summaryrefslogtreecommitdiffstats
path: root/private/ntos/nthals/halsable/alpha/alphaio.s
blob: efcac0fdadbb00f6fb5b4c15105c9db40b0e0987 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
/*++

Copyright (c) 1993 Digital Equipment Corporation

Module Name:

    alphaio.s

Abstract:

    The module contains the functions to turn quasi virtual 
    addresses into an Alpha superpage virtual address
    and then read or write based on the request.
    (We are using EV4 64-bit superpage mode.)

Author:

    Joe Notarangelo  25-Oct-1993

Environment:

    Executes in kernel mode.

Revision History:

    12-Jul-1994 - Eric Rehm 

    Added dense space I/O

    27-July-1994 - Sameer Dekate  

    Make a common file for all machines and optimize Read/Write 
    register buffer routines. Made a common routine with different
    entry points for READ & WRITE_REGISTER_BUFFER  routines

    4-April-1995 - Sameer Dekate  

    Added support for PCI 1 dense space. 

--*/

#include "chipset.h"
#include "halalpha.h"



        SBTTL( "Read I/O byte" )
//++
//
// UCHAR
// READ_REGISTER_UCHAR(
//     IN PVOID RegisterQva
//     )
//
// Routine Description:
//
//     Reads a byte location in PCI bus memory or I/O space.
//
// Arguments:
//
//     RegisterQva(a0) - Supplies the QVA of the I/O byte to read.
//
// Return Value:
//
//     v0 - Returns the value read from I/O space.
//
//--

        LEAF_ENTRY(READ_REGISTER_UCHAR)

        ALTERNATE_ENTRY(READ_PORT_UCHAR)

        and     a0, QVA_SELECTORS, t1   // get qva selector bits
        and     a0, 3, t3               // get byte we need if eisa
        xor     t1, QVA_ENABLE, t1      // ok iff QVA_ENABLE set in selectors
        bne     t1, 2f                  // if ne, iff failed

        zap     a0, 0xf0, a0            // clear <63:32>
        bic     a0, QVA_ENABLE,a0       // clear QVA fields so shift is correct
        sll     a0, IO_BIT_SHIFT, t0    // t0 contains VA<33:0>
        ldiq    t4, -0x4000             // 0xffff ffff ffff c000
        sll     t4, 28, t4              // 0xffff fc00 0000 0000
        or      t0, t4, t0              // superpage mode

        mb
        ldl     v0, (t0)                // get the longword
        extbl   v0, t3, v0              // get correct byte if eisa

        ret     zero, (ra)              // return

//
// Dense space access: QVA is an offset into dense space
//

2:
        and     a0, 3, t3               // get byte we need
        zap     a0, 0xf0, a0            // clear <63:32>
        bic     a0, 3, a0               // clear <1:0> to get aligned longword
    
        ldiq    t2, 0xC0000000          // Bits telling if this is PCI 0 or PCI 1
        and     t2, a0, t2              // see if bits are lit.

        ldiq    t0, PCI_DENSE_BASE_PHYSICAL_SUPERPAGE   // PCI 0
        ldiq    t1, PCI1_DENSE_BASE_PHYSICAL_SUPERPAGE  // PCI 1

        cmovne  t2, t0, t4              // if PCI0 t0 -> t4
        cmoveq  t2, t1, t4              // if PCI1 t1 -> t4

        or      a0, t4, a0              // superpage mode: add offset to base
    
        ldl     v0, (a0)                // get the longword
        extbl   v0, t3, v0              // get correct byte

        ret     zero, (ra)              // return

        .end    READ_REGISTER_UCHAR


        SBTTL( "Read I/O word(16 bits)" )
//++
//
// USHORT
// READ_REGISTER_USHORT(
//     IN PVOID RegisterQva
//     )
//
// Routine Description:
//
//     Reads a word location in PCI bus memory or I/O space.
//
// Arguments:
//
//     RegisterQva(a0) - Supplies the QVA of the I/O word to read.
//
// Return Value:
//
//     v0 - Returns the value read from I/O space.
//
//--

        LEAF_ENTRY(READ_REGISTER_USHORT)

        ALTERNATE_ENTRY(READ_PORT_USHORT)

        and     a0, QVA_SELECTORS, t1   // get qva selector bits
        and     a0, 3, t3               // get word
        xor     t1, QVA_ENABLE, t1      // ok iff QVA_ENABLE set in selectors
        bne     t1, 2f                  // if ne, iff failed

        zap     a0, 0xf0, a0            // clear <63:32>
        bic     a0, QVA_ENABLE,a0       // clear QVA fields so shift is correct
        sll     a0, IO_BIT_SHIFT, t0    //
        ldiq    t4, -0x4000             //
        sll     t4, 28, t4              //
        or      t0, t4, t0              // superpage mode

        or      t0, IO_WORD_LEN, t0     // or in the byte enables

        mb
        ldl     v0, (t0)                // get the longword
        extwl   v0,t3,v0                // get the correct word

        ret     zero, (ra)              // return
        
//
// Dense space access: QVA is an offset into dense space
//

2:
        and     a0, 3, t3               // get word we need
        zap     a0, 0xf0, a0            // clear <63:32>
        bic     a0, 3, a0               // clear <1:0> to get aligned longword

        ldiq    t2, 0xC0000000          // Bits telling if this is PCI 0 or PCI 1
        and     t2, a0, t2              // see if bits are lit.

