summaryrefslogtreecommitdiffstats
path: root/private/ntos/nthals/halsnip/mips/xxinithl.c
blob: 61e462bb01e8206244c8831a8a286f7546a03d28 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
//#pragma comment(exestr, "$Header: /usr4/winnt/SOURCES/halpcims/src/hal/halsnipm/mips/RCS/xxinithl.c,v 1.13 1996/05/15 08:14:04 pierre Exp $")
/*--

Copyright (c) 1991  Microsoft Corporation

Module Name:

    xxinithl.c

Abstract:


    This module implements the initialization of the system dependent
    functions that define the Hardware Architecture Layer (HAL) for a
    MIPS R3000 or R4000 system.

Environment:

    Kernel mode only.


--*/

#include "halp.h"
#include "eisa.h"
#include "string.h"
#include "mpagent.h"
#include "snipbus.h"

ULONG            HalpLedRegister;
PUCHAR           HalpLedAddress        = (PUCHAR)PCI_LED_ADDR;;
ULONG            HalpMapBufferSize;
PHYSICAL_ADDRESS HalpMapBufferPhysicalAddress;
BOOLEAN          LessThan16Mb;
BOOLEAN          HalpEisaDma;
MotherBoardType  HalpMainBoard;

// MultiProcessor machine has a MpAgent per processor
// Values of HalpIsMulti are :
// 0 : 1 processor
// 2 : 2 processors
// n : n processors

UCHAR        HalpIsMulti            = 0;

BOOLEAN      HalpCountCompareInterrupt   = FALSE;
BOOLEAN      HalpIsTowerPci = FALSE;
ULONG        HalpMpaCacheReplace = RM300_RESERVED | KSEG0_BASE; // address to be used for cache replace operation.
ULONG        HalpTwoWayBit; // size of one set for associative cache R5000-R4600-R4700

//
// Define global spin locks used to synchronize various HAL operations.
//

KSPIN_LOCK HalpBeepLock;
KSPIN_LOCK HalpDisplayAdapterLock;
KSPIN_LOCK HalpSystemInterruptLock;
KSPIN_LOCK HalpInterruptLock;
KSPIN_LOCK HalpMemoryBufferLock;

extern VOID    HalpParseLoaderBlock(IN PLOADER_PARAMETER_BLOCK LoaderBlock) ;
BOOLEAN HalPCIRegistryInitialized = FALSE;
BOOLEAN HalpESC_SB;

extern UCHAR
HalpRevIdESC(
    VOID
    );

BOOLEAN
HalpBusError (
    IN PEXCEPTION_RECORD ExceptionRecord,
    IN PKEXCEPTION_FRAME ExceptionFrame,
    IN PKTRAP_FRAME TrapFrame,
    IN PVOID VirtualAddress,
    IN PHYSICAL_ADDRESS PhysicalAddress
    );

//
// Put all code for HAL initialization in the INIT section. It will be
// deallocated by memory management when phase 1 initialization is
// completed.
//

#if defined(ALLOC_PRAGMA)

#pragma alloc_text(INIT, HalInitSystem)
#pragma alloc_text(INIT, HalInitializeProcessor)
#pragma alloc_text(INIT, HalStartNextProcessor)
#pragma alloc_text(INIT, HalpDisplayCopyRight)

#endif


BOOLEAN
HalInitSystem (
    IN ULONG Phase,
    IN PLOADER_PARAMETER_BLOCK LoaderBlock
    )

/*++

Routine Description:

    This function initializes the Hardware Architecture Layer (HAL) for a
    MIPS R3000 or R4000 system.

Arguments:

    Phase - Supplies the initialization phase (zero or one).

    LoaderBlock - Supplies a pointer to a loader parameter block.

Return Value:

    A value of TRUE is returned is the initialization was successfully
    complete. Otherwise a value of FALSE is returend.

