summaryrefslogtreecommitdiffstats
path: root/private/ntos/nthals/halsni4x/mips/orcache.s
blob: 5376f1f11613f9e10c10a4b9429f21d1f2e15351 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
//#pragma comment(exestr, "$Header: /usr4/winnt/SOURCES/halvlbms/src/hal/halsni4x/mips/RCS/orcache.s,v 1.1 1995/05/19 11:22:59 flo Exp $")
//      TITLE("Cache Flush")
//++
//
// Copyright (c) 1991-1993  Microsoft Corporation
//
// Module Name:
//
//    orcache.s
//
// Abstract:
//
//    This module implements the code necessary for cache operations on
//    R4600 orion Machines.
//
// Environment:
//
//    Kernel mode only.
//
//--

#include "halmips.h"
#include "SNIdef.h"

#define ORION_REPLACE 0xb5000000
//
// some bitmap defines to display cache activities via the LED's
// in the SNI RM machines
//

#define SWEEP_DCACHE      0xc0          // 1100 0000
#define FLUSH_DCACHE_PAGE 0x80          // 1000 0000
#define PURGE_DCACHE_PAGE 0x40          // 0100 0000
#define ZERO_PAGE         0x0c          // 0000 1100

#define SWEEP_ICACHE      0x30          // 0011 0000
#define PURGE_ICACHE_PAGE 0x10          // 0001 0000

//
// Define cache operations constants.
//

#define COLOR_BITS (7 << PAGE_SHIFT)    // color bit (R4000 - 8kb cache)
#define COLOR_MASK (0x7fff)             // color mask (R4000 - 8kb cache)
#define FLUSH_BASE 0xfffe0000           // flush base address
#define PROTECTION_BITS ((1 << ENTRYLO_V) | (1 << ENTRYLO_D) ) //

        SBTTL("Orion Processor Identification")
//++
//
// VOID
// HalpOrionIdentify()
//
// Routine Description:
//
//    This function reads the implementation number in the prid register if
//    a secondary cache exists : ORION without SC = R4x000.
//
// Arguments:
//
//    None
//
// Return Value:
//
//    None.
//
//--

        LEAF_ENTRY(HalpOrionIdentify)

        .set    noreorder
        .set    noat
        lw      v0,KiPcr + PcSecondLevelDcacheFillSize(zero) // get 2nd fill size
		nop
		beq 	v0,zero,10f
		nop
		mfc0	v0,prid
		srl	v0,PRID_IMP
		and	v0,0xff
10:		j	ra

        .end    HalpOrionIdentify


        SBTTL("Flush Data Cache Page")
//++
//
// VOID
// HalpFlushDcachePageOrion (
//    IN PVOID Color,
//    IN ULONG PageFrame,
//    IN ULONG Length
//    )
//
// Routine Description:
//
//    This function flushes (cache replace) up to a page of data
//    from the secondary data cache. (primary cache is already processed)
//
// Arguments:
//
//    Color (a0) - Supplies the starting virtual address and color of the
//       data that is flushed.
//
//    PageFrame (a1) - Supplies the page frame number of the page that
//       is flushed.
//
//    Length (a2) - Supplies the length of the region in the page that is
//       flushed.
//
// Return Value:
//
//    None.
//
//--

        LEAF_ENTRY(HalpFlushDcachePageOrion)

#if DBG

        lw      t0,KeDcacheFlushCount   // get address of dcache flush count
        lw      t1,0(t0)                // increment the count of flushes
        addu    t1,t1,1                 //
        sw      t1,0(t0)                // store result
        la      t0, HalpLedAddress	        // get the address for the LED register
	lw	t0, 0(t0)
	lw	t1, KiPcr + PcSetMember(zero)	// get a bitmapped value for Processor Number
	or	t1, t1, FLUSH_DCACHE_PAGE       // what are we doing ?
	xor	t1, t1, 0xff			// inverse
        sb      t1, 0(t0)                       // display it

