actually mapped.

    WriteToDevice - Boolean value that indicates whether this is a write
        to the device from memory (TRUE), or vice versa.

Return Value:

    Returns the logical address to be used by bus masters.

--*/

{
    PTRANSLATION_ENTRY DmaMapRegister = MapRegisterBase;
    PULONG PageFrameNumber;
    ULONG NumberOfPages;
    ULONG Offset;
    ULONG i;
    KIRQL irql;

    //
    // Begin by determining where in the buffer this portion of the operation
    // is taking place.
    //

    Offset = BYTE_OFFSET( (PCHAR) CurrentVa - (PCHAR) Mdl->StartVa );

    PageFrameNumber = (PULONG) (Mdl + 1);
    NumberOfPages = (Offset + *Length + PAGE_SIZE - 1) >> PAGE_SHIFT;
    PageFrameNumber += (((PCHAR) CurrentVa - (PCHAR) Mdl->StartVa) >> PAGE_SHIFT);
    for (i = 0; i < NumberOfPages; i++) {
        (DmaMapRegister++)->PageFrame = (ULONG) *PageFrameNumber++ << PAGE_SHIFT;
    }

    //
    // Set the offset to point to the map register plus the offset.
    //

    Offset += ((PTRANSLATION_ENTRY) MapRegisterBase - (PTRANSLATION_ENTRY) MasterAdapterObject->MapRegisterBase) << PAGE_SHIFT;

    //
    // Invalidate the translation entry.
    //

    WRITE_REGISTER_ULONG(&DMA_CONTROL->TranslationInvalidate.Long, 1);

    if ( AdapterObject == NULL) {
        return(RtlConvertUlongToLargeInteger(Offset));
    }

    if (AdapterObject->PagePort == NULL) {

        //
        // Set the local DMA Registers.
        //

        WRITE_REGISTER_ULONG(&((PDMA_CHANNEL) AdapterObject->AdapterBaseVa)->Address.Long,  Offset);
        WRITE_REGISTER_ULONG(&((PDMA_CHANNEL) AdapterObject->AdapterBaseVa)->ByteCount.Long, *Length);

        i = 0;
        ((PDMA_CHANNEL_ENABLE) &i)->ChannelEnable = 1;
        ((PDMA_CHANNEL_ENABLE) &i)->TransferDirection =
                                    WriteToDevice ? DMA_WRITE_OP : DMA_READ_OP;
        WRITE_REGISTER_ULONG(&((PDMA_CHANNEL) AdapterObject->AdapterBaseVa)->Enable.Long, i);


    } else {

        //
        // Start the EISA DMA controller.
        //

        HalpEisaMapTransfer(
            AdapterObject,
            Offset,
            *Length,
            WriteToDevice
            );

    }
    return(RtlConvertUlongToLargeInteger(Offset));
}

BOOLEAN
IoFlushAdapterBuffers(
    IN PADAPTER_OBJECT AdapterObject,
    IN PMDL Mdl,
    IN PVOID MapRegisterBase,
    IN PVOID CurrentVa,
    IN ULONG Length,
    IN BOOLEAN WriteToDevice
    )

/*++

Routine Description:

    This routine flushes the DMA adapter object buffers.  For the Jazz system
    its clears the enable flag which aborts the dma.

Arguments:

    AdapterObject - Pointer to the adapter object representing the DMA
        controller channel.

    Mdl - A pointer to a Memory Descriptor List (MDL) that maps the locked-down
        buffer to/from which the I/O occured.

    MapRegisterBase - A pointer to the base of the map registers in the adapter
        or DMA controller.

    CurrentVa - The current virtual address in the buffer described the the Mdl
        where the I/O operation occurred.

    Length - Supplies the length of the transfer.

    WriteToDevice - Supplies a BOOLEAN value that indicates the direction of
        the data transfer was to the device.

Return Value:

    TRUE - If the transfer was successful.

    FALSE - If there was an error in the transfer.

