/*
* Copyright (C) 2014 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
// This program takes a file on an ext4 filesystem and produces a list
// of the blocks that file occupies, which enables the file contents
// to be read directly from the block device without mounting the
// filesystem.
//
// If the filesystem is using an encrypted block device, it will also
// read the file and rewrite it to the same blocks of the underlying
// (unencrypted) block device, so the file contents can be read
// without the need for the decryption key.
//
// The output of this program is a "block map" which looks like this:
//
// /dev/block/platform/msm_sdcc.1/by-name/userdata # block device
// 49652 4096 # file size in bytes, block size
// 3 # count of block ranges
// 1000 1008 # block range 0
// 2100 2102 # ... block range 1
// 30 33 # ... block range 2
//
// Each block range represents a half-open interval; the line "30 33"
// reprents the blocks [30, 31, 32].
//
// Recovery can take this block map file and retrieve the underlying
// file data to use as an update package.
#include <errno.h>
#include <fcntl.h>
#include <inttypes.h>
#include <libgen.h>
#include <linux/fs.h>
#include <stdarg.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <sys/mman.h>
#include <sys/stat.h>
#include <sys/types.h>
#include <unistd.h>
#include <algorithm>
#include <memory>
#include <vector>
#include <android-base/file.h>
#include <android-base/logging.h>
#include <android-base/stringprintf.h>
#include <android-base/strings.h>
#include <android-base/unique_fd.h>
#include <cutils/android_reboot.h>
#include <cutils/properties.h>
#include <fs_mgr.h>
#define LOG_TAG "uncrypt"
#include <log/log.h>
#include "bootloader.h"
#define WINDOW_SIZE 5
static const std::string CACHE_BLOCK_MAP = "/cache/recovery/block.map";
static const std::string COMMAND_FILE = "/cache/recovery/command";
static const std::string STATUS_FILE = "/cache/recovery/uncrypt_status";
static const std::string UNCRYPT_PATH_FILE = "/cache/recovery/uncrypt_file";
static struct fstab* fstab = NULL;
static int write_at_offset(unsigned char* buffer, size_t size, int wfd, off64_t offset) {
if (TEMP_FAILURE_RETRY(lseek64(wfd, offset, SEEK_SET)) == -1) {
ALOGE("error seeking to offset %" PRId64 ": %s", offset, strerror(errno));
return -1;
}
if (!android::base::WriteFully(wfd, buffer, size)) {
ALOGE("error writing offset %" PRId64 ": %s", offset, strerror(errno));
return -1;
}
return 0;
}
static void add_block_to_ranges(std::vector<int>& ranges, int new_block) {
if (!ranges.empty() && new_block == ranges.back()) {
// If the new block comes immediately after the current range,
// all we have to do is extend the current range.
++ranges.back();
} else {
// We need to start a new range.
ranges.push_back(new_block);
ranges.push_back(new_block + 1);
}
}
static struct fstab* read_fstab() {
fstab = NULL;
// The fstab path is always "/fstab.${ro.hardware}".
char fstab_path[PATH_MAX+1] = "/fstab.";
if (!property_get("ro.hardware", fstab_path+strlen(fstab_path), "")) {
ALOGE("failed to get ro.hardware");
return NULL;
}
fstab = fs_mgr_read_fstab(fstab_path);
if (!fstab) {
ALOGE("failed to read %s", fstab_path);
return NULL;
}
return fstab;
}
static const char* find_block_device(const char* path, bool* encryptable, bool* encrypted) {
// Look for a volume whose mount point is the prefix of path and
// return its block device. Set encrypted if it's currently
// encrypted.
for (int i = 0; i < fstab->num_entries; ++i) {
struct fstab_rec* v = &fstab->recs[i];
if (!v->mount_point) {
continue;
}
int len = strlen(v->mount_point);
if (strncmp(path, v->mount_point, len) == 0 &&
(path[len] == '/' || path[len] == 0)) {
*encrypted = false;
*encryptable = false;
if (fs_mgr_is_encryptable(v) || fs_mgr_is_file_encrypted(v)) {
*encryptable = true;
char buffer[PROPERTY_VALUE_MAX+1];
if (property_get("ro.crypto.state", buffer, "") &&
strcmp(buffer, "encrypted") == 0) {
*encrypted = true;
}
}
return v->blk_device;
}
}
return NULL;
}
// Parse uncrypt_file to find the update package name.
static bool find_uncrypt_package(const std::string& uncrypt_path_file, std::string* package_name) {
CHECK(package_name != nullptr);
std::string uncrypt_path;
if (!android::base::ReadFileToString(uncrypt_path_file, &uncrypt_path)) {
ALOGE("failed to open \"%s\": %s", uncrypt_path_file.c_str(), strerror(errno));
return false;
}
// Remove the trailing '\n' if present.