#endif

15:     DISABLE_INTERRUPTS(t5)          // disable interrupts

        .set    noreorder
        .set    noat

//
// Flush the secondary data caches => cache replace.
//

        .set    noreorder
        .set    noat
40:     and	a0,a0,PAGE_SIZE -1      // PageOffset
        sll	t7,a1,PAGE_SHIFT        // physical address
        lw      t4,KiPcr + PcSecondLevelDcacheFillSize(zero) // get 2nd fill size
        or	t0,t7,a0                // physical address + offset
        subu    t6,t4,1                 // compute block size minus one
        and     t7,t0,t6                // compute offset in block
        addu    a2,a2,t6                // round up to next block
        addu    a2,a2,t7                //
        nor     t6,t6,zero              // complement block size minus one
        and     a2,a2,t6                // truncate length to even number
        beq     zero,a2,60f             // if eq, no blocks to flush
        and     t8,t0,t6                // compute starting virtual address
        addu    t9,t8,a2                // compute ending virtual address
        subu    t9,t9,t4                // compute ending loop address

        li      a3,ORION_REPLACE           // get base flush address
        lw      t0,KiPcr + PcSecondLevelDcacheSize(zero) // get cache size
	add	t0,t0,-1		// mask of the cache size

        .set	noreorder
        .set	noat

50:	and	t7,t8,t0		// offset
        addu	t7,t7,a3                // physical address + offset
     	lw	zero,0(t7)              // load Cache -> Write back old Data
        bne	t8,t9,50b               // if ne, more blocks to invalidate
        addu	t8,t8,t4                // compute next block address (+Linesize)

60:     ENABLE_INTERRUPTS(t5)           // enable interrupts

        j	ra                      // return

        .end    HalpFlushDcachePageOrion


        SBTTL("Purge Instruction Cache Page")
//++
//
// VOID
// HalpPurgeIcachePageOrion (
//    IN PVOID Color,
//    IN ULONG PageFrame,
//    IN ULONG Length
//    )
//
// Routine Description:
//
//    This function purges (hit/invalidate) up to a page of data from the
//    instruction cache.
//
// Arguments:
//
//    Color (a0) - Supplies the starting virtual address and color of the
//       data that is purged.
//
//    PageFrame (a1) - Supplies the page frame number of the page that
//       is purged.
//
//    Length (a2) - Supplies the length of the region in the page that is
//       purged.
//
// Return Value:
//
//    None.
//
//--

        LEAF_ENTRY(HalpPurgeIcachePageOrion)

#if DBG

        lw      t0,KeIcacheFlushCount   // get address of icache flush count
        lw      t1,0(t0)                // increment the count of flushes
        addu    t1,t1,1                 //
        sw      t1,0(t0)                // store result

        la      t0, HalpLedAddress	        // get the address for the LED register
	lw	t0, 0(t0)
	lw	t1, KiPcr + PcSetMember(zero)	// get a bitmapped value for Processor Number
	or	t1, t1, PURGE_ICACHE_PAGE       // what are we doing ?
	xor	t1, t1, 0xff			// inverse
        sb      t1, 0(t0)                       // display it
#endif


15:     DISABLE_INTERRUPTS(t5)          // disable interrupts

        .set    noreorder
        .set    noat

//
// Flush the secondary data caches => cache replace.
//

        .set    noreorder
        .set    noat
40:     and	a0,a0,PAGE_SIZE -1      // PageOffset
        sll	t7,a1,PAGE_SHIFT        // physical address
        lw      t4,KiPcr + PcSecondLevelIcacheFillSize(zero) // get 2nd fill size
	beq	t4,zero,60f
	or	t0,t7,a0                // physical address + offset
        subu    t6,t4,1                 // compute block size minus one
        and     t7,t0,t6                // compute offset in block
        addu    a2,a2,t6                // round up to next block
        addu    a2,a2,t7                //
        nor     t6,t6,zero              // complement block size minus one
        and     a2,a2,t6                // truncate length to even number
        beq     zero,a2,60f             // if eq, no blocks to flush
        and     t8,t0,t6                // compute starting virtual address
        addu    t9,t8,a2                // compute ending virtual address
        subu    t9,t9,t4                // compute ending loop address

        li      a3,ORION_REPLACE           // get base flush address
        lw      t0,KiPcr + PcSecondLevelIcacheSize(zero) // get cache size
	add	t0,t0,-1		// mask of the cache size