--*/
{
    ULONG i;
    ULONG wordPtr, j;
    UCHAR DataByte;

    if (AdapterObject == NULL) {

        //
        // This is a master adadapter so there is nothing to do.
        //

        return(TRUE);
    }

    if (AdapterObject->PagePort) {

        //
        // If this is a master channel, then just return since the DMA
        // request does not need to be disabled.
        //

        DataByte = AdapterObject->AdapterMode;

        if (((PDMA_EISA_MODE) &DataByte)->RequestMode == CASCADE_REQUEST_MODE) {

            return(TRUE);

        }

        //
        // Clear the EISA DMA adapter.
        //

        if (AdapterObject->AdapterNumber == 1) {

            //
            // This request is for DMA controller 1
            //

            PDMA1_CONTROL dmaControl;

            dmaControl = AdapterObject->AdapterBaseVa;

            WRITE_REGISTER_UCHAR(
                &dmaControl->SingleMask,
                (UCHAR) (DMA_SETMASK | AdapterObject->ChannelNumber)
                );

        } else {

            //
            // This request is for DMA controller 2
            //

            PDMA2_CONTROL dmaControl;

            dmaControl = AdapterObject->AdapterBaseVa;

            WRITE_REGISTER_UCHAR(
                &dmaControl->SingleMask,
                (UCHAR) (DMA_SETMASK | AdapterObject->ChannelNumber)
                );

        }

    } else {

        //
        // Clear on board DMA
        //

        i = READ_REGISTER_ULONG(
            &((PDMA_CHANNEL) AdapterObject->AdapterBaseVa)->Enable.Long
            );

        ((PDMA_CHANNEL_ENABLE) &i)->ChannelEnable = 0;
        WRITE_REGISTER_ULONG(
            &((PDMA_CHANNEL) AdapterObject->AdapterBaseVa)->Enable.Long,
            i
            );

        i = READ_REGISTER_USHORT(
            &((PINTERRUPT_REGISTERS)INTERRUPT_VIRTUAL_BASE)->Enable
            );
    }

    return(TRUE);
}

IO_ALLOCATION_ACTION
HalpAllocationRoutine (
    IN PDEVICE_OBJECT DeviceObject,
    IN PIRP Irp,
    IN PVOID MapRegisterBase,
    IN PVOID Context
    )

/*++

Routine Description:

    This function is called by HalAllocateAdapterChannel when sufficent resources
    are available to the driver.  This routine saves the MapRegisterBase,
    and set the event pointed to by the context parameter.

Arguments:

    DeviceObject - Supplies a pointer where the map register base should be
        stored.

    Irp - Unused.

    MapRegisterBase - Supplied by the Io subsystem for use in IoMapTransfer.

    Context - Supplies a pointer to an event which is set to indicate the
        AdapterObject has been allocated.

Return Value:

    DeallocateObjectKeepRegisters - Indicates the adapter should be freed
        and mapregisters should remain allocated after return.

--*/

{

    UNREFERENCED_PARAMETER(Irp);

    *((PVOID *) DeviceObject) = MapRegisterBase;

    (VOID) KeSetEvent( (PKEVENT) Context, 0L, FALSE );

    return(DeallocateObjectKeepRegisters);
}



ULONG
HalGetBusDataByOffset(
    IN BUS_DATA_TYPE  BusDataType,
    IN ULONG BusNumber,
    IN ULONG SlotNumber,
    IN PVOID Buffer,
    IN ULONG Offset,
    IN ULONG Length
    )
/*++

Routine Description:

    The function returns the bus data for a slot or address.

Arguments:

    BusDataType - Supplies the type of bus.

    BusNumber - Indicates which bus.

    Buffer - Supplies the space to store the data.

    Length - Supplies a count in bytes of the maximum amount to return.

Return Value:

    Returns the amount of data stored into the buffer.