        ldiq    t0, PCI_DENSE_BASE_PHYSICAL_SUPERPAGE   // PCI 0
        ldiq    t1, PCI1_DENSE_BASE_PHYSICAL_SUPERPAGE  // PCI 1

        cmovne  t2, t0, t4              // if PCI0 t0 -> t4
        cmoveq  t2, t1, t4              // if PCI1 t1 -> t4

        or      a0, t4, a0              // superpage mode: add offset to base

        ldl     v0, (a0)                // get the longword
        extwl   v0, t3, v0              // get correct word

        ret     zero, (ra)              // return

        .end    READ_REGISTER_USHORT


        SBTTL( "Read I/O longword(32 bits)" )
//++
//
// ULONG
// READ_REGISTER_ULONG(
//     IN PVOID RegisterQva
//     )
//
// Routine Description:
//
//     Reads a longword location in PCI bus memory or I/O space.
//
// Arguments:
//
//     RegisterQva(a0) - Supplies the QVA of the I/O longword to read.
//
// Return Value:
//
//     v0 - Returns the value read from I/O space.
//
//--

        LEAF_ENTRY(READ_REGISTER_ULONG)

        ALTERNATE_ENTRY(READ_PORT_ULONG)

        and     a0, QVA_SELECTORS, t1   // get qva selector bits
        xor     t1, QVA_ENABLE, t1      // ok iff QVA_ENABLE set in selectors
        bne     t1, 2f                  // if ne, iff failed

        zap     a0, 0xf0, a0            // clear <63:32>
        bic     a0, QVA_ENABLE,a0       // clear QVA fields so shift is correct
        sll     a0, IO_BIT_SHIFT, t0    //
        ldiq    t4, -0x4000             //
        sll     t4, 28, t4              //
        or      t0, t4, t0              // superpage mode

        or      t0, IO_LONG_LEN, t0     // or in the byte enables

        mb
        ldl     v0, (t0)                // read the longword

        ret     zero, (ra)              // return
        
//
// Dense space access: QVA is an offset into dense space
//

2:
        zap     a0, 0xf0, a0            // clear <63:32>

        ldiq    t2, 0xC0000000          // Bits telling if this is PCI 0 or PCI 1
        and     t2, a0, t2              // see if bits are lit.

        ldiq    t0, PCI_DENSE_BASE_PHYSICAL_SUPERPAGE   // PCI 0
        ldiq    t1, PCI1_DENSE_BASE_PHYSICAL_SUPERPAGE  // PCI 1

        cmovne  t2, t0, t4              // if PCI0 t0 -> t4
        cmoveq  t2, t1, t4              // if PCI1 t1 -> t4

        or      a0, t4, a0              // superpage mode: add offset to base

        ldl     v0, (a0)                // get the longword

        ret     zero, (ra)              // return

        .end    READ_REGISTER_ULONG

        SBTTL( "Write I/O byte" )
//++
//
// VOID
// WRITE_REGISTER_UCHAR(
//     IN PVOID RegisterQva,
//     IN UCHAR Value
//     )
//
// Routine Description:
//
//     Writes a byte location in PCI bus memory or I/O space.
//
// Arguments:
//
//     RegisterQva(a0) - Supplies the QVA of the I/O byte to write.
//
//     Value(a1) - Supplies the value written to I/O space.
//
// Return Value:
//
//     None.
//
//--

        LEAF_ENTRY(WRITE_REGISTER_UCHAR)

        ALTERNATE_ENTRY(WRITE_PORT_UCHAR)

        and     a0, QVA_SELECTORS, t1   // get qva selector bits
        and     a0, 3, t3               // get byte we need if eisa
        xor     t1, QVA_ENABLE, t1      // ok iff QVA_ENABLE set in selectors
        bne     t1, 2f                  // if ne, iff failed

        zap     a0, 0xf0, a0            // clear <63:32>
        bic     a0, QVA_ENABLE,a0       // clear QVA fields so shift is correct
        sll     a0, IO_BIT_SHIFT, t0    // t0 contains VA<33:0>
        ldiq    t4, -0x4000             //
        sll     t4, 28, t4              //
        or      t0, t4, t0              // superpage mode

        insbl   a1,t3,t4                // put the byte in the correct position
        stl     t4, (t0)                // write the byte
        mb                              // order the write

        ret     zero, (ra)              // return

//
// Dense space access: QVA is an offset into dense space
//

2:
        and     a0, 3, t3               // get byte we need if eisa
        zap     a0, 0xf0, a0            // clear <63:32>
        bic a0, 3, a0                   // clear <1:0> to get aligned longword

        ldiq    t2, 0xC0000000          // Bits telling if this is PCI 0 or PCI 1
        and     t2, a0, t2              // see if bits are lit.

        ldiq    t0, PCI_DENSE_BASE_PHYSICAL_SUPERPAGE   // PCI 0
        ldiq    t1, PCI1_DENSE_BASE_PHYSICAL_SUPERPAGE  // PCI 1

        cmovne  t2, t0, t4              // if PCI0 t0 -> t4
        cmoveq  t2, t1, t4              // if PCI1 t1 -> t4

        or      a0, t4, a0              // superpage mode: add offset to base

        ldl     t1, (a0)                // get the long
        mskbl   t1, t3, t1              // mask the proper byte
        insbl   a1, t3, t2              // put byte into position
        bis     t1, t2, t1              // merge byte in result
        stl     t1, (a0)                // store the result
        mb                              // order the write

        ret     zero, (ra)              // return

        .end    WRITE_REGISTER_UCHAR


        SBTTL( "Write I/O word (16 bits)" )
//++
//
// VOID
// WRITE_REGISTER_USHORT(
//     IN PVOID RegisterQva,
//     IN USHORT Value
//     )
//
// Routine Description:
//
//     Writes a word location in PCI bus memory or I/O space.
//
// Arguments:
//
//     RegisterQva(a0) - Supplies the QVA of the I/O word to write.
//
//     Value(a1) - Supplies the value written to I/O space.
//
// Return Value:
//
//     None.
//
//--

