/*
* Copyright (C) 2014 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <ctype.h>
#include <errno.h>
#include <dirent.h>
#include <fcntl.h>
#include <linux/fs.h>
#include <pthread.h>
#include <stdarg.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <sys/stat.h>
#include <sys/types.h>
#include <sys/wait.h>
#include <sys/ioctl.h>
#include <time.h>
#include <unistd.h>
#include <fec/io.h>
#include <functional>
#include <memory>
#include <string>
#include <unordered_map>
#include <vector>
#include <android-base/logging.h>
#include <android-base/parseint.h>
#include <android-base/strings.h>
#include <android-base/unique_fd.h>
#include <applypatch/applypatch.h>
#include <openssl/sha.h>
#include <private/android_filesystem_config.h>
#include <ziparchive/zip_archive.h>
#include "edify/expr.h"
#include "error_code.h"
#include "updater/install.h"
#include "ota_io.h"
#include "print_sha1.h"
#include "updater/updater.h"
// Set this to 0 to interpret 'erase' transfers to mean do a
// BLKDISCARD ioctl (the normal behavior). Set to 1 to interpret
// erase to mean fill the region with zeroes.
#define DEBUG_ERASE 0
static constexpr size_t BLOCKSIZE = 4096;
static constexpr const char* STASH_DIRECTORY_BASE = "/cache/recovery";
static constexpr mode_t STASH_DIRECTORY_MODE = 0700;
static constexpr mode_t STASH_FILE_MODE = 0600;
struct RangeSet {
size_t count; // Limit is INT_MAX.
size_t size;
std::vector<size_t> pos; // Actual limit is INT_MAX.
// Get the block number for the ith(starting from 0) block in the range set.
int get_block(size_t idx) const {
if (idx >= size) {
LOG(ERROR) << "index: " << idx << " is greater than range set size: " << size;
return -1;
}
for (size_t i = 0; i < pos.size(); i += 2) {
if (idx < pos[i + 1] - pos[i]) {
return pos[i] + idx;
}
idx -= (pos[i + 1] - pos[i]);
}
return -1;
}
};
static CauseCode failure_type = kNoCause;
static bool is_retry = false;
static std::unordered_map<std::string, RangeSet> stash_map;
static RangeSet parse_range(const std::string& range_text) {
RangeSet rs;
std::vector<std::string> pieces = android::base::Split(range_text, ",");
if (pieces.size() < 3) {
goto err;
}
size_t num;
if (!android::base::ParseUint(pieces[0], &num, static_cast<size_t>(INT_MAX))) {
goto err;
}
if (num == 0 || num % 2) {
goto err; // must be even
} else if (num != pieces.size() - 1) {
goto err;
}
rs.pos.resize(num);
rs.count = num / 2;
rs.size = 0;
for (size_t i = 0; i < num; i += 2) {
if (!android::base::ParseUint(pieces[i + 1], &rs.pos[i], static_cast<size_t>(INT_MAX))) {
goto err;
}
if (!android::base::ParseUint(pieces[i + 2], &rs.pos[i + 1], static_cast<size_t>(INT_MAX))) {
goto err;
}
if (rs.pos[i] >= rs.pos[i + 1]) {
goto err; // empty or negative range
}
size_t sz = rs.pos[i + 1] - rs.pos[i];
if (rs.size > SIZE_MAX - sz) {
goto err; // overflow
}
rs.size += sz;
}
return rs;
err:
LOG(ERROR) << "failed to parse range '" << range_text << "'";
exit(EXIT_FAILURE);
}
static bool range_overlaps(const RangeSet& r1, const RangeSet& r2) {
for (size_t i = 0; i < r1.count; ++i) {
size_t r1_0 = r1.pos[i * 2];
size_t r1_1 = r1.pos[i * 2 + 1];
for (size_t j = 0; j < r2.count; ++j) {
size_t r2_0 = r2.pos[j * 2];
size_t r2_1 = r2.pos[j * 2 + 1];
if (!(r2_0 >= r1_1 || r1_0 >= r2_1)) {
return true;
}
}
}
return false;
}
static int read_all(int fd, uint8_t* data, size_t size) {
size_t so_far = 0;
while (so_far < size) {
ssize_t r = TEMP_FAILURE_RETRY(ota_read(fd, data+so_far, size-so_far));
if (r == -1) {
failure_type = kFreadFailure;
PLOG(ERROR) << "read failed";
return -1;
} else if (r == 0) {
failure_type = kFreadFailure;
LOG(ERROR) << "read reached unexpected EOF.";
return -1;
}
so_far += r;
}
return 0;
}
static int read_all(int fd, std::vector<uint8_t>& buffer, size_t size) {
return read_all(fd, buffer.data(), size);
}
static int write_all(int fd, const uint8_t* data, size_t size) {
size_t written = 0;
while (written < size) {
ssize_t w = TEMP_FAILURE_RETRY(ota_write(fd, data+written, size-written));
if (w == -1) {
failure_type = kFwriteFailure;
PLOG(ERROR) << "write failed";
return -1;
}
written += w;
}
return 0;
}
static int write_all(int fd, const std::vector<uint8_t>& buffer, size_t size) {
return write_all(fd, buffer.data(), size);
}
static bool discard_blocks(int fd, off64_t offset, uint64_t size) {
// Don't discard blocks unless the update is a retry run.