--*/

{

    ULONG DataLength = 0;

    switch (BusDataType) {
        case EisaConfiguration:
            DataLength = HalpReadEisaData(BusNumber, SlotNumber, Buffer, Offset, Length);
            break;
    }

    return(DataLength);

}

ULONG
HalGetBusData(
    IN BUS_DATA_TYPE  BusDataType,
    IN ULONG BusNumber,
    IN ULONG SlotNumber,
    IN PVOID Buffer,
    IN ULONG Length
    )
/*++

Routine Description:

    Subset of HalGetBusDataByOffset

--*/
{
    return HalGetBusDataByOffset (
                BusDataType,
                BusNumber,
                SlotNumber,
                Buffer,
                0,
                Length
                );
}

ULONG
HalSetBusDataByOffset(
    IN BUS_DATA_TYPE  BusDataType,
    IN ULONG BusNumber,
    IN ULONG SlotNumber,
    IN PVOID Buffer,
    IN ULONG Offset,
    IN ULONG Length
    )
/*++

Routine Description:

    The function sets the bus data for a slot or address.

Arguments:

    BusDataType - Supplies the type of bus.

    BusNumber - Indicates which bus.

    Buffer - Supplies the space to store the data.

    Length - Supplies a count in bytes of the maximum amount to return.

Return Value:

    Returns the amount of data stored into the buffer.

--*/

{

    ULONG DataLength = 0;

    return(DataLength);
}
ULONG
HalSetBusData(
    IN BUS_DATA_TYPE  BusDataType,
    IN ULONG BusNumber,
    IN ULONG SlotNumber,
    IN PVOID Buffer,
    IN ULONG Length
    )
/*++

Routine Description:

    Subset of HalGetBusDataByOffset

--*/
{
    return HalSetBusDataByOffset(
                BusDataType,
                BusNumber,
                SlotNumber,
                Buffer,
                0,
                Length
            );
}

NTSTATUS
HalAssignSlotResources (
    IN PUNICODE_STRING          RegistryPath,
    IN PUNICODE_STRING          DriverClassName       OPTIONAL,
    IN PDRIVER_OBJECT           DriverObject,
    IN PDEVICE_OBJECT           DeviceObject          OPTIONAL,
    IN INTERFACE_TYPE           BusType,
    IN ULONG                    BusNumber,
    IN ULONG                    SlotNumber,
    IN OUT PCM_RESOURCE_LIST   *AllocatedResources
    )
/*++

Routine Description:

    Reads the targeted device to determine it's required resources.
    Calls IoAssignResources to allocate them.
    Sets the targeted device with it's assigned resoruces
    and returns the assignments to the caller.

Arguments:

    RegistryPath - Passed to IoAssignResources.
        A device specific registry path in the current-control-set, used
        to check for pre-assigned settings and to track various resource
        assignment information for this device.

    DriverClassName Used to report the assigned resources for the driver/device
    DriverObject -  Used to report the assigned resources for the driver/device
    DeviceObject -  Used to report the assigned resources for the driver/device
                        (ie, IoReportResoruceUsage)
    BusType
    BusNumber
    SlotNumber - Together BusType,BusNumber,SlotNumber uniquely
                 indentify the device to be queried & set.

Return Value:

    STATUS_SUCCESS or error

--*/
{
    //
    // This HAL doesn't support any buses which support
    // HalAssignSlotResources
    //

    return STATUS_NOT_SUPPORTED;

}

NTSTATUS
HalAdjustResourceList (
    IN OUT PIO_RESOURCE_REQUIREMENTS_LIST   *pResourceList
    )
/*++

Routine Description:

    Takes the pResourceList and limits any requested resource to
    it's corrisponding bus requirements.

Arguments:

    pResourceList - The resource list to adjust.

