summaryrefslogtreecommitdiffstats
path: root/private/ntos/nthals/haltimbr/alpha/pintolin.h
blob: b60949deea5a24bdd2270f35f94f0f09743ad490 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
/*++

Copyright (c) 1993  Microsoft Corporation
Copyright (c) 1994  Digital Equipment Corporation

Module Name:

    pintolin.h

Abstract:

    This file includes the platform-dependent Pin To Line Tables

Author:

    Chao Chen    6-Sept 1994

Environment:

    Kernel mode

Revision History:


--*/

//
// These tables represent the mapping from slot number and interrupt pin
// into a PCI Interrupt Vector.
//
// Formally, these mappings can be expressed as:
//
//   PCIPinToLine:
//     SlotNumber.DeviceNumber x InterruptPin -> InterruptLine
//
//   LineToVector:
//     InterruptLine -> InterruptVector
//
//   VectorToIRRBit:
//     InterruptVector -> InterruptRequestRegisterBit
//
//   VectorToIMRBit:
//     InterruptVector -> InterruptMaskRegisterBit
//
//   SlotNumberToIDSEL:
//     SlotNumber.DeviceNumber -> IDSEL
//
// subject to following invariants (predicates must always be true):
//
//   Slot.DeviceNumber in {0,...,15}
//
//   InterruptPin in {1, 2, 3, 4}
//
//   InterruptRequestRegisterBit in {0,...,15}
//
//   InterruptMaskRegisterBit in {0,...,15}
//
//   PCIPinToLine(SlotNumber.DeviceNumber, InterruptPin) =
//         PCIPinToLineTable[SlotNumber.DeviceNumber, InterruptPin]
//         (Table-lookup function initialized below)
//
//   LineToVector(InterruptLine) = PCI_VECTORS + InterruptLine
//
//   VectorToIRRBit(InterruptVector) = InterruptVector - 1
//
//   VectorToIMRBit(InterruptVector) [see below]
//
//   SlotNumberToIDSEL(SlotNumber.DeviceNumber) = (1 << (Slot.DeviceNumber+11))
//
// where:
//
// SlotNumber.DeviceNumber:
//   Alpha AXP Platforms receive interrupts on local PCI buses only, which
//   are limited to 16 devices (PCI AD[11]-AD[26]). (We loose AD[27]-AD[31]
//   since PCI Config space is a sparse space, requiring a five-bit shift.)
//
// InterruptPin:
//   Each virtual slot has up to four interrupt pins INTA#, INTB#, INTC#, INTD#,
//   as per the PCI Spec. V2.0, Section 2.2.6.  (FYI, only multifunction devices
//   use INTB#, INTC#, INTD#.)
//
//   PCI configuration space indicates which interrupt pin a device will use
//   in the InterruptPin register, which has the values:
//
//              INTA# = 1, INTB#=2, INTC#=3, INTD# = 4
//
//   Note that there may be up to 8 functions/device on a PCI multifunction
//   device plugged into the option slots, e.g., Slot #0.
//   Each function has it's own PCI configuration space, addressed
//   by the SlotNumber.FunctionNumber field, and will identify which
//   interrput pin of the four it will use in it's own InterruptPin register.
//
//   If the option is a PCI-PCI bridge, interrupts across the bridge will
//   somehow be combined to appear on some combination of the four
//   interrupt pins that the bridge plugs into.
//
// InterruptLine:
//   This PCI Configuration register, unlike x86 PC's, is maintained by
//   software and represents offset into PCI interrupt vectors.
//   Whenever HalGetBusData or HalGetBusDataByOffset is called,
//   HalpPCIPinToLine() computes the correct InterruptLine register value
//   by using the HalpPCIPinToLineTable mapping.
//
// InterruptRequestRegisterBit:
//   0xff is used to mark an invalid IRR bit, hence an invalid request
//   for a vector.  Also, note that the 16 bits of the EB66 IRR must
//   be access as two 8-bit reads.
//
// InterruptMaskRegisterBit:
//   On EB66, the PinToLine table may also be find the to write the
//   InterruptMaskRegister.  Formally, we can express this invariant as
//
//     VectorToIMRBit(InterrruptVector) = InterruptVector - 1
//
//
// IDSEL:
//   For accessing PCI configuration space on a local PCI bus (as opposed
//   to over a PCI-PCI bridge), type 0 configuration cycles must be generated.
//   In this case, the IDSEL pin of the device to be accessed is tied to one
//   of the PCI Address lines AD[11] - AD[26].  (The function field in the
//   PCI address is used should we be accessing a multifunction device.)
//   Anyway, virtual slot 0 represents the device with IDSEL = AD[11], and
//   so on.
//