        LEAF_ENTRY(WRITE_REGISTER_USHORT)

        ALTERNATE_ENTRY(WRITE_PORT_USHORT)

        and     a0, QVA_SELECTORS, t1   // get qva selector bits
        and     a0, 3, t3               // get word
        xor     t1, QVA_ENABLE, t1      // ok iff QVA_ENABLE set in selectors
        bne     t1, 2f                  // if ne, iff failed

        zap     a0, 0xf0, a0            // clear <63:32>
        bic     a0, QVA_ENABLE,a0       // clear QVA fields so shift is correct
        sll     a0, IO_BIT_SHIFT, t0    //
        ldiq    t4, -0x4000             //
        sll     t4, 28, t4              //
        or      t0, t4, t0              // superpage mode

        or      t0, IO_WORD_LEN, t0     // or in the byte enables

        inswl   a1,t3,t2                // put the word in the correct place
        stl     t2, (t0)                // write the word
        mb                              // order the write

        ret     zero, (ra)              // return

//
// Dense space access: QVA is an offset into dense space
//

2:
        and     a0, 3, t3               // get byte we need if eisa
        zap     a0, 0xf0, a0            // clear <63:32>
        bic     a0, 3, a0               // clear <1:0> to get aligned longword

        ldiq    t2, 0xC0000000          // Bits telling if this is PCI 0 or PCI 1
        and     t2, a0, t2              // see if bits are lit.

        ldiq    t0, PCI_DENSE_BASE_PHYSICAL_SUPERPAGE   // PCI 0
        ldiq    t1, PCI1_DENSE_BASE_PHYSICAL_SUPERPAGE  // PCI 1

        cmovne  t2, t0, t4              // if PCI0 t0 -> t4
        cmoveq  t2, t1, t4              // if PCI1 t1 -> t4

        or      a0, t4, a0              // superpage mode: add offset to base

        ldl     t1, (a0)                // get the long
        mskwl   t1, t3, t1              // mask the proper word
        inswl   a1, t3, t2              // put word into position
        bis     t1, t2, t1              // merge in result
        stl     t1, (a0)                // store the result
        mb                              // order the write

        ret     zero, (ra)              // return

        .end    WRITE_REGISTER_USHORT


        SBTTL( "Write I/O longword (32 bits)" )
//++
//
// VOID
// WRITE_REGISTER_ULONG(
//     IN PVOID RegisterQva,
//     IN ULONG Value
//     )
//
// Routine Description:
//
//     Writes a longword location in PCI bus memory or I/O space.
//
// Arguments:
//
//     RegisterQva(a0) - Supplies the QVA of the I/O longword to write.
//
//     Value(a1) - Supplies the value written to I/O space.
//
// Return Value:
//
//     None.
//
//--

        LEAF_ENTRY(WRITE_REGISTER_ULONG)

        ALTERNATE_ENTRY(WRITE_PORT_ULONG)

        and     a0, QVA_SELECTORS, t1   // get qva selector bits
        xor     t1, QVA_ENABLE, t1      // ok iff QVA_ENABLE set in selectors
        bne     t1, 2f                  // if ne, iff failed

        zap     a0, 0xf0, a0            // clear <63:32>
        bic     a0, QVA_ENABLE,a0       // clear QVA fields so shift is correct
        sll     a0, IO_BIT_SHIFT, t0    // 
        ldiq    t4, -0x4000             // 
        sll     t4, 28, t4              // 
        or      t0, t4, t0              // superpage mode

        or      t0, IO_LONG_LEN, t0     // or in the byte enables

        stl     a1, (t0)                // write the longword
        mb                              // order the write

        ret     zero, (ra)              // return
        
//
// Dense space access: QVA is an offset into dense space
//

2:
        zap     a0, 0xf0, a0            // clear <63:32>

        ldiq    t2, 0xC0000000          // Bits telling if this is PCI 0 or PCI 1
        and     t2, a0, t2              // see if bits are lit.

        ldiq    t0, PCI_DENSE_BASE_PHYSICAL_SUPERPAGE   // PCI 0
        ldiq    t1, PCI1_DENSE_BASE_PHYSICAL_SUPERPAGE  // PCI 1

        cmovne  t2, t0, t4              // if PCI0 t0 -> t4
        cmoveq  t2, t1, t4              // if PCI1 t1 -> t4

        or      a0, t4, a0              // superpage mode: add offset to base

        stl     a1, (a0)                // store the longword
        mb                              // order the write

        ret     zero, (ra)              // return

        .end    WRITE_REGISTER_ULONG


//++
//
// VOID
// READ_PORT_BUFFER_UCHAR(
//     IN PVOID PortQva,
//     IN PUCHAR Buffer,
//     IN ULONG Count
//     )
//
// Routine Description:
//
//     Read multiple bytes from the specified port address into the
//     destination buffer.
//
// Arguments:
//
//     PortQva(a0) - Supplies the QVA of the port to read.
//
//     Buffer(a1) - Supplies a pointer to the buffer to fill with
//                  the data read from the port.
//
//     Count(a2) - Supplies the number of bytes to read.
//
// Return Value:
//
//     None.
//
//--