Return Value:

    STATUS_SUCCESS or error

--*/
{
    //
    // BUGBUG: This function should verify that the resoruces fit
    // the bus requirements - for now we will assume that the bus
    // can support anything the device may ask for.
    //

    return STATUS_SUCCESS;
}

ULONG
HalpReadEisaData (
    IN ULONG BusNumber,
    IN ULONG SlotNumber,
    IN PVOID Buffer,
    IN ULONG Offset,
    IN ULONG Length
    )
/*++

Routine Description:

    The function returns the Eisa bus data for a slot or address.

Arguments:

    BusDataType - Supplies the type of bus.

    BusNumber - Indicates which bus.

    Buffer - Supplies the space to store the data.

    Length - Supplies a count in bytes of the maximum amount to return.

Return Value:

    Returns the amount of data stored into the buffer.

--*/

{
    OBJECT_ATTRIBUTES ObjectAttributes;
    OBJECT_ATTRIBUTES BusObjectAttributes;
    PWSTR EisaPath = L"\\Registry\\Machine\\Hardware\\Description\\System\\EisaAdapter";
    PWSTR ConfigData = L"Configuration Data";
    ANSI_STRING TmpString;
    UCHAR BusString[] = "00";
    UNICODE_STRING RootName, BusName;
    UNICODE_STRING ConfigDataName;
    NTSTATUS NtStatus;
    PKEY_VALUE_FULL_INFORMATION ValueInformation;
    PCM_FULL_RESOURCE_DESCRIPTOR Descriptor;
    PCM_PARTIAL_RESOURCE_DESCRIPTOR PartialResource;
    PCM_EISA_SLOT_INFORMATION SlotInformation;
    ULONG PartialCount;
    ULONG TotalDataSize, SlotDataSize;
    HANDLE EisaHandle, BusHandle;
    ULONG BytesWritten, BytesNeeded;
    PUCHAR KeyValueBuffer;
    ULONG i;
    ULONG DataLength = 0;
    PUCHAR DataBuffer = Buffer;
    BOOLEAN Found = FALSE;


    RtlInitUnicodeString(
                    &RootName,
                    EisaPath
                    );

    InitializeObjectAttributes(
                    &ObjectAttributes,
                    &RootName,
                    OBJ_CASE_INSENSITIVE,
                    (HANDLE)NULL,
                    NULL
                    );

    //
    // Open the EISA root
    //

    NtStatus = ZwOpenKey(
                    &EisaHandle,
                    KEY_READ,
                    &ObjectAttributes
                    );

    if (!NT_SUCCESS(NtStatus)) {
        KdPrint(("HAL: Open Status = %x\n",NtStatus));
        return(0);
    }

    //
    // Init bus number path
    //

    if (BusNumber > 99) {
        return (0);
    }

    if (BusNumber > 9) {
        BusString[0] += (UCHAR) (BusNumber/10);
        BusString[1] += (UCHAR) (BusNumber % 10);
    } else {
        BusString[0] += (UCHAR) BusNumber;
        BusString[1] = '\0';
    }

    RtlInitAnsiString(
                &TmpString,
                BusString
                );

    RtlAnsiStringToUnicodeString(
                            &BusName,
                            &TmpString,
                            TRUE
                            );


    InitializeObjectAttributes(
                    &BusObjectAttributes,
                    &BusName,
                    OBJ_CASE_INSENSITIVE,
                    (HANDLE)EisaHandle,
                    NULL
                    );

    //
    // Open the EISA root + Bus Number
    //

    NtStatus = ZwOpenKey(
                    &BusHandle,
                    KEY_READ,
                    &BusObjectAttributes
                    );

    if (!NT_SUCCESS(NtStatus)) {
        KdPrint(("HAL: Opening Bus Number: Status = %x\n",NtStatus));
        return(0);
    }

    //
    // opening the configuration data. This first call tells us how
    // much memory we need to allocate
    //

    RtlInitUnicodeString(
                &ConfigDataName,
                ConfigData
                );

    //
    // This should fail.  We need to make this call so we can
    // get the actual size of the buffer to allocate.
    //