if (!is_retry) {
return true;
}
uint64_t args[2] = {static_cast<uint64_t>(offset), size};
int status = ioctl(fd, BLKDISCARD, &args);
if (status == -1) {
PLOG(ERROR) << "BLKDISCARD ioctl failed";
return false;
}
return true;
}
static bool check_lseek(int fd, off64_t offset, int whence) {
off64_t rc = TEMP_FAILURE_RETRY(lseek64(fd, offset, whence));
if (rc == -1) {
failure_type = kLseekFailure;
PLOG(ERROR) << "lseek64 failed";
return false;
}
return true;
}
static void allocate(size_t size, std::vector<uint8_t>& buffer) {
// if the buffer's big enough, reuse it.
if (size <= buffer.size()) return;
buffer.resize(size);
}
struct RangeSinkState {
explicit RangeSinkState(RangeSet& rs) : tgt(rs) { };
int fd;
const RangeSet& tgt;
size_t p_block;
size_t p_remain;
};
static size_t RangeSinkWrite(const uint8_t* data, size_t size, RangeSinkState* rss) {
if (rss->p_remain == 0) {
LOG(ERROR) << "range sink write overrun";
return 0;
}
size_t written = 0;
while (size > 0) {
size_t write_now = size;
if (rss->p_remain < write_now) {
write_now = rss->p_remain;
}
if (write_all(rss->fd, data, write_now) == -1) {
break;
}
data += write_now;
size -= write_now;
rss->p_remain -= write_now;
written += write_now;
if (rss->p_remain == 0) {
// Move to the next block.
++rss->p_block;
if (rss->p_block < rss->tgt.count) {
rss->p_remain =
(rss->tgt.pos[rss->p_block * 2 + 1] - rss->tgt.pos[rss->p_block * 2]) * BLOCKSIZE;
off64_t offset = static_cast<off64_t>(rss->tgt.pos[rss->p_block * 2]) * BLOCKSIZE;
if (!discard_blocks(rss->fd, offset, rss->p_remain)) {
break;
}
if (!check_lseek(rss->fd, offset, SEEK_SET)) {
break;
}
} else {
// We can't write any more; return how many bytes have been written so far.
break;
}
}
}
return written;
}
// All of the data for all the 'new' transfers is contained in one
// file in the update package, concatenated together in the order in
// which transfers.list will need it. We want to stream it out of the
// archive (it's compressed) without writing it to a temp file, but we
// can't write each section until it's that transfer's turn to go.
//
// To achieve this, we expand the new data from the archive in a
// background thread, and block that threads 'receive uncompressed
// data' function until the main thread has reached a point where we
// want some new data to be written. We signal the background thread
// with the destination for the data and block the main thread,
// waiting for the background thread to complete writing that section.
// Then it signals the main thread to wake up and goes back to
// blocking waiting for a transfer.