*package_name = android::base::Trim(uncrypt_path);
return true;
}
static int produce_block_map(const char* path, const char* map_file, const char* blk_dev,
bool encrypted, int status_fd) {
std::string err;
if (!android::base::RemoveFileIfExists(map_file, &err)) {
ALOGE("failed to remove the existing map file %s: %s", map_file, err.c_str());
return -1;
}
std::string tmp_map_file = std::string(map_file) + ".tmp";
android::base::unique_fd mapfd(open(tmp_map_file.c_str(),
O_WRONLY | O_CREAT, S_IRUSR | S_IWUSR));
if (mapfd == -1) {
ALOGE("failed to open %s: %s\n", tmp_map_file.c_str(), strerror(errno));
return -1;
}
// Make sure we can write to the status_file.
if (!android::base::WriteStringToFd("0\n", status_fd)) {
ALOGE("failed to update \"%s\"\n", STATUS_FILE.c_str());
return -1;
}
struct stat sb;
if (stat(path, &sb) != 0) {
ALOGE("failed to stat %s", path);
return -1;
}
ALOGI(" block size: %ld bytes", static_cast<long>(sb.st_blksize));
int blocks = ((sb.st_size-1) / sb.st_blksize) + 1;
ALOGI(" file size: %" PRId64 " bytes, %d blocks", sb.st_size, blocks);
std::vector<int> ranges;
std::string s = android::base::StringPrintf("%s\n%" PRId64 " %" PRId64 "\n",
blk_dev, static_cast<int64_t>(sb.st_size),
static_cast<int64_t>(sb.st_blksize));
if (!android::base::WriteStringToFd(s, mapfd)) {
ALOGE("failed to write %s: %s", tmp_map_file.c_str(), strerror(errno));
return -1;
}
std::vector<std::vector<unsigned char>> buffers;
if (encrypted) {
buffers.resize(WINDOW_SIZE, std::vector<unsigned char>(sb.st_blksize));
}
int head_block = 0;
int head = 0, tail = 0;
android::base::unique_fd fd(open(path, O_RDONLY));
if (fd == -1) {
ALOGE("failed to open %s for reading: %s", path, strerror(errno));
return -1;
}
android::base::unique_fd wfd;
if (encrypted) {
wfd.reset(open(blk_dev, O_WRONLY));
if (wfd == -1) {
ALOGE("failed to open fd for writing: %s", strerror(errno));
return -1;
}
}
off64_t pos = 0;
int last_progress = 0;
while (pos < sb.st_size) {
// Update the status file, progress must be between [0, 99].
int progress = static_cast<int>(100 * (double(pos) / double(sb.st_size)));
if (progress > last_progress) {
last_progress = progress;
android::base::WriteStringToFd(std::to_string(progress) + "\n", status_fd);
}
if ((tail+1) % WINDOW_SIZE == head) {
// write out head buffer
int block = head_block;
if (ioctl(fd, FIBMAP, &block) != 0) {
ALOGE("failed to find block %d", head_block);
return -1;
}
add_block_to_ranges(ranges, block);
if (encrypted) {
if (write_at_offset(buffers[head].data(), sb.st_blksize, wfd,
static_cast<off64_t>(sb.st_blksize) * block) != 0) {
return -1;
}
}
head = (head + 1) % WINDOW_SIZE;
++head_block;
}
// read next block to tail
if (encrypted) {
size_t to_read = static_cast<size_t>(
std::min(static_cast<off64_t>(sb.st_blksize), sb.st_size - pos));
if (!android::base::ReadFully(fd, buffers[tail].data(), to_read)) {
ALOGE("failed to read: %s", strerror(errno));
return -1;
}
pos += to_read;
} else {
// If we're not encrypting; we don't need to actually read
// anything, just skip pos forward as if we'd read a
// block.