    NtStatus = ZwQueryValueKey(
                        BusHandle,
                        &ConfigDataName,
                        KeyValueFullInformation,
                        ValueInformation,
                        0,
                        &BytesNeeded
                        );

    KeyValueBuffer = ExAllocatePool(
                            NonPagedPool,
                            BytesNeeded
                            );

    if (KeyValueBuffer == NULL) {
        KdPrint(("HAL: Cannot allocate Key Value Buffer\n"));
        ZwClose(BusHandle);
        return(0);
    }

    ValueInformation = (PKEY_VALUE_FULL_INFORMATION)KeyValueBuffer;

    NtStatus = ZwQueryValueKey(
                        BusHandle,
                        &ConfigDataName,
                        KeyValueFullInformation,
                        ValueInformation,
                        BytesNeeded,
                        &BytesWritten
                        );


    ZwClose(BusHandle);

    if (!NT_SUCCESS(NtStatus) || ValueInformation->DataLength == 0) {
        KdPrint(("HAL: Query Config Data: Status = %x\n",NtStatus));
        ExFreePool(KeyValueBuffer);
        return(0);
    }


    //
    // We get back a Full Resource Descriptor List
    //

    Descriptor = (PCM_FULL_RESOURCE_DESCRIPTOR)((PUCHAR)ValueInformation +
                                         ValueInformation->DataOffset);

    PartialResource = (PCM_PARTIAL_RESOURCE_DESCRIPTOR)
                          &(Descriptor->PartialResourceList.PartialDescriptors);
    PartialCount = Descriptor->PartialResourceList.Count;

    for (i = 0; i < PartialCount; i++) {

        //
        // Do each partial Resource
        //

        switch (PartialResource->Type) {
            case CmResourceTypeNull:
            case CmResourceTypePort:
            case CmResourceTypeInterrupt:
            case CmResourceTypeMemory:
            case CmResourceTypeDma:

                //
                // We dont care about these.
                //

                PartialResource++;

                break;

            case CmResourceTypeDeviceSpecific:

                //
                // Bingo!
                //

                TotalDataSize = PartialResource->u.DeviceSpecificData.DataSize;

                SlotInformation = (PCM_EISA_SLOT_INFORMATION)
                                    ((PUCHAR)PartialResource +
                                     sizeof(CM_PARTIAL_RESOURCE_DESCRIPTOR));

                while (((LONG)TotalDataSize) > 0) {

                    if (SlotInformation->ReturnCode == EISA_EMPTY_SLOT) {

                        SlotDataSize = sizeof(CM_EISA_SLOT_INFORMATION);

                    } else {

                        SlotDataSize = sizeof(CM_EISA_SLOT_INFORMATION) +
                                  SlotInformation->NumberFunctions *
                                  sizeof(CM_EISA_FUNCTION_INFORMATION);
                    }

                    if (SlotDataSize > TotalDataSize) {

                        //
                        // Something is wrong again
                        //

                        ExFreePool(KeyValueBuffer);
                        return(0);

                    }

                    if (SlotNumber != 0) {

                        SlotNumber--;

                        SlotInformation = (PCM_EISA_SLOT_INFORMATION)
                            ((PUCHAR)SlotInformation + SlotDataSize);

                        TotalDataSize -= SlotDataSize;

                        continue;

                    }

                    //
                    // This is our slot
                    //

                    Found = TRUE;
                    break;

                }

                //
                // End loop
                //

                i = PartialCount;

                break;

            default:
                KdPrint(("Bad Data in registry!\n"));
                ExFreePool(KeyValueBuffer);
                return(0);
        }
    }

    if (Found) {
        i = Length + Offset;
        if (i > SlotDataSize) {
            i = SlotDataSize;
        }

        DataLength = i - Offset;
        RtlMoveMemory (Buffer, ((PUCHAR)SlotInformation + Offset), DataLength);
    }

    ExFreePool(KeyValueBuffer);
    return DataLength;
}

ULONG
HalReadDmaCounter(
    IN PADAPTER_OBJECT AdapterObject
    )
/*++

Routine Description:

    This function reads the DMA counter and returns the number of bytes left
    to be transfered.