//
// NewThreadInfo is the struct used to pass information back and forth
// between the two threads. When the main thread wants some data
// written, it sets rss to the destination location and signals the
// condition. When the background thread is done writing, it clears
// rss and signals the condition again.
struct NewThreadInfo {
ZipArchiveHandle za;
ZipEntry entry;
RangeSinkState* rss;
pthread_mutex_t mu;
pthread_cond_t cv;
};
static bool receive_new_data(const uint8_t* data, size_t size, void* cookie) {
NewThreadInfo* nti = reinterpret_cast<NewThreadInfo*>(cookie);
while (size > 0) {
// Wait for nti->rss to be non-null, indicating some of this
// data is wanted.
pthread_mutex_lock(&nti->mu);
while (nti->rss == nullptr) {
pthread_cond_wait(&nti->cv, &nti->mu);
}
pthread_mutex_unlock(&nti->mu);
// At this point nti->rss is set, and we own it. The main
// thread is waiting for it to disappear from nti.
size_t written = RangeSinkWrite(data, size, nti->rss);
data += written;
size -= written;
if (nti->rss->p_block == nti->rss->tgt.count) {
// we have written all the bytes desired by this rss.
pthread_mutex_lock(&nti->mu);
nti->rss = nullptr;
pthread_cond_broadcast(&nti->cv);
pthread_mutex_unlock(&nti->mu);
}
}
return true;
}
static void* unzip_new_data(void* cookie) {
NewThreadInfo* nti = static_cast<NewThreadInfo*>(cookie);
ProcessZipEntryContents(nti->za, &nti->entry, receive_new_data, nti);
return nullptr;
}
static int ReadBlocks(const RangeSet& src, std::vector<uint8_t>& buffer, int fd) {
size_t p = 0;
uint8_t* data = buffer.data();
for (size_t i = 0; i < src.count; ++i) {
if (!check_lseek(fd, (off64_t) src.pos[i * 2] * BLOCKSIZE, SEEK_SET)) {
return -1;
}
size_t size = (src.pos[i * 2 + 1] - src.pos[i * 2]) * BLOCKSIZE;
if (read_all(fd, data + p, size) == -1) {
return -1;
}
p += size;
}
return 0;
}
static int WriteBlocks(const RangeSet& tgt, const std::vector<uint8_t>& buffer, int fd) {
const uint8_t* data = buffer.data();
size_t p = 0;
for (size_t i = 0; i < tgt.count; ++i) {
off64_t offset = static_cast<off64_t>(tgt.pos[i * 2]) * BLOCKSIZE;
size_t size = (tgt.pos[i * 2 + 1] - tgt.pos[i * 2]) * BLOCKSIZE;
if (!discard_blocks(fd, offset, size)) {
return -1;
}
if (!check_lseek(fd, offset, SEEK_SET)) {
return -1;
}
if (write_all(fd, data + p, size) == -1) {
return -1;
}
p += size;
}
return 0;
}
// Parameters for transfer list command functions
struct CommandParameters {
std::vector<std::string> tokens;
size_t cpos;
const char* cmdname;
const char* cmdline;
std::string freestash;
std::string stashbase;
bool canwrite;
int createdstash;
android::base::unique_fd fd;
bool foundwrites;
bool isunresumable;
int version;
size_t written;
size_t stashed;
NewThreadInfo nti;
pthread_t thread;
std::vector<uint8_t> buffer;
uint8_t* patch_start;
};
// Print the hash in hex for corrupted source blocks (excluding the stashed blocks which is
// handled separately).
static void PrintHashForCorruptedSourceBlocks(const CommandParameters& params,
const std::vector<uint8_t>& buffer) {
LOG(INFO) << "unexpected contents of source blocks in cmd:\n" << params.cmdline;
CHECK(params.tokens[0] == "move" || params.tokens[0] == "bsdiff" ||
params.tokens[0] == "imgdiff");
size_t pos = 0;
// Command example:
// move <onehash> <tgt_range> <src_blk_count> <src_range> [<loc_range> <stashed_blocks>]
// bsdiff <offset> <len> <src_hash> <tgt_hash> <tgt_range> <src_blk_count> <src_range>
// [<loc_range> <stashed_blocks>]
if (params.tokens[0] == "move") {
// src_range for move starts at the 4th position.
if (params.tokens.size() < 5) {
LOG(ERROR) << "failed to parse source range in cmd:\n" << params.cmdline;
return;
}
pos = 4;
} else {
// src_range for diff starts at the 7th position.
if (params.tokens.size() < 8) {
LOG(ERROR) << "failed to parse source range in cmd:\n" << params.cmdline;
return;
}
pos = 7;
}
// Source blocks in stash only, no work to do.
if (params.tokens[pos] == "-") {
return;
}
RangeSet src = parse_range(params.tokens[pos++]);
RangeSet locs;
// If there's no stashed blocks, content in the buffer is consecutive and has the same
// order as the source blocks.
if (pos == params.tokens.size()) {
locs.count = 1;
locs.size = src.size;
locs.pos = { 0, src.size };
} else {
// Otherwise, the next token is the offset of the source blocks in the target range.
