summaryrefslogtreecommitdiffstats
path: root/private/ntos/nthals/halsni4x/mips/jxport.c
blob: 11b17a6d6f479a002184af7ee0f4a66df2571cce (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
//#pragma comment(exestr, "$Header: /usr4/winnt/SOURCES/ddk35/src/hal/halsni/mips/RCS/jxport.c,v 1.2 1995/02/13 12:49:39 flo Exp $")

/*++

Copyright (c) 1991-1994  Microsoft Corporation

Module Name:

    jxport.c

Abstract:

    This module implements the code that provides communication between
    the kernel debugger on a MIPS R4000 system and the host
    system.

Environment:

    Kernel mode

Revision History:

--*/

#include "halp.h"
#include "jazzserp.h"

// set the correct divisor for the SNI serial ports / quartz clock
#if defined(SNI)
    #undef  BAUD_RATE_9600
    #undef  BAUD_RATE_19200
    #define BAUD_RATE_9600  12
    #define BAUD_RATE_19200 6
#endif  // SNI


#define HEADER_FILE
#include "kxmips.h"


VOID
HalpGetDivisorFromBaud(
    IN ULONG ClockRate,
    IN LONG DesiredBaud,
    OUT PSHORT AppropriateDivisor
    );


#pragma alloc_text(INIT,HalpGetDivisorFromBaud)


//
// BUGBUG Temporarily, we use counter to do the timeout
//

#define TIMEOUT_COUNT 1024*512

//
// BUGBUG Temp until we have a configuration manager.
//

PUCHAR KdComPortInUse = NULL;
BOOLEAN KdUseModemControl = FALSE;

//
// Define serial port read and write addresses.
//

#if defined(USE_COM2)

// Assume COM2 for the kernel debugger.

#define SP_READ   ((PSP_READ_REGISTERS) ((ULONG)HalpOnboardControlBase + SERIAL1_RELATIVE_BASE))
#define SP_WRITE  ((PSP_WRITE_REGISTERS)((ULONG)HalpOnboardControlBase + SERIAL1_RELATIVE_BASE))


#else

// Assume COM1 for the kernel debugger.

#define SP_READ   ((PSP_READ_REGISTERS) ((ULONG)HalpOnboardControlBase + SERIAL0_RELATIVE_BASE))
#define SP_WRITE  ((PSP_WRITE_REGISTERS)((ULONG)HalpOnboardControlBase + SERIAL0_RELATIVE_BASE))

#endif
//
// Define forward referenced prototypes.
//

SP_LINE_STATUS
KdReadLsr (
    IN BOOLEAN WaitReason
    );

//
// Define baud rate divisor to be used on the debugger port.
//

SHORT HalpBaudRateDivisor = BAUD_RATE_19200;


ULONG
HalpGetByte (
    IN PCHAR Input,
    IN BOOLEAN Wait
    )

/*++

Routine Description:

    This routine gets a byte from the serial port used by the kernel
    debugger.

Arguments:

    Input - Supplies a pointer to a variable that receives the input
        data byte.

    Wait - Supplies a boolean value that detemines whether a timeout
        is applied to the input operation.

Return Value:

    CP_GET_SUCCESS is returned if a byte is successfully read from the
        kernel debugger line.

    CP_GET_ERROR is returned if an error is encountered during reading.

    CP_GET_NODATA is returned if timeout occurs.

--*/

{

    SP_LINE_STATUS LsrByte;
    UCHAR DataByte;
    ULONG TimeoutCount;

    //
    // Attempt to read a byte from the debugger port until a byte is
    // available or until a timeout occurs.
    //

    TimeoutCount = Wait ? TIMEOUT_COUNT : 1;
    do {
        TimeoutCount -= 1;

        //
        // Wait until data is available in the receive buffer.
        //

        KeStallExecutionProcessor(1);
        LsrByte = KdReadLsr(TRUE);
        if (LsrByte.DataReady == 0) {
            continue;
        }

        //
        // Read input byte and store in callers buffer.
        //

        *Input = READ_REGISTER_UCHAR(&SP_READ->ReceiveBuffer);

        //
        // If using modem controls, then skip any incoming data while
        // ReceiveData not set.
        //

        if (KdUseModemControl) {
            DataByte = READ_REGISTER_UCHAR(&SP_READ->ModemStatus);
            if ( ((PSP_MODEM_STATUS)&DataByte)->ReceiveDetect == 0) {
                continue;
            }
        }

        //
        // Return function value as the not of the error indicators.
        //

        if (LsrByte.ParityError ||
            LsrByte.FramingError ||
            LsrByte.OverrunError ||
            LsrByte.BreakIndicator) {
            return CP_GET_ERROR;
        }

        return CP_GET_SUCCESS;
    } while(TimeoutCount != 0);

    return CP_GET_NODATA;
}

BOOLEAN
KdPortInitialize (
    PDEBUG_PARAMETERS DebugParameters,
    PLOADER_PARAMETER_BLOCK LoaderBlock,
    BOOLEAN Initialize
    )

/*++

Routine Description:

    This routine initializes the serial port used by the kernel debugger
    and must be called during system initialization.