Arguments:

    AdapterObject - Supplies a pointer to the adapter object to be read.

Return Value:

    Returns the number of bytes still be be transfered.

--*/

{
    ULONG i;
    ULONG saveEnable;
    ULONG count;
    ULONG high;

    if (AdapterObject->PagePort) {

        //
        // Determine the controller number based on the Adapter number.
        //

        if (AdapterObject->AdapterNumber == 1) {

            //
            // This request is for DMA controller 1
            //

            PDMA1_CONTROL dmaControl;

            dmaControl = AdapterObject->AdapterBaseVa;

            //
            // Initialize count to a value which will not match.
            //

            count = 0xFFFF00;

            //
            // Loop until the same high byte is read twice.
            //

            do {

                high = count;

                WRITE_PORT_UCHAR( &dmaControl->ClearBytePointer, 0 );

                //
                // Read the current DMA count.
                //

                count = READ_PORT_UCHAR(
                    &dmaControl->DmaAddressCount[AdapterObject->ChannelNumber]
                    .DmaBaseCount
                    );

                count |= READ_PORT_UCHAR(
                    &dmaControl->DmaAddressCount[AdapterObject->ChannelNumber]
                    .DmaBaseCount
                    ) << 8;

            } while ((count & 0xFFFF00) != (high & 0xFFFF00));

        } else {

            //
            // This request is for DMA controller 2
            //

            PDMA2_CONTROL dmaControl;

            dmaControl = AdapterObject->AdapterBaseVa;

            //
            // Initialize count to a value which will not match.
            //

            count = 0xFFFF00;

            //
            // Loop until the same high byte is read twice.
            //

            do {

                high = count;

                WRITE_PORT_UCHAR( &dmaControl->ClearBytePointer, 0 );

                //
                // Read the current DMA count.
                //

                count = READ_PORT_UCHAR(
                    &dmaControl->DmaAddressCount[AdapterObject->ChannelNumber]
                    .DmaBaseCount
                    );

                count |= READ_PORT_UCHAR(
                    &dmaControl->DmaAddressCount[AdapterObject->ChannelNumber]
                    .DmaBaseCount
                    ) << 8;

            } while ((count & 0xFFFF00) != (high & 0xFFFF00));

        }

        //
        // The DMA counter has a bias of one and can only be 16 bit long.
        //

        count = (count + 1) & 0xFFFF;

    } else {

        //
        // Disable the DMA
        //

        i = READ_REGISTER_ULONG(
            &((PDMA_CHANNEL) AdapterObject->AdapterBaseVa)->Enable.Long
            );

        saveEnable = i;

        ((PDMA_CHANNEL_ENABLE) &i)->ChannelEnable = 0;
        WRITE_REGISTER_ULONG(
            &((PDMA_CHANNEL) AdapterObject->AdapterBaseVa)->Enable.Long,
            i
            );

        //
        // Read the transfer count.
        //

        count = READ_REGISTER_ULONG(&((PDMA_CHANNEL) AdapterObject->AdapterBaseVa)->ByteCount.Long);

        //
        // Reset the Enable register.
        //

        WRITE_REGISTER_ULONG(
            &((PDMA_CHANNEL) AdapterObject->AdapterBaseVa)->Enable.Long,
            saveEnable
            );

    }

    return(count);
}

BOOLEAN
HalpDmaChannel(
    IN PKINTERRUPT Interrupt,
    IN PVOID ServiceContext
    )
/*++

Routine Description:

    This routine is called when a DMA channel interrupt occurs.
    These should never occur.  Bugcheck is called if an error does occur.

Arguments:

   Interrupt - Supplies a pointer to the interrupt object

   ServiceContext - Bug number to call bugcheck with.

Return Value:

   Returns TRUE.