pos += sb.st_blksize;
}
tail = (tail+1) % WINDOW_SIZE;
}
while (head != tail) {
// write out head buffer
int block = head_block;
if (ioctl(fd, FIBMAP, &block) != 0) {
ALOGE("failed to find block %d", head_block);
return -1;
}
add_block_to_ranges(ranges, block);
if (encrypted) {
if (write_at_offset(buffers[head].data(), sb.st_blksize, wfd,
static_cast<off64_t>(sb.st_blksize) * block) != 0) {
return -1;
}
}
head = (head + 1) % WINDOW_SIZE;
++head_block;
}
if (!android::base::WriteStringToFd(
android::base::StringPrintf("%zu\n", ranges.size() / 2), mapfd)) {
ALOGE("failed to write %s: %s", tmp_map_file.c_str(), strerror(errno));
return -1;
}
for (size_t i = 0; i < ranges.size(); i += 2) {
if (!android::base::WriteStringToFd(
android::base::StringPrintf("%d %d\n", ranges[i], ranges[i+1]), mapfd)) {
ALOGE("failed to write %s: %s", tmp_map_file.c_str(), strerror(errno));
return -1;
}
}
if (fsync(mapfd) == -1) {
ALOGE("failed to fsync \"%s\": %s", tmp_map_file.c_str(), strerror(errno));
return -1;
}
if (close(mapfd.release()) == -1) {
ALOGE("failed to close %s: %s", tmp_map_file.c_str(), strerror(errno));
return -1;
}
if (encrypted) {
if (fsync(wfd) == -1) {
ALOGE("failed to fsync \"%s\": %s", blk_dev, strerror(errno));
return -1;
}
if (close(wfd.release()) == -1) {
ALOGE("failed to close %s: %s", blk_dev, strerror(errno));
return -1;
}
}
if (rename(tmp_map_file.c_str(), map_file) == -1) {
ALOGE("failed to rename %s to %s: %s", tmp_map_file.c_str(), map_file, strerror(errno));
return -1;
}
// Sync dir to make rename() result written to disk.
std::string file_name = map_file;
std::string dir_name = dirname(&file_name[0]);
android::base::unique_fd dfd(open(dir_name.c_str(), O_RDONLY | O_DIRECTORY));
if (dfd == -1) {
ALOGE("failed to open dir %s: %s", dir_name.c_str(), strerror(errno));
return -1;
}
if (fsync(dfd) == -1) {
ALOGE("failed to fsync %s: %s", dir_name.c_str(), strerror(errno));
return -1;
}
if (close(dfd.release()) == -1) {
ALOGE("failed to close %s: %s", dir_name.c_str(), strerror(errno));
return -1;
}
return 0;
}
static std::string get_misc_blk_device() {
struct fstab* fstab = read_fstab();
if (fstab == nullptr) {
return "";
}
for (int i = 0; i < fstab->num_entries; ++i) {
fstab_rec* v = &fstab->recs[i];
if (v->mount_point != nullptr && strcmp(v->mount_point, "/misc") == 0) {
return v->blk_device;
}
}
return "";
}
static int write_bootloader_message(const bootloader_message* in) {
std::string misc_blk_device = get_misc_blk_device();
if (misc_blk_device.empty()) {
ALOGE("failed to find /misc partition.");
return -1;
}
android::base::unique_fd fd(open(misc_blk_device.c_str(), O_WRONLY | O_SYNC));
if (fd == -1) {
ALOGE("failed to open %s: %s", misc_blk_device.c_str(), strerror(errno));
return -1;
}
if (!android::base::WriteFully(fd, in, sizeof(*in))) {
ALOGE("failed to write %s: %s", misc_blk_device.c_str(), strerror(errno));
return -1;
}
// TODO: O_SYNC and fsync() duplicates each other?
if (fsync(fd) == -1) {
ALOGE("failed to fsync %s: %s", misc_blk_device.c_str(), strerror(errno));
return -1;
}
return 0;
}
static void reboot_to_recovery() {
ALOGI("rebooting to recovery");
property_set("sys.powerctl", "reboot,recovery");
while (true) {
pause();
}
ALOGE("reboot didn't succeed?");
}
static int uncrypt(const char* input_path, const char* map_file, int status_fd) {
ALOGI("update package is \"%s\"", input_path);
// Turn the name of the file we're supposed to convert into an
// absolute path, so we can find what filesystem it's on.
char path[PATH_MAX+1];
if (realpath(input_path, path) == NULL) {
ALOGE("failed to convert \"%s\" to absolute path: %s", input_path, strerror(errno));
return 1;
}
if (read_fstab() == NULL) {
return 1;
}
bool encryptable;
bool encrypted;
const char* blk_dev = find_block_device(path, &encryptable, &encrypted);
if (blk_dev == NULL) {
ALOGE("failed to find block device for %s", path);
return 1;
}
// If the filesystem it's on isn't encrypted, we only produce the
// block map, we don't rewrite the file contents (it would be
// pointless to do so).