        LEAF_ENTRY(READ_PORT_BUFFER_UCHAR)

        and     a0, 3, t3               // get byte we need if eisa
        zap     a0, 0xf0, a0            // clear <63:32>

        bic     a0, QVA_ENABLE,a0       // clear QVA fields so shift is correct
        sll     a0, IO_BIT_SHIFT, t0    // t0 contains VA<33:0>
        ldiq    t4, -0x4000             // t4=ffff ffff ffff c000
        sll     t4, 28, t4              // t4=ffff fc00 0000 0000
        or      t0, t4, t0              // superpage mode
        
        beq     a2, 3f                  // if count==0 return
2:
        ldl     v0, (t0)                // get the longword
        subl    a2, 1, a2               // decrement count
        extbl   v0,t3,v0                // get the correct byte
        stb     v0,(a1)                 // cheat and let the assembler do it
        addl    a1, 1, a1               // next byte in buffer
        bne     a2, 2b                  // while count != 0
3:
        ret     zero, (ra)              // return

        .end    READ_PORT_BUFFER_UCHAR


        SBTTL( "Read Buffer from Port Space in Ushorts")
//++
//
// VOID
// READ_PORT_BUFFER_USHORT(
//     IN PVOID PortQva,
//     IN PUSHORT Buffer,
//     IN ULONG Count
//     )
//
// Routine Description:
//
//     Read multiple words from the specified port address into the
//     destination buffer.
//
// Arguments:
//
//     PortQva(a0) - Supplies the QVA of the port to read.
//
//     Buffer(a1) - Supplies a pointer to the buffer to fill with
//                  the data read from the port.
//
//     Count(a2) - Supplies the number of words to read.
//
// Return Value:
//
//     None.
//
//--

        LEAF_ENTRY(READ_PORT_BUFFER_USHORT)

        and     a0, 3, t3               // get word we need
        zap     a0, 0xf0, a0            // clear <63:32>

        bic     a0, QVA_ENABLE,a0       // clear QVA fields so shift is correct
        sll     a0, IO_BIT_SHIFT, t0    // t0 contains VA<33:0>
        ldiq    t4, -0x4000             // t4=ffff ffff ffff c000
        sll     t4, 28, t4              // t4=ffff fc00 0000 0000
        or      t0, t4, t0              // superpage mode
        or      t0, IO_WORD_LEN, t0     // or in the byte enables

        beq     a2, 3f                  // if count==0 return
2:
        ldl     v0, (t0)                // get the longword
        subl    a2, 1, a2               // decrement count
        extwl   v0,t3,v0                // get the correct word
        stw     v0,(a1)                 // cheat and let the assembler do it
        addl    a1, 2, a1               // next word in buffer
        bne     a2, 2b                  // while count != 0
3:
        ret     zero, (ra)              // return

        .end    READ_PORT_BUFFER_USHORT

        SBTTL( "Read Buffer from Port Space in Ulongs")
//++
//
// VOID
// READ_PORT_BUFFER_ULONG(
//     IN PVOID PortQva,
//     IN PULONG Buffer,
//     IN ULONG Count
//     )
//
// Routine Description:
//
//     Read multiple longwords from the specified port address into the
//     destination buffer.
//
// Arguments:
//
//     PortQva(a0) - Supplies the QVA of the port to read.
//
//     Buffer(a1) - Supplies a pointer to the buffer to fill with
//                  the data read from the port.
//
//     Count(a2) - Supplies the number of longwords to read.
//
// Return Value:
//
//     None.
//
//--

        LEAF_ENTRY(READ_PORT_BUFFER_ULONG)

        zap     a0, 0xf0, a0            // clear <63:32>

        bic     a0, QVA_ENABLE,a0       // clear QVA fields so shift is correct
        sll     a0, IO_BIT_SHIFT, t0    // t0 contains VA<33:0>

        ldiq    t4, -0x4000             // t4=ffff ffff ffff c000
        sll     t4, 28, t4              // t4=ffff fc00 0000 0000
        or      t0, t4, t0              // superpage mode
        or      t0, IO_LONG_LEN, t0     // or in the byte enables

        beq     a2, 3f                  // if count==0 return
2:
        ldl     v0, (t0)                // get the longword
        subl    a2, 1, a2               // decrement count
        stl     v0,(a1)                 // cheat and let the assembler do it
        addl    a1, 4, a1               // next word in buffer
        bne     a2, 2b                  // while count != 0
3:
        ret     zero, (ra)              // return

        .end    READ_PORT_BUFFER_ULONG


        SBTTL( "Write Buffer to Port Space in Uchars")
//++
//
// VOID
// WRITE_PORT_BUFFER_UCHAR(
//     IN PVOID PortQva,
//     IN PUCHAR Buffer,
//     IN ULONG Count
//     )
//
// Routine Description:
//
//     Write multiple bytes from the source buffer to the specified port 
//     address.
//
// Arguments:
//
//     PortQva(a0) - Supplies the QVA of the port to write.
//
//     Buffer(a1) - Supplies a pointer to the buffer containing the data
//                  to write to the port.
//
//     Count(a2) - Supplies the number of bytes to write.
//
// Return Value:
//
//     None.
//
//--

        LEAF_ENTRY(WRITE_PORT_BUFFER_UCHAR)

        and     a0, 3, t3               // get byte we need if eisa
        zap     a0, 0xf0, a0            // clear <63:32>

        bic     a0, QVA_ENABLE,a0       // clear QVA fields so shift is correct
        sll     a0, IO_BIT_SHIFT, t0    // t0 contains VA<33:0>
        ldiq    t4, -0x4000             // t4=ffff ffff ffff c000
        sll     t4, 28, t4              // t4=ffff fc00 0000 0000
        or      t0, t4, t0              // superpage mode

        beq     a2, 3f                  // if count==0 return
2:
        ldq_u   t1, 0(a1)               // get quad surrounding byte
        subl    a2, 1, a2               // decrement count
        extbl   t1, a1, t1              // extract appropriate byte
        addl    a1, 1, a1               // increment buffer pointer
        insbl   t1, t3, t1              // put byte to appropriate lane
        stl     t1, 0(t0)               // store to port
        mb                              // push writes off chip
        bne     a2, 2b                  // while count != 0