Arguments:

    DebugParameter - Supplies a pointer to the debug port parameters.

    LoaderBlock - Supplies a pointer to the loader parameter block.

    Initialize - Specifies a boolean value that determines whether the
        debug port is initialized or just the debug port parameters
        are captured.

Return Value:

    A value of TRUE is returned is the port was successfully initialized.
    Otherwise, a value of FALSE is returned.

--*/

{

    PCONFIGURATION_COMPONENT_DATA ConfigurationEntry;
    UCHAR DataByte;
    PCM_PARTIAL_RESOURCE_DESCRIPTOR Descriptor;
    PCM_SERIAL_DEVICE_DATA DeviceData;
    PCM_PARTIAL_RESOURCE_LIST List;
    ULONG MatchKey;
    ULONG BaudRate;
    ULONG BaudClock;


    //
    // Find the configuration information for the first serial port.
    //

    if (LoaderBlock != NULL) {
        MatchKey = 0;
        ConfigurationEntry = KeFindConfigurationEntry(LoaderBlock->ConfigurationRoot,
                                                      ControllerClass,
                                                      SerialController,
                                                      &MatchKey);

    } else {
        ConfigurationEntry = NULL;
    }

    if (DebugParameters->BaudRate != 0) {
        BaudRate = DebugParameters->BaudRate;
    } else {
        BaudRate = 19200;
    }

    //
    // If the serial configuration entry was not found or the frequency
    // specified is not supported, then default the baud clock to 800000.
    //

    BaudClock = 8000000;
    if (ConfigurationEntry != NULL) {
        List = (PCM_PARTIAL_RESOURCE_LIST)ConfigurationEntry->ConfigurationData;
        Descriptor = &List->PartialDescriptors[List->Count];
        DeviceData = (PCM_SERIAL_DEVICE_DATA)Descriptor;
        if ((DeviceData->BaudClock == 1843200) ||
            (DeviceData->BaudClock == 4233600) ||
            (DeviceData->BaudClock == 8000000)) {
            BaudClock = DeviceData->BaudClock;
        }
    }

    HalpGetDivisorFromBaud(
        BaudClock,
        BaudRate,
        &HalpBaudRateDivisor
        );

    //
    // If the debugger is not being enabled, then return.
    //

    if (Initialize == FALSE) {
        return TRUE;
    }

//
// BUGBUG the FW configuration sets the serial 0 Port config relativ to
// the EISA/ISA Base Address, so the serial driver doesn't get the right
// information when debugging is enabled ....
//

#if defined(USE_COM2)
    KdComPortInUse=(PUCHAR)(SERIAL1_PHYSICAL_BASE);
#else
    KdComPortInUse=(PUCHAR)(SERIAL0_PHYSICAL_BASE);
#endif


    //
    // Clear the divisor latch, clear all interrupt enables, and reset and
    // disable the FIFO's.
    //

    WRITE_REGISTER_UCHAR(&SP_WRITE->LineControl, 0x0);
    WRITE_REGISTER_UCHAR(&SP_WRITE->InterruptEnable, 0x0);
    DataByte = 0;
    ((PSP_FIFO_CONTROL)(&DataByte))->ReceiveFifoReset = 1;
    ((PSP_FIFO_CONTROL)(&DataByte))->TransmitFifoReset = 1;
    WRITE_REGISTER_UCHAR(&SP_WRITE->FifoControl, DataByte);

    //
    // Set the divisor latch and set the baud rate.
    //
    ((PSP_LINE_CONTROL)(&DataByte))->DivisorLatch = 1;
    WRITE_REGISTER_UCHAR(&SP_WRITE->LineControl, DataByte);
    WRITE_REGISTER_UCHAR(&SP_WRITE->TransmitBuffer,(UCHAR)(HalpBaudRateDivisor&0xFF));

    WRITE_REGISTER_UCHAR(&SP_WRITE->InterruptEnable,(UCHAR)(HalpBaudRateDivisor>>8));

    //
    // Clear the divisor latch and set the character size to eight bits
    // with one stop bit and no parity checking.
    //

    DataByte = 0;
    ((PSP_LINE_CONTROL)(&DataByte))->CharacterSize = EIGHT_BITS;
    WRITE_REGISTER_UCHAR(&SP_WRITE->LineControl, DataByte);

    //
    // Set data terminal ready and request to send.
    //

    DataByte = 0;
    ((PSP_MODEM_CONTROL)(&DataByte))->DataTerminalReady = 1;
    ((PSP_MODEM_CONTROL)(&DataByte))->RequestToSend = 1;
    WRITE_REGISTER_UCHAR(&SP_WRITE->ModemControl, DataByte);

    return TRUE;
}

ULONG
KdPortGetByte (
    OUT PUCHAR Input
    )

/*++

Routine Description:

    This routine gets a byte from the serial port used by the kernel
    debugger.