// Example: for the tokens <4,63946,63947,63948,63979> <4,6,7,8,39> <stashed_blocks>;
// We want to print SHA-1 for the data in buffer[6], buffer[8], buffer[9] ... buffer[38];
// this corresponds to the 32 src blocks #63946, #63948, #63949 ... #63978.
locs = parse_range(params.tokens[pos++]);
CHECK_EQ(src.size, locs.size);
CHECK_EQ(locs.pos.size() % 2, static_cast<size_t>(0));
}
LOG(INFO) << "printing hash in hex for " << src.size << " source blocks";
for (size_t i = 0; i < src.size; i++) {
int block_num = src.get_block(i);
CHECK_NE(block_num, -1);
int buffer_index = locs.get_block(i);
CHECK_NE(buffer_index, -1);
CHECK_LE((buffer_index + 1) * BLOCKSIZE, buffer.size());
uint8_t digest[SHA_DIGEST_LENGTH];
SHA1(buffer.data() + buffer_index * BLOCKSIZE, BLOCKSIZE, digest);
std::string hexdigest = print_sha1(digest);
LOG(INFO) << " block number: " << block_num << ", SHA-1: " << hexdigest;
}
}
// If the calculated hash for the whole stash doesn't match the stash id, print the SHA-1
// in hex for each block.
static void PrintHashForCorruptedStashedBlocks(const std::string& id,
const std::vector<uint8_t>& buffer,
const RangeSet& src) {
LOG(INFO) << "printing hash in hex for stash_id: " << id;
CHECK_EQ(src.size * BLOCKSIZE, buffer.size());
for (size_t i = 0; i < src.size; i++) {
int block_num = src.get_block(i);
CHECK_NE(block_num, -1);
uint8_t digest[SHA_DIGEST_LENGTH];
SHA1(buffer.data() + i * BLOCKSIZE, BLOCKSIZE, digest);
std::string hexdigest = print_sha1(digest);
LOG(INFO) << " block number: " << block_num << ", SHA-1: " << hexdigest;
}
}
// If the stash file doesn't exist, read the source blocks this stash contains and print the
// SHA-1 for these blocks.
static void PrintHashForMissingStashedBlocks(const std::string& id, int fd) {
if (stash_map.find(id) == stash_map.end()) {
LOG(ERROR) << "No stash saved for id: " << id;
return;
}
LOG(INFO) << "print hash in hex for source blocks in missing stash: " << id;
const RangeSet& src = stash_map[id];
std::vector<uint8_t> buffer(src.size * BLOCKSIZE);
if (ReadBlocks(src, buffer, fd) == -1) {
LOG(ERROR) << "failed to read source blocks for stash: " << id;
return;
}
PrintHashForCorruptedStashedBlocks(id, buffer, src);
}
static int VerifyBlocks(const std::string& expected, const std::vector<uint8_t>& buffer,
const size_t blocks, bool printerror) {
uint8_t digest[SHA_DIGEST_LENGTH];
const uint8_t* data = buffer.data();
SHA1(data, blocks * BLOCKSIZE, digest);
std::string hexdigest = print_sha1(digest);
if (hexdigest != expected) {
if (printerror) {
LOG(ERROR) << "failed to verify blocks (expected " << expected << ", read "
<< hexdigest << ")";
}
return -1;
}
return 0;
}
static std::string GetStashFileName(const std::string& base, const std::string& id,
const std::string& postfix) {
if (base.empty()) {
return "";
}
std::string fn(STASH_DIRECTORY_BASE);
fn += "/" + base + "/" + id + postfix;
return fn;
}
// Does a best effort enumeration of stash files. Ignores possible non-file items in the stash
// directory and continues despite of errors. Calls the 'callback' function for each file.
static void EnumerateStash(const std::string& dirname,
const std::function<void(const std::string&)>& callback) {
if (dirname.empty()) return;
std::unique_ptr<DIR, decltype(&closedir)> directory(opendir(dirname.c_str()), closedir);
if (directory == nullptr) {
if (errno != ENOENT) {
PLOG(ERROR) << "opendir \"" << dirname << "\" failed";
}
return;
}
dirent* item;
while ((item = readdir(directory.get())) != nullptr) {
if (item->d_type != DT_REG) continue;
callback(dirname + "/" + item->d_name);
}
}
// Deletes the stash directory and all files in it. Assumes that it only
// contains files. There is nothing we can do about unlikely, but possible
// errors, so they are merely logged.