3:
        ret     zero, (ra)              // return

        .end    WRITE_PORT_BUFFER_UCHAR

        SBTTL( "Write Buffer to Port Space in Ushorts")
//++
//
// VOID
// WRITE_PORT_BUFFER_USHORT(
//     IN PVOID PortQva,
//     IN PSHORT Buffer,
//     IN ULONG Count
//     )
//
// Routine Description:
//
//     Write multiple words from the source buffer to the specified port 
//     address.
//
// Arguments:
//
//     PortQva(a0) - Supplies the QVA of the port to write.
//
//     Buffer(a1) - Supplies a pointer to the buffer containing the data
//                  to write to the port.
//
//     Count(a2) - Supplies the number of words to write.
//
// Return Value:
//
//     None.
//
//--

        LEAF_ENTRY(WRITE_PORT_BUFFER_USHORT)

        and     a0, 3, t3               // get word we need
        zap     a0, 0xf0, a0            // clear <63:32>

        bic     a0, QVA_ENABLE,a0       // clear QVA fields so shift is correct
        sll     a0, IO_BIT_SHIFT, t0    // t0 contains VA<33:0>
        ldiq    t4, -0x4000             // t4=ffff ffff ffff c000
        sll     t4, 28, t4              // t4=ffff fc00 0000 0000
        or      t0, t4, t0              // superpage mode
        or      t0, IO_WORD_LEN, t0     // or in the byte enables

        beq     a2, 3f                  // if count==0 return
2:
        ldq_u   t1, 0(a1)               // get quad surrounding word
        subl    a2, 1, a2               // decrement count
        extwl   t1, a1, t1              // extract appropriate word
        addl    a1, 2, a1               // increment buffer pointer
        inswl   t1, t3, t1              // put word in appropriate lane
        stl     t1, 0(t0)               // store to port
        mb                              // push writes off chip
        bne     a2, 2b                  // while count != 0

3:
        ret     zero, (ra)              // return

        .end    WRITE_PORT_BUFFER_USHORT


        SBTTL( "Write Buffer to Port Space in Ulongs")
//++
//
// VOID
// WRITE_PORT_BUFFER_ULONG(
//     IN PVOID PortQva,
//     IN PULONG Buffer,
//     IN ULONG Count
//     )
//
// Routine Description:
//
//     Write multiple longwords from the source buffer to the specified port 
//     address.
//
// Arguments:
//
//     PortQva(a0) - Supplies the QVA of the port to write.
//
//     Buffer(a1) - Supplies a pointer to the buffer containing the data
//                  to write to the port.
//
//     Count(a2) - Supplies the number of longwords to write.
//
// Return Value:
//
//     None.
//
//--

        LEAF_ENTRY(WRITE_PORT_BUFFER_ULONG)

        zap     a0, 0xf0, a0            // clear <63:32>

        bic     a0, QVA_ENABLE,a0       // clear QVA fields so shift is correct
        sll     a0, IO_BIT_SHIFT, t0    // t0 contains VA<33:0>

        ldiq    t4, -0x4000             // t4=ffff ffff ffff c000
        sll     t4, 28, t4              // t4=ffff fc00 0000 0000
        or      t0, t4, t0              // superpage mode
        or      t0, IO_LONG_LEN, t0     // or in the byte enables

        beq     a2, 3f                  // if count==0 return
2:
        ldl     t1, 0(a1)               // a1 must be longword aligned
        subl    a2, 1, a2               // decrement count
        stl     t1, 0(t0)               // store to port
        mb                              // push writes off chip
        addl    a1, 4, a1               // increment buffer
        bne     a2, 2b                  // while count != 0

3:
        ret     zero, (ra)              // return

        .end    WRITE_PORT_BUFFER_ULONG


        SBTTL( "Read Buffer from PCI Memory Space in Uchars")
//++
//
// VOID
// READ_REGISTER_BUFFER_UXXXXX(
//     IN PVOID RegisterQva,
//     IN PUCHAR Buffer,
//     IN ULONG Count
//     )
//
// Routine Description:
//
//     Copies a buffer from PCI Memory Space to an in-memory buffer.
//
// Arguments:
//
//     RegisterQva(a0) - Supplies the starting QVA of the memory space buffer.
//
//     Buffer(a1) - Supplies a pointer to the in-memory buffer to receive
//                  the copied data.
//
//     Count(a2) - Supplies the number of bytes, words or longwords to write.
//
// Return Value:
//
//     None.
//
//--

        LEAF_ENTRY(READ_REGISTER_BUFFER_ULONG)
        
        sll     a2, 1, a2               // convert number of longs to words

        ALTERNATE_ENTRY(READ_REGISTER_BUFFER_USHORT)


        sll     a2, 1, a2               // convert number of words to chars

        ALTERNATE_ENTRY(READ_REGISTER_BUFFER_UCHAR)

        and     a0, QVA_SELECTORS, t1   // get qva selector bits
        xor     t1, QVA_ENABLE, t1      // ok iff QVA_ENABLE set in selectors
        beq     t1, 1f                  // if (eq) go do sparse space