    N.B. It is assumed that the IRQL has been raised to the highest
        level, and necessary multiprocessor synchronization has been
        performed before this routine is called.

Arguments:

    Input - Supplies a pointer to a variable that receives the input
        data byte.

Return Value:

    CP_GET_SUCCESS is returned if a byte is successfully read from the
        kernel debugger line.

    CP_GET_ERROR is returned if an error is encountered during reading.

    CP_GET_NODATA is returned if timeout occurs.

--*/

{

    return HalpGetByte(Input, TRUE);
}

ULONG
KdPortPollByte (
    OUT PUCHAR Input
    )

/*++

Routine Description:

    This routine gets a byte from the serial port used by the kernel
    debugger iff a byte is available.

    N.B. It is assumed that the IRQL has been raised to the highest
        level, and necessary multiprocessor synchronization has been
        performed before this routine is called.

Arguments:

    Input - Supplies a pointer to a variable that receives the input
        data byte.

Return Value:

    CP_GET_SUCCESS is returned if a byte is successfully read from the
        kernel debugger line.

    CP_GET_ERROR is returned if an error encountered during reading.

    CP_GET_NODATA is returned if timeout occurs.

--*/

{

    ULONG Status;

    //
    // Save port status, map the serial controller, get byte from the
    // debugger port is one is avaliable, restore port status, unmap
    // the serial controller, and return the operation status.
    //

    KdPortSave();
    Status = HalpGetByte(Input, FALSE);
    KdPortRestore();
    return Status;
}

VOID
KdPortPutByte (
    IN UCHAR Output
    )

/*++

Routine Description:

    This routine puts a byte to the serial port used by the kernel debugger.

    N.B. It is assumed that the IRQL has been raised to the highest level,
        and necessary multiprocessor synchronization has been performed
        before this routine is called.

Arguments:

    Output - Supplies the output data byte.

Return Value:

    None.

--*/

{

    UCHAR DataByte;

    if (KdUseModemControl) {
        //
        // Modem control, make sure DSR, CTS and CD are all set before
        // sending any data.
        //

        for (; ;) {
            DataByte = READ_REGISTER_UCHAR(&SP_READ->ModemStatus);
            if ( ((PSP_MODEM_STATUS)&DataByte)->ClearToSend  &&
                 ((PSP_MODEM_STATUS)&DataByte)->DataSetReady  &&
                 ((PSP_MODEM_STATUS)&DataByte)->ReceiveDetect ) {
                    break;
            }

            KdReadLsr(FALSE);
        }
    }

    //
    // Wait for transmit ready.
    //

    while (KdReadLsr(FALSE).TransmitHoldingEmpty == 0 );

    //
    // Wait for data set ready.
    //

//    do {
//        LsrByte = READ_REGISTER_UCHAR(&SP_READ->ModemStatus);
//    } while (((PSP_MODEM_STATUS)(&LsrByte))->DataSetReady == 0);

    //
    // Transmit data.
    //

    WRITE_REGISTER_UCHAR(&SP_WRITE->TransmitBuffer, Output);
    return;
}

VOID
KdPortRestore (
    VOID
    )

/*++

Routine Description:

    This routine restores the state of the serial port after the kernel
    debugger has been active.

    N.B. This routine performs no function on the Jazz system.

Arguments:

    None.

Return Value:

    None.

--*/

{

    return;
}

VOID
KdPortSave (
    VOID
    )

/*++

Routine Description:

    This routine saves the state of the serial port and initializes the port
    for use by the kernel debugger.

    N.B. This routine performs no function on the Jazz system.

Arguments:

    None.

Return Value:

    None.

--*/

{
    return;
}

SP_LINE_STATUS
KdReadLsr (
    IN BOOLEAN WaitReason
    )

/*++

Routine Description:

    Returns current line status.

    If status which is being waited for is ready, then the function
    checks the current modem status and causes a possible display update
    of the current statuses.

Arguments:

    WaitReason - Suuplies a boolean value that determines whether the line
        status is required for a receive or transmit.

Return Value:

    The current line status is returned as the function value.