--*/

{
    PMEMORY_ALLOCATION_DESCRIPTOR Descriptor;
    PLIST_ENTRY NextMd;
    PKPRCB Prcb;
    ULONG  BuildType = 0;
    PRESTART_BLOCK NextRestartBlock;
    ULONG PciData;

    Prcb = PCR->Prcb;
    
    PCR->DataBusError = HalpBusError;
    PCR->InstructionBusError = HalpBusError;

    if ((Phase == 0) || (Prcb->Number != 0)) {

        //
        // Phase 0 initialization.
        //
        // N.B. Phase 0 initialization is executed on all processors.
        //
        // Verify that the processor block major version number conform
        // to the system that is being loaded.
        //

        if (Prcb->MajorVersion != PRCB_MAJOR_VERSION) {
            KeBugCheck(MISMATCHED_HAL);
        }

        //
        // Processor 0 specific
        //

        if(Prcb->Number == 0) {

             *(PULONG)(& (((SNI_PRIVATE_VECTOR *)(SYSTEM_BLOCK->VendorVector))->ActiveProcessor[0]) )=0;

            //
            // Set the number of process id's and TB entries.
            //

            **((PULONG *)(&KeNumberProcessIds)) = 256;
            **((PULONG *)(&KeNumberTbEntries)) = 48;

            //
            // Set the interval clock increment value.
            //

            HalpCurrentTimeIncrement = MAXIMUM_INCREMENT;
            HalpNextTimeIncrement    = MAXIMUM_INCREMENT;
            HalpNewTimeIncrement     = 0;
            KeSetTimeIncrement(MAXIMUM_INCREMENT, MINIMUM_INCREMENT);
            

            //
            // Initialize all spin locks.
            //

            KeInitializeSpinLock(&HalpBeepLock);
            KeInitializeSpinLock(&HalpDisplayAdapterLock);
            KeInitializeSpinLock(&HalpSystemInterruptLock);
            KeInitializeSpinLock(&HalpInterruptLock);
            KeInitializeSpinLock(&HalpMemoryBufferLock);

            //
            // Set address of cache error routine.
            //

            KeSetCacheErrorRoutine(HalpCacheErrorRoutine);

            //
            // try to identify the Kind of Mainboard => already done in HalpProcessorIdentify
            //

//            HalpMainBoard = (MotherBoardType) READ_REGISTER_UCHAR(0xbff0002a);

            if (HalpRevIdESC() == REV_ID_82374_SB ) HalpESC_SB = TRUE;
            else    HalpESC_SB = FALSE;

            if (HalpMainBoard == M8150) HalpIsTowerPci = TRUE;

            if (HalpIsTowerPci) 
                HalpLedAddress = (PUCHAR)PCI_TOWER_LED_ADDR;
            else 
                HalpLedAddress = (PUCHAR)PCI_LED_ADDR;

            HalpLedRegister = 0;

            //
            // for Isa/Eisa access during phase 0 we use KSEG1 addresses
            //

            HalpOnboardControlBase = (PVOID) (EISA_CONTROL_PHYSICAL_BASE | KSEG1_BASE); 

            HalpEisaControlBase    = (PVOID) (EISA_CONTROL_PHYSICAL_BASE | KSEG1_BASE); 
 
            HalpParseLoaderBlock(LoaderBlock) ;

            HalpInitializePCIBus();

            //
            // Initialize the display adapter.
            //

            HalpInitializeDisplay0(LoaderBlock); 

#if DBG
            if (!HalPCIRegistryInitialized) HalDisplayString("Non PCI Machine detected\n");;
#endif

            if (!HalPCIRegistryInitialized) HalDisplayString("Non PCI Machine detected - This HAL is not the right one\n");;

            (ULONG)(((SNI_PRIVATE_VECTOR *)(SYSTEM_BLOCK->VendorVector))->EipRoutine) = (ULONG)-1;
            ((SNI_PRIVATE_VECTOR *)(SYSTEM_BLOCK->VendorVector))->EipContext = 0;
            ((SNI_PRIVATE_VECTOR *)(SYSTEM_BLOCK->VendorVector))->EipHalInfo = 0;

            //
            // Determine if there is physical memory above 16 MB.
            //

            LessThan16Mb = TRUE;

            NextMd = LoaderBlock->MemoryDescriptorListHead.Flink;

            while (NextMd != &LoaderBlock->MemoryDescriptorListHead) {

                Descriptor = CONTAINING_RECORD( NextMd,
                                            MEMORY_ALLOCATION_DESCRIPTOR,
                                            ListEntry );

                if (Descriptor->BasePage + Descriptor->PageCount > 0x1000) {
                    LessThan16Mb = FALSE;
                }