//
// Dense space access: QVA is an offset into dense space
// Set IO address in t0
//
        zap     a0, 0xf0, a0            // clear <63:32>

        ldiq    t2, 0xC0000000          // Bits telling if this is PCI 0 or PCI 1
        and     t2, a0, t2              // see if bits are lit.

        ldiq    t0, PCI_DENSE_BASE_PHYSICAL_SUPERPAGE   // PCI 0
        ldiq    t1, PCI1_DENSE_BASE_PHYSICAL_SUPERPAGE  // PCI 1

        cmovne  t2, t0, t4              // if PCI0 t0 -> t4
        cmoveq  t2, t1, t4              // if PCI1 t1 -> t4

        or      a0, t4, t0              // superpage mode: add offset to base

        ldil    a3,  1                  // Offset to next byte
        ldil    a4,  4                  // Offset to next long
        ldil    a5,  0                  // LONG LEN ENABLE

        br      zero 2f                 // go do the actual transfer

//
// Sparse memory
// Set IO address in t0
//

1:
        zap     a0, 0xf0, a0            // clear <63:32>
        bic     a0, QVA_ENABLE,a0       // clear QVA fields so shift is correct
        sll     a0, IO_BIT_SHIFT, t0    // t0 contains VA<33:0>
        ldiq    t4, -0x4000             // 0xffff ffff ffff c000
        sll     t4, 28, t4              // 0xffff fc00 0000 0000
        or      t0, t4, t0              // superpage mode 

        ldil    a3, IO_BYTE_OFFSET      // Offset to next byte
        ldil    a4, IO_LONG_OFFSET      // Offset to next long
        ldil    a5, IO_LONG_LEN         // LONG LEN ENABLE

//
//  Do the ACTUAL TRANSFER
//  a2 = count in characters
//

2:
        beq     a2, 60f                 // if count == 0 goto 60f (return)

//
// Check alignment of src and destn
//
                                        
        and     a0, 3, t3               // source alignment = t3 
        and     a1, 3, t2               // destination alignment = t2
        xor     t2, t3, t4              // t4 = t2 xor t3
        bne     t4, 70f                 // if (t4!=0) do unaligned copy
                                        // else do byte copies till alignment
        
        beq     t3, 20f                 // if t3==0 go do long word copies
                                        // else do byte copies till alignment

//
// Src and Destn are not longword aligned but have same alignment
// (sympathetically aligned) copy till alignment
//

10:     
        beq     a2, 60f                 // if count == 0 goto 60f (return)

        ldl     v0, 0(t0)               // get the longword
        subl    a2, 1, a2               // decrement count
        extbl   v0, t3,v0               // get the correct byte
        stb     v0, (a1)                // cheat and let the assembler do it
        addq    t0, a3, t0              // next I/O address
        addl    a1, 1, a1               // next byte in buffer
        addl    t3, 1, t3               // next byte in lane
        and     t3, 3, t3               // longword lanes
        bne     t3, 10b                 // while unaligned

//
// Src and Destn have same alignment and are longword aligned
//

20:
        srl     a2, 2, t3               // t3= #longwords to move
        beq     t3, 40f                 // if #longwords == 0 goto 40f
        or      t0, a5, t0              // We will now do LONG READS

30:                                    
        ldl     v0, 0(t0)               // get the longword
        subl    t3, 1, t3               // decrement long word count
        stl     v0, (a1)                // store the longword at destn
        addq    t0, a4, t0              // next I/O address 
        addl    a1, 4, a1               // next longword in buffer
        bne     t3, 30b                 // while #longwords > 0

//
// Do byte copies of remaining data uncopied
//
        bic     t0, a5, t0              // We will now do BYTE READS
40:
        and     a2, 3, a2               // remaining Bytes to copy
        beq     a2, 60f                 // if count == 0 goto 60f

50:                                      
        ldl     v0, 0(t0)               // get the longword
        subl    a2, 1, a2               // decrement count
        extbl   v0, t3,v0               // get the correct byte
        stb     v0, (a1)                // cheat and let the assembler do it
        addl    a1, 1, a1               // next byte in buffer
        addq    t0, a3, t0              // next I/O address
        addl    t3, 1, t3               // next byte in lane
        and     t3, 3, t3               // longword lanes
        bne     a2, 50b                 // while count > 0

60:
        ret     zero, (ra)              // return


//
// source IO alignment != destination memory alignment
// move enough bytes to longword align the IO source
// then move 32bit (longwords) storing unaligned into memory
// then move residual bytes
//
// Align src IO addresses; unaligned destn memory 
//

70:
       beq     t3, 90f                 // branch if source is long aligned
//
// Move bytes until IO src is at a longword boundary or bytes exhausted
//

80:
       beq     a2, 130f                 // if count == 0 goto 130f (return)

       ldl     v0, 0(t0)                // get the longword
       subl    a2, 1, a2                // decrement count
       extbl   v0, t3,v0                // get the correct byte
       stb     v0, (a1)                 // cheat and let the assembler do it
       addl    a1, 1, a1                // next byte in buffer
       addq    t0, a3, t0               // next I/O address
       addl    t3, 1, t3                // next byte in lane
       and     t3, 3, t3                // longword lanes
       bne     t3, 80b                  // while unaligned