--*/

{

    static  UCHAR RingFlag = 0;
    UCHAR   DataLsr, DataMsr;

    //
    // Get the line status for a recevie or a transmit.
    //

    DataLsr = READ_REGISTER_UCHAR(&SP_READ->LineStatus);
    if (WaitReason) {

        //
        // Get line status for receive data.
        //

        if (((PSP_LINE_STATUS)&DataLsr)->DataReady) {
            return *((PSP_LINE_STATUS)&DataLsr);
        }

    } else {

        //
        // Get line status for transmit empty.
        //

        if (((PSP_LINE_STATUS)&DataLsr)->TransmitEmpty) {
            return *((PSP_LINE_STATUS)&DataLsr);
        }
    }

    DataMsr = READ_REGISTER_UCHAR(&SP_READ->ModemStatus);
    RingFlag |= ((PSP_MODEM_STATUS)&DataMsr)->RingIndicator ? 1 : 2;
    if (RingFlag == 3) {

        //
        // The ring indicate line has toggled, use modem control from
        // now on.
        //

        KdUseModemControl = TRUE;
    }

    return *((PSP_LINE_STATUS) &DataLsr);
}

VOID
HalpGetDivisorFromBaud(
    IN ULONG ClockRate,
    IN LONG DesiredBaud,
    OUT PSHORT AppropriateDivisor
    )

/*++

Routine Description:

    This routine will determine a divisor based on an unvalidated
    baud rate.

Arguments:

    ClockRate - The clock input to the controller.

    DesiredBaud - The baud rate for whose divisor we seek.

    AppropriateDivisor - Given that the DesiredBaud is valid, the
    SHORT pointed to by this parameter will be set to the appropriate
    value.  If the requested baud rate is unsupportable on the machine
    return a divisor appropriate for 19200.

Return Value:

    none.

--*/

{

    SHORT calculatedDivisor;
    ULONG denominator;
    ULONG remainder;

    //
    // Allow up to a 1 percent error
    //

    ULONG maxRemain18 = 18432;
    ULONG maxRemain30 = 30720;
    ULONG maxRemain42 = 42336;
    ULONG maxRemain80 = 80000;
    ULONG maxRemain;

    //
    // Reject any non-positive bauds.
    //

    denominator = DesiredBaud*(ULONG)16;

    if (DesiredBaud <= 0) {

        *AppropriateDivisor = -1;

    } else if ((LONG)denominator < DesiredBaud) {

        //
        // If the desired baud was so huge that it cause the denominator
        // calculation to wrap, don't support it.
        //

        *AppropriateDivisor = -1;

    } else {

        if (ClockRate == 1843200) {
            maxRemain = maxRemain18;
        } else if (ClockRate == 3072000) {
            maxRemain = maxRemain30;
        } else if (ClockRate == 4233600) {
            maxRemain = maxRemain42;
        } else {
            maxRemain = maxRemain80;
        }

        calculatedDivisor = (SHORT)(ClockRate / denominator);
        remainder = ClockRate % denominator;

        //
        // Round up.
        //

        if (((remainder*2) > ClockRate) && (DesiredBaud != 110)) {

            calculatedDivisor++;
        }


        //
        // Only let the remainder calculations effect us if
        // the baud rate is > 9600.
        //

        if (DesiredBaud >= 9600) {

            //
            // If the remainder is less than the maximum remainder (wrt
            // the ClockRate) or the remainder + the maximum remainder is
            // greater than or equal to the ClockRate then assume that the
            // baud is ok.
            //

            if ((remainder >= maxRemain) && ((remainder+maxRemain) < ClockRate)) {
                calculatedDivisor = -1;
            }

        }

        //
        // Don't support a baud that causes the denominator to
        // be larger than the clock.
        //

        if (denominator > ClockRate) {

            calculatedDivisor = -1;

        }

        //
        // Ok, Now do some special casing so that things can actually continue
        // working on all platforms.
        //

        if (ClockRate == 1843200) {

            if (DesiredBaud == 56000) {
                calculatedDivisor = 2;
            }

        } else if (ClockRate == 3072000) {

            if (DesiredBaud == 14400) {
                calculatedDivisor = 13;
            }

        } else if (ClockRate == 4233600) {

            if (DesiredBaud == 9600) {
                calculatedDivisor = 28;
            } else if (DesiredBaud == 14400) {
                calculatedDivisor = 18;
            } else if (DesiredBaud == 19200) {
                calculatedDivisor = 14;
            } else if (DesiredBaud == 38400) {
                calculatedDivisor = 7;
            } else if (DesiredBaud == 56000) {
                calculatedDivisor = 5;
            }

        } else if (ClockRate == 8000000) {

            if (DesiredBaud == 14400) {
                calculatedDivisor = 35;
            } else if (DesiredBaud == 56000) {
                calculatedDivisor = 9;
            }

        }

        *AppropriateDivisor = calculatedDivisor;

    }


    if (*AppropriateDivisor == -1) {

        HalpGetDivisorFromBaud(
            ClockRate,
            19200,
            AppropriateDivisor
            );

    }


}