50:	and	t7,t8,t0		// offset
        addu	t7,t7,a3                // physical address + offset
     	lw	zero,0(t7)              // load Cache -> Write back old Data
        bne	t8,t9,50b               // if ne, more blocks to invalidate
        addu	t8,t8,t4                // compute next block address (+Linesize)

60:     ENABLE_INTERRUPTS(t5)           // enable interrupts

        j	ra                      // return

        .end    HalpPurgeIcachePageOrion


        SBTTL("Sweep Data Cache")
//++
//
// VOID
// HalpSweepDcacheOrion (
//    VOID
//    )
//
// Routine Description:
//
//    This function sweeps (index/writeback/invalidate) the entire data cache.
//
// Arguments:
//
//    None.
//
// Return Value:
//
//    None.
//
//--

        LEAF_ENTRY(HalpSweepDcacheOrion)

#if DBG

        lw      t0,KeDcacheFlushCount   // get address of dcache flush count
        lw      t1,0(t0)                // increment the count of flushes
        addu    t1,t1,1                 //
        sw      t1,0(t0)                // store result
        la      t0, HalpLedAddress	        // get the address for the LED register
	lw	t0, 0(t0)
	lw	t1, KiPcr + PcSetMember(zero)	// get a bitmapped value for Processor Number
	or	t1, t1, SWEEP_DCACHE            // what are we doing ?
	xor	t1, t1, 0xff			// inverse
        sb      t1, 0(t0)                       // display it
#endif

        .set    at
        .set    reorder

        DISABLE_INTERRUPTS(t3)          // disable interrupts

        .set    noreorder
        .set    noat

//
// Sweep the primary data cache.
//

        lw      t0,KiPcr + PcFirstLevelDcacheSize(zero) // get data cache size
        lw      t1,KiPcr + PcFirstLevelDcacheFillSize(zero) // get block size
        li      a0,KSEG0_BASE           // set starting index value

//
// the size is configured on SNI machines as 16KB
// we invalidate in both sets - so divide the configured size by 2
//

	srl	t0,t0,1

        addu    a1,a0,t0                // compute ending cache address
        subu    a1,a1,t1                // compute ending block address

10:
     	cache   INDEX_WRITEBACK_INVALIDATE_D,0(a0) // writeback/invalidate on index
	cache	INDEX_WRITEBACK_INVALIDATE_D,8192(a0)

        bne     a0,a1,10b               // if ne, more to invalidate
        addu    a0,a0,t1                // compute address of next block

//
// sweep secondary cache
//

        lw      t0,KiPcr + PcSecondLevelDcacheSize(zero) // get data cache size
        lw      t1,KiPcr + PcSecondLevelDcacheFillSize(zero) // get block size

        li      a0,ORION_REPLACE                // starting address
        addu    a1,a0,t0                // compute ending cache address
        subu    a1,a1,t1                // compute ending block address

25:
	lw      zero,0(a0)
        bne     a0,a1,25b               // if ne, more to invalidate
        addu    a0,a0,t1                // compute address of next block

	ENABLE_INTERRUPTS(t3)          // enable interrupts

        .set    at
        .set    reorder

         j       ra                      // return


        .end    HalpSweepDcacheMulti


        SBTTL("Sweep Instruction Cache")
//++
//
// VOID
// HalpSweepIcacheOrion (
//    VOID
//    )
//
// Routine Description:
//
//    This function sweeps (index/invalidate) the entire instruction cache.
//
// Arguments:
//
//    None.
//
// Return Value:
//
//    None.
//
//--

        LEAF_ENTRY(HalpSweepIcacheOrion)