//
// aligned IO source, unaligned memory destination
//

90:
        srl     a2, 3, t3               // quadwords to move
        beq     t3, 110f                // if no quads finish with bytes copies 

        or      t0, a5, t0              // We will now do LONG READS

100:  
        //
        // Decoding for Comment:
        // S= sign, X= overwritten byte, V= Valid byte,assume destn align a1= 2
        //
        ldl     t1, 0(t0)               // load LW 0 from IO src       SSSS 4321
        ldq_u   t4, 0(a1)               // load destn merge            XXVV VVVV
        ldq_u   t5, 7(a1)               // load destn next merge       VVXX XXXX
        subl    t3, 1, t3               // decrement quadwords to move

        addq    t0, a4, t0              // add LONG OFFSET to t0
        ldl     t2, 0(t0)               // load LW 1 from IO src       SSSS 8765

        mskql   t4, a1, t4              // mask low  LW for merge      00VV VVVV
        mskqh   t5, a1, t5              // mask high LW for merge      VV00 0000

        zap     t1, 0xf0, t1            // clear high LW for long 0    0000 4321
        sll     t2, 32, t2              // get long 1 to high longword 8765 0000
        bis     t1, t2, t1              // merge read quadword together8765 4321

        addq    t0, a4, t0              // increment to next long 

        insql   t1, a1, t6              // position low  QW for merge  2100 0000
        insqh   t1, a1, t7              // position high QW for merge  0087 6543

        bis     t4, t6, t4              // merge new data, low QW      21VV VVVV
        bis     t5, t7, t5              // merge new data, high QW     VV87 6543

        stq_u   t5, 7(a1)               // write high quadword
        stq_u   t4, 0(a1)               // write low quadword

        lda     a1, 8(a1)               // increment memory pointer
        bne     t3, 100b                // while quadwords to move

//
// Do byte copies of the remaining data not yet copied
//
        bic     t0, a5, t0              // We will now do BYTE READS
110:
        and     a2, 7, a2               // remaining bytes to copy
        beq     a2, 130f                // if count == 0 goto 130f (return)

120:                                      
        ldl     v0, 0(t0)               // get the longword
        subl    a2, 1, a2               // decrement count
        extbl   v0, t3,v0               // get the correct byte
        stb     v0, (a1)                // cheat and let the assembler do it
        addl    a1, 1, a1               // next byte in buffer
        addq    t0, a3, t0              // next I/O address
        addl    t3, 1, t3               // next byte in lane
        and     t3, 3, t3               // longword lanes
        bne     a2, 120b                // while count != 0

130:
        ret     zero, (ra)              // return

        .end    READ_REGISTER_BUFFER_ULONG // end for UCHAR & USHORT


        SBTTL( "Write Buffer to PCI Memory Space in Uchars")
//++
//
// VOID
// WRITE_REGISTER_BUFFER_UXXXXX(
//     IN PVOID RegisterQva,
//     IN PUCHAR Buffer,
//     IN ULONG Count
//     )
//
// Routine Description:
//
//     Copies an in-memory buffer to a PCI Memory Space buffer.
//
// Arguments:
//
//     RegisterQva(a0) - Supplies the starting QVA of the memory space buffer.
//
//     Buffer(a1) - Supplies a pointer to the in-memory source buffer.
//
//     Count(a2) - Supplies the number of bytes, words to longwords to write.
//
// Return Value:
//
//     None.
//
//--
        LEAF_ENTRY(WRITE_REGISTER_BUFFER_ULONG)

        sll     a2, 1, a2               // convert number of longs to words

        ALTERNATE_ENTRY(WRITE_REGISTER_BUFFER_USHORT)

        sll     a2, 1, a2               // convert number of words to chars

        ALTERNATE_ENTRY(WRITE_REGISTER_BUFFER_UCHAR)

        and     a0, QVA_SELECTORS, t1   // get qva selector bits
        xor     t1, QVA_ENABLE, t1      // ok iff QVA_ENABLE set in selectors
        beq     t1, 1f                  // if (eq) go do sparse space

//
// Dense space access: QVA is an offset into dense space
// Set IO address in t0
//

        zap     a0, 0xf0, a0            // clear <63:32>

        ldiq    t2, 0xC0000000          // Bits telling if this is PCI 0 or PCI 1
        and     t2, a0, t2              // see if bits are lit.

        ldiq    t0, PCI_DENSE_BASE_PHYSICAL_SUPERPAGE   // PCI 0
        ldiq    t1, PCI1_DENSE_BASE_PHYSICAL_SUPERPAGE  // PCI 1

        cmovne  t2, t0, t4              // if PCI0 t0 -> t4
        cmoveq  t2, t1, t4              // if PCI1 t1 -> t4

        or      a0, t4, t0              // superpage mode: add offset to base

        ldil    a3,  1                  // Offset to next byte
        ldil    a4,  4                  // Offset to next long
        ldil    a5,  0                  // LONG LEN ENABLE

        br      zero, 2f                // go do the actual transfer

//
// Sparse Space
// Set IO address in t0
//

1:
        zap     a0, 0xf0, a0            // clear <63:32>
        bic     a0, QVA_ENABLE,a0       // clear QVA fields so shift is correct
        sll     a0, IO_BIT_SHIFT, t0    // t0 contains VA<33:0>
        ldiq    t4, -0x4000             // 0xffff ffff ffff c000
        sll     t4, 28, t4              // 0xffff fc00 0000 0000
        or      t0, t4, t0              // superpage mode

        ldil    a3, IO_BYTE_OFFSET      // Offset to next byte
        ldil    a4, IO_LONG_OFFSET      // Offset to next long
        ldil    a5, IO_LONG_LEN         // LONG LEN ENABLE

//
//  Do the ACTUAL TRANSFER
//  a2 = count in characters
//

2:
        beq     a2, 60f                 // if count == 0 goto 60f (return)