static void DeleteFile(const std::string& fn) {
if (fn.empty()) return;
LOG(INFO) << "deleting " << fn;
if (unlink(fn.c_str()) == -1 && errno != ENOENT) {
PLOG(ERROR) << "unlink \"" << fn << "\" failed";
}
}
static void DeleteStash(const std::string& base) {
if (base.empty()) return;
LOG(INFO) << "deleting stash " << base;
std::string dirname = GetStashFileName(base, "", "");
EnumerateStash(dirname, DeleteFile);
if (rmdir(dirname.c_str()) == -1) {
if (errno != ENOENT && errno != ENOTDIR) {
PLOG(ERROR) << "rmdir \"" << dirname << "\" failed";
}
}
}
static int LoadStash(CommandParameters& params, const std::string& id, bool verify, size_t* blocks,
std::vector<uint8_t>& buffer, bool printnoent) {
// In verify mode, if source range_set was saved for the given hash,
// check contents in the source blocks first. If the check fails,
// search for the stashed files on /cache as usual.
if (!params.canwrite) {
if (stash_map.find(id) != stash_map.end()) {
const RangeSet& src = stash_map[id];
allocate(src.size * BLOCKSIZE, buffer);
if (ReadBlocks(src, buffer, params.fd) == -1) {
LOG(ERROR) << "failed to read source blocks in stash map.";
return -1;
}
if (VerifyBlocks(id, buffer, src.size, true) != 0) {
LOG(ERROR) << "failed to verify loaded source blocks in stash map.";
PrintHashForCorruptedStashedBlocks(id, buffer, src);
return -1;
}
return 0;
}
}
size_t blockcount = 0;
if (!blocks) {
blocks = &blockcount;
}
std::string fn = GetStashFileName(params.stashbase, id, "");
struct stat sb;
int res = stat(fn.c_str(), &sb);
if (res == -1) {
if (errno != ENOENT || printnoent) {
PLOG(ERROR) << "stat \"" << fn << "\" failed";
PrintHashForMissingStashedBlocks(id, params.fd);
}
return -1;
}
LOG(INFO) << " loading " << fn;
if ((sb.st_size % BLOCKSIZE) != 0) {
LOG(ERROR) << fn << " size " << sb.st_size << " not multiple of block size " << BLOCKSIZE;
return -1;
}
android::base::unique_fd fd(TEMP_FAILURE_RETRY(ota_open(fn.c_str(), O_RDONLY)));
if (fd == -1) {
PLOG(ERROR) << "open \"" << fn << "\" failed";
return -1;
}
allocate(sb.st_size, buffer);
if (read_all(fd, buffer, sb.st_size) == -1) {
return -1;
}
*blocks = sb.st_size / BLOCKSIZE;
if (verify && VerifyBlocks(id, buffer, *blocks, true) != 0) {
LOG(ERROR) << "unexpected contents in " << fn;
if (stash_map.find(id) == stash_map.end()) {
LOG(ERROR) << "failed to find source blocks number for stash " << id
<< " when executing command: " << params.cmdname;
} else {
const RangeSet& src = stash_map[id];
PrintHashForCorruptedStashedBlocks(id, buffer, src);
}
DeleteFile(fn);
return -1;
}
return 0;
}
static int WriteStash(const std::string& base, const std::string& id, int blocks,
std::vector<uint8_t>& buffer, bool checkspace, bool* exists) {
if (base.empty()) {
return -1;
}
if (checkspace && CacheSizeCheck(blocks * BLOCKSIZE) != 0) {
LOG(ERROR) << "not enough space to write stash";
return -1;
}
std::string fn = GetStashFileName(base, id, ".partial");
std::string cn = GetStashFileName(base, id, "");
if (exists) {
struct stat sb;
int res = stat(cn.c_str(), &sb);
if (res == 0) {
// The file already exists and since the name is the hash of the contents,
// it's safe to assume the contents are identical (accidental hash collisions
// are unlikely)
LOG(INFO) << " skipping " << blocks << " existing blocks in " << cn;
*exists = true;
return 0;
}
*exists = false;
}
LOG(INFO) << " writing " << blocks << " blocks to " << cn;
android::base::unique_fd fd(
TEMP_FAILURE_RETRY(ota_open(fn.c_str(), O_WRONLY | O_CREAT | O_TRUNC, STASH_FILE_MODE)));