#if DBG

        lw      t0,KeIcacheFlushCount   // get address of icache flush count
        lw      t1,0(t0)                // increment the count of flushes
        addu    t1,t1,1                 //
        sw      t1,0(t0)                // store result
        la      t0, HalpLedAddress	        // get the address for the LED register
	lw	t0, 0(t0)
	lw	t1, KiPcr + PcSetMember(zero)	// get a bitmapped value for Processor Number
	or	t1, t1, SWEEP_ICACHE            // what are we doing ?
	xor	t1, t1, 0xff			// inverse
        sb      t1, 0(t0)                       // display it
#endif
//
// Sweep the secondary instruction cache.
//

        .set    noreorder
        .set    noat

	DISABLE_INTERRUPTS(t3)          // disable interrupts

        .set    noreorder
        .set    noat

//
// sweep secondary cache
//

        lw      t0,KiPcr + PcSecondLevelIcacheSize(zero) // get instruction cache size
        lw      t1,KiPcr + PcSecondLevelIcacheFillSize(zero) // get fill size
        beq     zero,t0,20f           // if eq, no second level cache
        li      a0,ORION_REPLACE           // set starting index value
        addu    a1,a0,t0                // compute ending cache address
        subu    a1,a1,t1                // compute ending block address

10:	lw      zero,0(a0)
	bne     a0,a1,10b               // if ne, more to invalidate
	addu    a0,a0,t1                // compute address of next block

//
// Sweep the primary instruction cache.
//

20:     lw      t0,KiPcr + PcFirstLevelIcacheSize(zero) // get instruction cache size
        lw      t1,KiPcr + PcFirstLevelIcacheFillSize(zero) // get fill size
        li      a0,KSEG0_BASE           // set starting index value

//
// the size is configured on SNI machines as 16KB
// we invalidate in both sets - so divide the configured size by 2
//

	srl	t0,t0,1
        addu    a1,a0,t0                // compute ending cache address
        subu    a1,a1,t1                // compute ending block address

//
// Sweep the primary instruction cache.
//

30:	cache   INDEX_INVALIDATE_I,0(a0) // invalidate cache line
	cache 	INDEX_INVALIDATE_I,8192(a0)

        bne     a0,a1,30b               // if ne, more to invalidate
        addu    a0,a0,t1                // compute address of next block
        .set    at
        .set    reorder

20:     ENABLE_INTERRUPTS(t3)           // enable interrupts

        .set    at
        .set    reorder
        j       ra                      // return

        .end    HalpSweepIcacheOrion

        SBTTL("Zero Page")
//++
//
// VOID
// HalpZeroPageOrion (
//    IN PVOID NewColor,
//    IN PVOID OldColor,
//    IN ULONG PageFrame
//    )
//
// Routine Description:
//
//    This function zeros a page of memory.
//
//    The algorithm used to zero a page is as follows:
//
//       1. Purge (hit/invalidate) the page from the instruction cache
//          using the old color iff the old color is not the same as
//          the new color.
//
//       2. Purge (hit/invalidate) the page from the data cache using
//          the old color iff the old color is not the same as the new
//          color.
//
//       3. Create (create/dirty/exclusive) the page in the data cache
//          using the new color.
//
//       4. Write zeros to the page using the new color.
//
// Arguments:
//
//    NewColor (a0) - Supplies the page aligned virtual address of the
//       new color of the page that is zeroed.
//
//    OldColor (a1) - Supplies the page aligned virtual address of the
//       old color of the page that is zeroed.
//
//    PageFrame (a2) - Supplies the page frame number of the page that
//       is zeroed.
//
// Return Value:
//
//    None.
//
//--

        .struct 0
        .space  3 * 4                   // fill
ZpRa:   .space  4                       // saved return address
ZpFrameLength:                          // length of stack frame
ZpA0:   .space  4                       // (a0)
ZpA1:   .space  4                       // (a1)
ZpA2:   .space  4                       // (a2)
ZpA3:   .space  4                       // (a3)

        NESTED_ENTRY(HalpZeroPageOrion, ZpFrameLength, zero)

        subu    sp,sp,ZpFrameLength     // allocate stack frame
        sw      ra,ZpRa(sp)             // save return address