--*/
{

   ULONG DataWord;
   ULONG Channel;
   DMA_CHANNEL_ENABLE ChannelWord;

   //
   // Read the DMA channel interrupt source register.
   //

   DataWord = READ_REGISTER_ULONG(&DMA_CONTROL->InterruptSource.Long);

   for (Channel = 0; Channel < 8; Channel++) {

      //
      // Determine which channel is interrupting.
      //

      if (!(DataWord & ( 1 << Channel))) {
         continue;
      }

      DmaChannelMsg[18] = (UCHAR)(Channel + '0');

      HalDisplayString(DmaChannelMsg);

      *((PULONG) &ChannelWord) =
         READ_REGISTER_ULONG(&DMA_CONTROL->Channel[Channel].Enable.Long);

      if (ChannelWord.TerminalCount) {
         HalDisplayString("Terminal count was reached.\n");
      }

      if (ChannelWord.MemoryError) {
         HalDisplayString("A memory error was detected.\n");
      }

      if (ChannelWord.TranslationError) {
         HalDisplayString("A translation error occured.\n");
      }

   }

   KeBugCheck(NMI_HARDWARE_FAILURE);

   return(TRUE);
}

VOID
HalpAllocateMapRegisters(
    IN PLOADER_PARAMETER_BLOCK LoaderBlock
    )
/*++

Routine Description:

    This routine allocates memory for map registers directly from the loader
    block information.  This memory must be non-cached and contiguous.

Arguments:

    LoaderBlock - Pointer to the loader block which contains the memory descriptors.

Return Value:

   None.

--*/
{
    PMEMORY_ALLOCATION_DESCRIPTOR Descriptor;
    PLIST_ENTRY NextMd;
    ULONG MaxPageAddress;
    ULONG PhysicalAddress;
    ULONG MapRegisterSize;

    MapRegisterSize = DMA_TRANSLATION_LIMIT;
    MapRegisterSize = BYTES_TO_PAGES(MapRegisterSize);

    //
    // The address must be in KSEG 0.
    //

    MaxPageAddress = (KSEG1_BASE >> PAGE_SHIFT) - 1 ;

    //
    // Scan the memory allocation descriptors and allocate map buffers
    //

    NextMd = LoaderBlock->MemoryDescriptorListHead.Flink;
    while (NextMd != &LoaderBlock->MemoryDescriptorListHead) {
        Descriptor = CONTAINING_RECORD(NextMd,
                                MEMORY_ALLOCATION_DESCRIPTOR,
                                ListEntry);

        //
        // Search for a block of memory which is contains a memory chuck
        // that is greater than size pages, and has a physical address less
        // than MAXIMUM_PHYSICAL_ADDRESS.
        //

        if ((Descriptor->MemoryType == LoaderFree ||
             Descriptor->MemoryType == MemoryFirmwareTemporary) &&
            (Descriptor->BasePage) &&
            (Descriptor->PageCount >= MapRegisterSize) &&
            (Descriptor->BasePage + MapRegisterSize < MaxPageAddress)) {

            PhysicalAddress = Descriptor->BasePage << PAGE_SHIFT;
                break;
        }

        NextMd = NextMd->Flink;
    }

    //
    // Use the extra descriptor to define the memory at the end of the
    // original block.
    //

    ASSERT(NextMd != &LoaderBlock->MemoryDescriptorListHead);

    if (NextMd == &LoaderBlock->MemoryDescriptorListHead)
        return;

    //
    // Adjust the memory descriptors.
    //

    Descriptor->BasePage  += MapRegisterSize;
    Descriptor->PageCount -= MapRegisterSize;

    if (Descriptor->PageCount == 0) {

        //
        // The whole block was allocated,
        // Remove the entry from the list completely.
        //

        RemoveEntryList(&Descriptor->ListEntry);

    }

    //
    // Save the map register base.
    //

    HalpMapRegisterPhysicalBase = PhysicalAddress;

}