                NextMd = Descriptor->ListEntry.Flink;
            }

            //
            // Determine the size need for map buffers.  If this system has
            // memory with a physical address of greater than
            // MAXIMUM_PHYSICAL_ADDRESS, then allocate a large chunk; otherwise,
            // allocate a small chunk.
            //

            if (LessThan16Mb) {

                //
                // Allocate a small set of map buffers.  They are only needed for
                // slave DMA devices.
                //

                HalpMapBufferSize = INITIAL_MAP_BUFFER_SMALL_SIZE;

            } else {

                //
                // Allocate a larger set of map buffers.  These are used for
                // slave DMA controllers and Isa cards.
                //

                HalpMapBufferSize = INITIAL_MAP_BUFFER_LARGE_SIZE;

            }

            //
            // Allocate map buffers for the adapter objects
            //

            HalpMapBufferPhysicalAddress.LowPart =
                HalpAllocPhysicalMemory (LoaderBlock, MAXIMUM_PHYSICAL_ADDRESS,
                    HalpMapBufferSize >> PAGE_SHIFT, TRUE);
            HalpMapBufferPhysicalAddress.HighPart = 0;

            if (!HalpMapBufferPhysicalAddress.LowPart) {

                //
                // There was not a satisfactory block.  Clear the allocation.
                //
    
                HalpMapBufferSize = 0;
            }

            //
            // Is this machine a multi-processor one ?
            //
            // If the address of the first restart parameter block is NULL, then
            // the host system is a uniprocessor system running with old firmware.
            // Otherwise, the host system may be a multiprocessor system if more
            // than one restart block is present.


            NextRestartBlock = SYSTEM_BLOCK->RestartBlock;
            if ((NextRestartBlock != NULL) && (NextRestartBlock->NextRestartBlock != NULL)) {

#if DBG               
                    HalDisplayString("Multiprocessor machine detected by RestartBlock\n");
#endif

                //
                // There is more than one processor
                // be sure, the boot (this one) is set to running and started
                //

                if (!HalpIsMulti) HalpIsMulti = TRUE;
 
                NextRestartBlock->BootStatus.ProcessorStart = 1;
                NextRestartBlock->BootStatus.ProcessorReady = 1;

            } else {
#if DBG
                HalDisplayString("UniProcessor machine detected\n");
#endif
                HalpIsMulti = FALSE; 
            }

            // Initialize the MP Agent

            if (HalpProcessorId == MPAGENT) {
                HalpInitMPAgent(0);
                ((SNI_PRIVATE_VECTOR *)(SYSTEM_BLOCK->VendorVector))->ActiveProcessor[PCR->Number] = 0x01;
                PCR->InterruptRoutine[OUR_IPI_LEVEL] = HalpIpiInterrupt;
            }    
    
            //
            // For the moment, we say all Eisa/ Isa(Onboard) Interrupts should go to processor 0
            //

            HalpCreateEisaStructures(Isa);       // Initialize Onboard Interrupts and Controller

            //
            // Initialize SNI specific interrupts
            // (only once needed)
            //

            HalpCreateIntPciStructures();

            //
            // Initialize and register a bug check callback record.
            //

            KeInitializeCallbackRecord(&HalpCallbackRecord);
            KeRegisterBugCheckCallback(&HalpCallbackRecord,
                                        HalpBugCheckCallback,
                                        &HalpBugCheckBuffer,
                                        sizeof(HALP_BUGCHECK_BUFFER),
                                        &HalpComponentId[0]);

        } else {

#if DBG
//            sprintf(HalpBuffer,"HalInitSystem:          running on %d\n", HalpGetMyAgent());
//            HalDisplayString(HalpBuffer);
#endif
            //
            // Place something special only to Slave Processors here ...
            //

            HalpInitMPAgent(Prcb->Number); // enables IPI, init cache replace address    
            PCR->InterruptRoutine[OUR_IPI_LEVEL] = HalpIpiInterrupt;

                  
        }

        // 
        // PCR tables and System Timer Initialisation
        // 

        HalpInitializeInterrupts();        

        if (HalpIsTowerPci){

            // enable PCI interrupt
            
            PciData = PCI_TOWER_INTERRUPT_OFFSET | 0x80000000;
            WRITE_REGISTER_ULONG(HalpPciConfigAddr, *((PULONG) &PciData));