ALOGI("encryptable: %s", encryptable ? "yes" : "no");
ALOGI(" encrypted: %s", encrypted ? "yes" : "no");
// Recovery supports installing packages from 3 paths: /cache,
// /data, and /sdcard. (On a particular device, other locations
// may work, but those are three we actually expect.)
//
// On /data we want to convert the file to a block map so that we
// can read the package without mounting the partition. On /cache
// and /sdcard we leave the file alone.
if (strncmp(path, "/data/", 6) == 0) {
ALOGI("writing block map %s", map_file);
if (produce_block_map(path, map_file, blk_dev, encrypted, status_fd) != 0) {
return 1;
}
}
return 0;
}
static int uncrypt_wrapper(const char* input_path, const char* map_file,
const std::string& status_file) {
// The pipe has been created by the system server.
android::base::unique_fd status_fd(open(status_file.c_str(),
O_WRONLY | O_CREAT | O_SYNC, S_IRUSR | S_IWUSR));
if (status_fd == -1) {
ALOGE("failed to open pipe \"%s\": %s", status_file.c_str(), strerror(errno));
return 1;
}
std::string package;
if (input_path == nullptr) {
if (!find_uncrypt_package(UNCRYPT_PATH_FILE, &package)) {
android::base::WriteStringToFd("-1\n", status_fd);
return 1;
}
input_path = package.c_str();
}
CHECK(map_file != nullptr);
int status = uncrypt(input_path, map_file, status_fd);
if (status != 0) {
android::base::WriteStringToFd("-1\n", status_fd);
return 1;
}
android::base::WriteStringToFd("100\n", status_fd);
return 0;
}
static int clear_bcb(const std::string& status_file) {
android::base::unique_fd status_fd(open(status_file.c_str(),
O_WRONLY | O_CREAT | O_SYNC, S_IRUSR | S_IWUSR));
if (status_fd == -1) {
ALOGE("failed to open pipe \"%s\": %s", status_file.c_str(), strerror(errno));
return 1;
}
bootloader_message boot = {};
if (write_bootloader_message(&boot) != 0) {
android::base::WriteStringToFd("-1\n", status_fd);
return 1;
}
android::base::WriteStringToFd("100\n", status_fd);
return 0;
}
static int setup_bcb(const std::string& command_file, const std::string& status_file) {
android::base::unique_fd status_fd(open(status_file.c_str(),
O_WRONLY | O_CREAT | O_SYNC, S_IRUSR | S_IWUSR));
if (status_fd == -1) {
ALOGE("failed to open pipe \"%s\": %s", status_file.c_str(), strerror(errno));
return 1;
}
std::string content;
if (!android::base::ReadFileToString(command_file, &content)) {
ALOGE("failed to read \"%s\": %s", command_file.c_str(), strerror(errno));
android::base::WriteStringToFd("-1\n", status_fd);
return 1;
}
bootloader_message boot = {};
strlcpy(boot.command, "boot-recovery", sizeof(boot.command));
strlcpy(boot.recovery, "recovery\n", sizeof(boot.recovery));
strlcat(boot.recovery, content.c_str(), sizeof(boot.recovery));
if (write_bootloader_message(&boot) != 0) {
ALOGE("failed to set bootloader message");
android::base::WriteStringToFd("-1\n", status_fd);
return 1;
}
android::base::WriteStringToFd("100\n", status_fd);
return 0;
}
static void usage(const char* exename) {
fprintf(stderr, "Usage of %s:\n", exename);
fprintf(stderr, "%s [<package_path> <map_file>] Uncrypt ota package.\n", exename);
fprintf(stderr, "%s --reboot Clear BCB data and reboot to recovery.\n", exename);
fprintf(stderr, "%s --clear-bcb Clear BCB data in misc partition.\n", exename);
fprintf(stderr, "%s --setup-bcb Setup BCB data by command file.\n", exename);
}
int main(int argc, char** argv) {
if (argc == 2) {
if (strcmp(argv[1], "--reboot") == 0) {
reboot_to_recovery();
} else if (strcmp(argv[1], "--clear-bcb") == 0) {
return clear_bcb(STATUS_FILE);
} else if (strcmp(argv[1], "--setup-bcb") == 0) {
return setup_bcb(COMMAND_FILE, STATUS_FILE);
}
} else if (argc == 1 || argc == 3) {
const char* input_path = nullptr;
const char* map_file = CACHE_BLOCK_MAP.c_str();
if (argc == 3) {
input_path = argv[1];
map_file = argv[2];
}
return uncrypt_wrapper(input_path, map_file, STATUS_FILE);
}
usage(argv[0]);
return 2;
}