        PROLOGUE_END
#if DBG
        la      t0, HalpLedAddress	        // get the address for the LED register
	lw	t0, 0(t0)
	lw	t1, KiPcr + PcSetMember(zero)	// get a bitmapped value for Processor Number
	or	t1, t1, ZERO_PAGE            // what are we doing ?
	xor	t1, t1, 0xff			// inverse
        sb      t1, 0(t0)                       // display it
#endif

        and     a0,a0,COLOR_BITS        // isolate new color bits
        and     a1,a1,COLOR_BITS        // isolate old color bits
        sw      a0,ZpA0(sp)             // save new color bits
        sw      a1,ZpA1(sp)             // save old color bits
        sw      a2,ZpA2(sp)             // save page frame

//
// If the old page color is not equal to the new page color, then change
// the color of the page.
//

        beq     a0,a1,10f               // if eq, colors match
        jal     KeChangeColorPage       // chagne page color

//
// Create dirty exclusive cache blocks and zero the data.
//

10:     lw      a3,ZpA0(sp)             // get new color bits
        lw      a1,ZpA2(sp)             // get page frame number

        .set    noreorder
        .set    noat
        lw      v0,KiPcr + PcAlignedCachePolicy(zero) // get cache polciy
        li      t0,FLUSH_BASE           // get base flush address
        or      t0,t0,a3                // compute new color virtual address
        sll     t1,a1,ENTRYLO_PFN       // shift page frame into position
        or      t1,t1,PROTECTION_BITS   // merge protection bits
        or      t1,t1,v0                // merge cache policy
        and     a3,a3,0x1000            // isolate TB entry index
        beql    zero,a3,20f             // if eq, first entry
        move    t2,zero                 // set second page table entry
        move    t2,t1                   // set second page table entry
        move    t1,zero                 // set first page table entry
20:     mfc0    t3,wired                // get TB entry index
        lw      t4,KiPcr + PcFirstLevelDcacheFillSize(zero) // get 1st fill size
        lw      v0,KiPcr + PcSecondLevelDcacheFillSize(zero) // get 2nd fill size
        .set    at
        .set    reorder

        DISABLE_INTERRUPTS(t5)          // disable interrupts

        .set    noreorder
        .set    noat
        mfc0    t6,entryhi              // get current PID and VPN2
        srl     t7,t0,ENTRYHI_VPN2      // isolate VPN2 of virtual address
        sll     t7,t7,ENTRYHI_VPN2      //
        and     t6,t6,0xff << ENTRYHI_PID // isolate current PID
        or      t7,t7,t6                // merge PID with VPN2 of virtual address
        mtc0    t7,entryhi              // set VPN2 and PID for probe
        mtc0    t1,entrylo0             // set first PTE value
        mtc0    t2,entrylo1             // set second PTE value
        mtc0    t3,index                // set TB index value
        nop                             // fill
        tlbwi                           // write TB entry - 3 cycle hazzard
        addu    t9,t0,PAGE_SIZE         // compute ending address of block
        dmtc1   zero,f0                 // set write pattern
        and     t8,t4,0x10              // test if 16-byte cache block

//
// Zero page in primary and secondary data caches.
//

50:     sdc1    f0,0(t0)                // zero 64-byte block
        sdc1    f0,8(t0)                //
        sdc1    f0,16(t0)               //
        sdc1    f0,24(t0)               //
        sdc1    f0,32(t0)               //
        sdc1    f0,40(t0)               //
        sdc1    f0,48(t0)               //
        addu    t0,t0,64                // advance to next 64-byte block
        bne     t0,t9,50b               // if ne, more to zero
        sdc1    f0,-8(t0)               //

	.set    at
        .set    reorder

        ENABLE_INTERRUPTS(t5)           // enable interrupts

        lw      ra,ZpRa(sp)             // get return address
        addu    sp,sp,ZpFrameLength     // deallocate stack frame
        j       ra                      // return

        .end    HalpZeroPageOrion