            PciData = EN_TARG_INTR | EN_INIT_INT ;        
            WRITE_REGISTER_ULONG ((PULONG) HalpPciConfigData, *((PULONG) &PciData));

            // enable PCI parity interrupt

            PciData = PCI_TOWER_COMMAND_OFFSET | 0x80000000;
            WRITE_REGISTER_ULONG(HalpPciConfigAddr, *((PULONG) &PciData));

            PciData = EN_SERR ;        
            WRITE_REGISTER_ULONG ((PULONG) HalpPciConfigData,READ_REGISTER_ULONG((PULONG) HalpPciConfigData) | *((PULONG) &PciData));


            PciData = PCI_TOWER_PAR_0_OFFSET | 0x80000000;
            WRITE_REGISTER_ULONG(HalpPciConfigAddr, *((PULONG) &PciData));

            PciData = 0x1f0 ;        
            WRITE_REGISTER_ULONG ((PULONG) HalpPciConfigData, *((PULONG) &PciData));

            // LOCKSPACE for workaround ethernet
            PciData = PCI_TOWER_PM_LOCKSPACE | 0x80000000;
            WRITE_REGISTER_ULONG(HalpPciConfigAddr, *((PULONG) &PciData));

            PciData = 0x80000000 ;		
            WRITE_REGISTER_ULONG ((PULONG) HalpPciConfigData, *((PULONG) &PciData)); 
        }

        return (TRUE);             

    } else {

        extern BOOLEAN HalpX86BiosInitialized;

        //
        // Phase 1 initialization.
        //
        // N.B. Phase 1 initialization is only executed on processor 0.

        //
        // Complete initialization of the display adapter.
        //

        if (HalpInitializeDisplay1(LoaderBlock) == FALSE) {
            return FALSE;
        }

        //
        // Mapping of the EISA Control Space via MmMapIoSpace()
        //

        HalpMapIoSpace();                    

        HalpCalibrateStall();

        //
        // Initialisation of the x86 Bios Emulator ...
        //

        x86BiosInitializeBios(HalpEisaControlBase, HalpEisaMemoryBase);
        HalpX86BiosInitialized = TRUE;

        //
        // Be sure, that the NET_LEVEL is not in the reserved vector .
        // (NET_DEFAULT_VECTOR == IPI_LEVEL = 7) => only used for
        // machine != RM200 (mainboard 8036) and processor without
        // secondary cache
        //

        PCR->ReservedVectors &= ~(1 << NET_DEFAULT_VECTOR);

        HalpDisplayCopyRight();

        return TRUE;
    }
}


VOID
HalInitializeProcessor (
    IN ULONG Number
    )

/*++

Routine Description:

    This function is called early in the initialization of the kernel
    to perform platform dependent initialization for each processor
    before the HAL Is fully functional.

    N.B. When this routine is called, the PCR is present but is not
         fully initialized.

Arguments:

    Number - Supplies the number of the processor to initialize.

Return Value:

    None.

--*/

{

//
// The boot processor is already initialized
//

#if DBG
//    sprintf(HalpBuffer,"HalInitializeProcessor %d\n",Number);
//    HalDisplayString(HalpBuffer);
#endif

return;

}

BOOLEAN
HalStartNextProcessor (
    IN PLOADER_PARAMETER_BLOCK LoaderBlock,
    IN PKPROCESSOR_STATE ProcessorState
    )

/*++

Routine Description:

    This function is called to start the next processor.

Arguments:

    LoaderBlock - Supplies a pointer to the loader parameter block.

    ProcessorState - Supplies a pointer to the processor state to be
        used to start the processor.

Return Value:

    If a processor is successfully started, then a value of TRUE is
    returned. Otherwise a value of FALSE is returned. If a value of
    TRUE is returned, then the logical processor number is stored
    in the processor control block specified by the loader block.