//
// Interrupt Vector Table Mapping for EB164.
//
// EB164 PCI interrupts are mapped to arbitrary interrupt numbers
// in the table below.  The values are a 1-1 map of the bit numbers
// in the EB164 PCI interrupt register that are connected to PCI
// devices.  N.B.: there are two other interrupts in this register,
// but they are not connected to I/O devices,  so they're not
// represented in the table.
//
// Limit init table to 14 entries, which is the
// MAX_PCI_LOCAL_DEVICES_MIKASA.
//
// We won't ever try to set an InterruptLine register of a slot
// greater than Virtual slot 13 = PCI_AD[24].
//

ULONG               *HalpPCIPinToLineTable;

ULONG               EB164PCIPinToLineTable[][4]=
{
//    Pin 1 Pin 2 Pin 3 Pin 4
//    ----- ----- ----- -----
    { 0xff, 0xff, 0xff, 0xff },  // Virtual Slot 0  = PCI_AD[11]
    { 0xff, 0xff, 0xff, 0xff },  // Virtual Slot 1  = PCI_AD[12]
    { 0xff, 0xff, 0xff, 0xff },  // Virtual Slot 2  = PCI_AD[13]
    { 0xff, 0xff, 0xff, 0xff },  // Virtual Slot 3  = PCI_AD[14]
    { 0xff, 0xff, 0xff, 0xff },  // Virtual Slot 4  = PCI_AD[15]
    {  0x3,  0x8,  0xc, 0x10 },  // Virtual Slot 5  = PCI_AD[16]  bridge
    {  0x1,  0x6,  0xa,  0xe },  // Virtual Slot 6  = PCI_AD[17]  Slot #0
    {  0x2,  0x7,  0xb,  0xf },  // Virtual Slot 7  = PCI_AD[18]  Slot #1
    {  0xff, 0xff, 0xff, 0xff },  // Virtual Slot 8  = PCI_AD[19]  SIO
    {  0x4,  0x9,  0xd, 0x11 },  // Virtual Slot 9  = PCI_AD[20]  Slot #2
    { 0x12, 0x13, 0x14, 0x15 }   // Virtual Slot 10 = PCI_AD[21]  Slot #3
//    { 0xff, 0xff, 0xff, 0xff }, // Virtual Slot 0  = PCI_AD[11]
//    { 0xff, 0xff, 0xff, 0xff }, // Virtual Slot 1  = PCI_AD[12]
//    { 0xff, 0xff, 0xff, 0xff }, // Virtual Slot 2  = PCI_AD[13]
//    { 0xff, 0xff, 0xff, 0xff }, // Virtual Slot 3  = PCI_AD[14]
//    { 0xff, 0xff, 0xff, 0xff }, // Virtual Slot 4  = PCI_AD[15]
//    { 0x03, 0x08, 0x0c, 0x10 }, // Virtual Slot 5  = PCI_AD[16] PCI Slot 2
//    { 0x01, 0x06, 0x0a, 0x0e }, // Virtual Slot 6  = PCI_AD[17] PCI Slot 0
//    { 0x02, 0x07, 0x0b, 0x0f }, // Virtual Slot 7  = PCI_AD[18] PCI Slot 1
//    { 0xff, 0xff, 0xff, 0xff }, // Virtual Slot 8  = PCI_AD[19] PCI/ISA Bridge
//    { 0x04, 0x09, 0x0d, 0x11 }, // Virtual Slot 9  = PCI_AD[20] PCI Slot 3
//    { 0xff, 0xff, 0xff, 0xff }, // Virtual Slot 10 = PCI_AD[21]
//    { 0xff, 0xff, 0xff, 0xff }, // Virtual Slot 11 = PCI_AD[22]
//    { 0xff, 0xff, 0xff, 0xff }, // Virtual Slot 12 = PCI_AD[23]
};