//
// Check alignment of src and destn
//
        and     a0, 3, t3               // destn alignment = t3 
        and     a1, 3, t2               // src alignment = t2
        xor     t2, t3, t4              // t4 = t2 xor t3
        bne     t4, 70f                 // if (t4!=0) do unaligned copy
                                        // else do byte copies till alignment

        beq     t3, 20f                 // if t3==0 go do longword copies
                                        // else do byte copies till alignment

//
// Src and Destn are not longword aligned but have same alignment
// (sympathetically aligned) copy till alignment
//
        
10:     
        beq     a2, 60f                 // if count == 0 goto 60f (return)

        ldq_u   t1, 0(a1)               // get quad surrounding byte
        subl    a2, 1, a2               // decrement count
        extbl   t1, a1, t1              // extract appropriate byte
        addl    a1, 1, a1               // increment buffer pointer
        insbl   t1, t3, t1              // get proper lane
        stl     t1, 0(t0)               // store byte to buffer (BYTE ENABLED)
        addq    t0, a3, t0              // increment I/O buffer
        addl    t3, 1, t3               // increment bytelane
        and     t3, 3, t3               // longwords only
        bne     t3, 10b                 // loop while not long aligned

//
// Src and Destn have same alignment and are longword aligned
//

20:
        srl     a2, 2, t3               // t3= #longwords to move
        beq     t3, 40f                 // if #longwords == 0 goto 40f
        or      t0, a5, t0              // We will now do LONG WRITE

30:     
        ldl     t1, 0(a1)               // get the longword
        addl    a1, 4, a1               // increment buffer pointer
        subl    t3, 1, t3               // decrement #longwords by 1
        stl     t1, 0(t0)               // store long to buffer
        addq    t0, a4, t0              // increment I/O buffer
        bne     t3, 30b                 // while #longwords > 0

//
// Do byte copies of remaining data uncopied
//
        bic      t0, a5, t0             // Stop doing LONG WRITE
                                
40:
        and     a2, 3, a2               // remaining Bytes to copy
        beq     a2, 60f                 // if count == 0 goto 60f (return)

50:      
        ldq_u   t1, 0(a1)               // get quad surrounding byte
        subl    a2, 1, a2               // decrement count
        extbl   t1, a1, t1              // extract appropriate byte
        addl    a1, 1, a1               // increment buffer pointer
        insbl   t1, t3, t1              // get proper lane
        stl     t1, 0(t0)               // store to buffer
        addq    t0, a3, t0              // increment I/O buffer
        addl    t3, 1, t3               // increment bytelane
        and     t3, 3, t3               // longwords only
        bne     a2, 50b                 // while count != 0

60:
        mb                              // push writes off chip
        ret     zero, (ra)              // return

//
// destn IO alignment != Src memory alignment
// move enough bytes to longword align the IO destn
// then move 32bit (longwords) reading unaligned data from memory
// then move residual bytes
//

70:
        beq     t3, 90f                // branch if destn is long aligned

//
// Move bytes until IO destn is at a longword boundary or bytes exhausted
//

80:
        beq     a2, 130f                // if count == 0 goto 130f (return)

        ldq_u   t1, 0(a1)               // get quad surrounding byte
        extbl   t1, a1, t1              // extract appropriate byte
        insbl   t1, t3, t1              // get proper lane
        stl     t1, 0(t0)               // store byte to buffer (BYTE ENABLED)
        subl    a2, 1, a2               // decrement count
        addl    a1, 1, a1               // increment buffer pointer
        addq    t0, a3, t0              // increment I/O buffer
        addl    t3, 1, t3               // increment bytelane
        and     t3, 3, t3               // longwords only
        bne     t3, 80b                 // loop if not long aligned

//
// aligned IO destn, unaligned memory src
//

90:
        srl     a2, 3, t3               // t3 = quadwords to move
        beq     t3, 110f                // if no quads finish with bytes copies

        or      t0, a5, t0              // We will now do LONG WRITES

100:
        ldq_u   t1, 0(a1)               // load low source quadword
        ldq_u   t2, 7(a1)               // load high source quadword
        extql   t1, a1, t1              // extract low  portion of quadword
        extqh   t2, a1, t2              // extract high portion of quadword
        or      t1, t2, t1              // merge to get the source quadword
        stl     t1, 0(t0)               // store the long word (LONG ENABLED)

        lda     a1, 8(a1)               // next source quadword    
        srl     t1, 32, t1              // get high longword into position
        subl    t3, 1, t3               // decrement number of quadwords to move
        addq    t0, a4, t0              // add LONG OFFSET to t0
        stl     t1, (t0)                // store the second long word

        addq    t0, a4, t0              // increment to next dest. long 
        bne     t3, 100b                // while quadwords to move
//
// Do byte copies of the remaining data not yet copied
//
        bic     t0, a5, t0              // We will now do BYTE WRITES
110:
        and     a2, 7, a2               // remaining Bytes to copy
        beq     a2, 130f                // if count == 0 goto 130f (return)

120:
        ldq_u   t1, 0(a1)               // get quad surrounding byte
        subl    a2, 1, a2               // decrement count
        extbl   t1, a1, t1              // extract appropriate byte
        addl    a1, 1, a1               // increment buffer pointer
        insbl   t1, t3, t1              // get proper lane
        stl     t1, 0(t0)               // store byte to buffer (BYTE ENABLED)
        addq    t0, a3, t0              // increment I/O buffer
        addl    t3, 1, t3               // increment bytelane
        and     t3, 3, t3               // longwords only
        bne     a2, 120b                // while count != 0

130:
        mb                              // push writes off chip
        ret     zero, (ra)              // return

        .end    WRITE_REGISTER_BUFFER_ULONG // end for UCHAR & USHORT