--*/

{

    PRESTART_BLOCK NextRestartBlock;
    ULONG Number;
    PKPRCB Prcb;

    if(!HalpIsMulti) {
        return FALSE;
    }


#if DBG
//    sprintf(HalpBuffer,"HalStartNextProcessor   running on %d\n", HalpGetMyAgent());
//    HalDisplayString(HalpBuffer);
#endif

    //
    // If the address of the first restart parameter block is NULL, then
    // the host system is a uniprocessor system running with old firmware.
    // Otherwise, the host system may be a multiprocessor system if more
    // than one restart block is present.
    //
    // N.B. The first restart parameter block must be for the boot master
    //      and must represent logical processor 0.
    //


    NextRestartBlock = SYSTEM_BLOCK->RestartBlock;
    if (NextRestartBlock == NULL) {
        return FALSE;
    }

    //
    // Scan the restart parameter blocks for a processor that is ready,
    // but not running. If a processor is found, then fill in the restart
    // processor state, set the logical processor number, and set start
    // in the boot status.
    //

    Number = 0;
    do {
        if ((NextRestartBlock->BootStatus.ProcessorReady != FALSE) &&
            (NextRestartBlock->BootStatus.ProcessorStart == FALSE)) {

            RtlZeroMemory(&NextRestartBlock->u.Mips, sizeof(MIPS_RESTART_STATE));
            NextRestartBlock->u.Mips.IntA0 = ProcessorState->ContextFrame.IntA0;
            NextRestartBlock->u.Mips.Fir = ProcessorState->ContextFrame.Fir;
            Prcb = (PKPRCB)(LoaderBlock->Prcb);
            Prcb->Number = (CCHAR)Number;
            Prcb->RestartBlock = NextRestartBlock;
            NextRestartBlock->BootStatus.ProcessorStart = 1;
//
// start it by sending him a special IPI message (SNI special to avoid traffic on 
// the MP bus during boot)
//
            ((SNI_PRIVATE_VECTOR *)(SYSTEM_BLOCK->VendorVector))->ActiveProcessor[Number] = 0x01;
            HalpSendIpi(1 << (NextRestartBlock->ProcessorId),  MPA_BOOT_MESSAGE );
         
            HalpIsMulti++; //the number of processors is incremented

            return TRUE;
        }

        Number += 1;
        NextRestartBlock = NextRestartBlock->NextRestartBlock;
    } while (NextRestartBlock != NULL);

    return FALSE;
}

VOID
HalpVerifyPrcbVersion(
    VOID
    )

/*++

Routine Description:

    This function ?

Arguments:

    None.


Return Value:

    None.

--*/

{

    return;
}

VOID
HalpDisplayCopyRight(
    VOID
    )
/*++

Routine Description:

    This function displays the CopyRight Information in the correct SNI Style

Arguments:

    None.


Return Value:

    None.

--*/
{

//
// Define Identification Strings.
//
    HalDisplayString("ÉÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍ»\n");
#if defined(SNI_INTERNAL)
    HalDisplayString("ºMicrosoft(R) Windows NT(TM) 3.51 Hardware Abstraction Layer º\n");
    HalDisplayString("ºfor Siemens Nixdorf  RM200/RM300/RM400   Release 3.0 A0008  º\n");
#else
    HalDisplayString("ºMicrosoft(R) Windows NT(TM) 4.00 Hardware Abstraction Layer º\n");
    HalDisplayString("ºfor Siemens Nixdorf  RM200/RM300/RM400   Release 3.0 B0008  º\n");
#endif
    HalDisplayString("ºCopyright(c) Siemens Nixdorf Informationssysteme AG 1996    º\n");
    HalDisplayString("ºCopyright(c) Microsoft Corporation 1985-1996                º\n");
    HalDisplayString("ºAll Rights Reserved                                         º\n");
    HalDisplayString("ÈÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍͼ\n");

    //
    // this does not seem to work correct on NT 3.51 builds (872) at least 
    // on our MultiPro machine
    //
    if(!HalpCountCompareInterrupt) {

    HalDisplayString("ÉÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍ»\n");
    HalDisplayString("ºWARNING:     CountCompare Interrupt is not enabled          º\n");
    HalDisplayString("ºWARNING:     please contact your local Siemens Nixdorf      º\n");
    HalDisplayString("ºWARNING:     Service Center.                                º\n");
    HalDisplayString("ºWARNING:                                                    º\n");
    HalDisplayString("ºWARNING:     Your System will come up - but some            º\n");
    HalDisplayString("ºWARNING:     performance measurement issues                 º\n");
    HalDisplayString("ºWARNING:     WILL NOT FUNCTION PROPERLY                     º\n");
    HalDisplayString("ÈÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍͼ\n");

    }

}