if (fd == -1) {
PLOG(ERROR) << "failed to create \"" << fn << "\"";
return -1;
}
if (fchown(fd, AID_SYSTEM, AID_SYSTEM) != 0) { // system user
PLOG(ERROR) << "failed to chown \"" << fn << "\"";
return -1;
}
if (write_all(fd, buffer, blocks * BLOCKSIZE) == -1) {
return -1;
}
if (ota_fsync(fd) == -1) {
failure_type = kFsyncFailure;
PLOG(ERROR) << "fsync \"" << fn << "\" failed";
return -1;
}
if (rename(fn.c_str(), cn.c_str()) == -1) {
PLOG(ERROR) << "rename(\"" << fn << "\", \"" << cn << "\") failed";
return -1;
}
std::string dname = GetStashFileName(base, "", "");
android::base::unique_fd dfd(TEMP_FAILURE_RETRY(ota_open(dname.c_str(),
O_RDONLY | O_DIRECTORY)));
if (dfd == -1) {
failure_type = kFileOpenFailure;
PLOG(ERROR) << "failed to open \"" << dname << "\" failed";
return -1;
}
if (ota_fsync(dfd) == -1) {
failure_type = kFsyncFailure;
PLOG(ERROR) << "fsync \"" << dname << "\" failed";
return -1;
}
return 0;
}
// Creates a directory for storing stash files and checks if the /cache partition
// hash enough space for the expected amount of blocks we need to store. Returns
// >0 if we created the directory, zero if it existed already, and <0 of failure.
static int CreateStash(State* state, size_t maxblocks, const std::string& blockdev,
std::string& base) {
if (blockdev.empty()) {
return -1;
}
// Stash directory should be different for each partition to avoid conflicts
// when updating multiple partitions at the same time, so we use the hash of
// the block device name as the base directory
uint8_t digest[SHA_DIGEST_LENGTH];
SHA1(reinterpret_cast<const uint8_t*>(blockdev.data()), blockdev.size(), digest);
base = print_sha1(digest);
std::string dirname = GetStashFileName(base, "", "");
struct stat sb;
int res = stat(dirname.c_str(), &sb);
size_t max_stash_size = maxblocks * BLOCKSIZE;
if (res == -1 && errno != ENOENT) {
ErrorAbort(state, kStashCreationFailure, "stat \"%s\" failed: %s\n", dirname.c_str(),
strerror(errno));
return -1;
} else if (res != 0) {
LOG(INFO) << "creating stash " << dirname;
res = mkdir(dirname.c_str(), STASH_DIRECTORY_MODE);
if (res != 0) {
ErrorAbort(state, kStashCreationFailure, "mkdir \"%s\" failed: %s\n", dirname.c_str(),
strerror(errno));
return -1;
}
if (chown(dirname.c_str(), AID_SYSTEM, AID_SYSTEM) != 0) { // system user
ErrorAbort(state, kStashCreationFailure, "chown \"%s\" failed: %s\n", dirname.c_str(),
strerror(errno));
return -1;
}
if (CacheSizeCheck(max_stash_size) != 0) {
ErrorAbort(state, kStashCreationFailure, "not enough space for stash (%zu needed)\n",
max_stash_size);
return -1;
}
return 1; // Created directory
}
LOG(INFO) << "using existing stash " << dirname;
// If the directory already exists, calculate the space already allocated to stash files and check
// if there's enough for all required blocks. Delete any partially completed stash files first.
EnumerateStash(dirname, [](const std::string& fn) {
if (android::base::EndsWith(fn, ".partial")) {
DeleteFile(fn);
}
});
size_t existing = 0;
EnumerateStash(dirname, [&existing](const std::string& fn) {
if (fn.empty()) return;
struct stat sb;
if (stat(fn.c_str(), &sb) == -1) {
PLOG(ERROR) << "stat \"" << fn << "\" failed";
return;
}
existing += static_cast<size_t>(sb.st_size);
});
if (max_stash_size > existing) {
size_t needed = max_stash_size - existing;
if (CacheSizeCheck(needed) != 0) {
ErrorAbort(state, kStashCreationFailure, "not enough space for stash (%zu more needed)\n",
needed);
return -1;
}
}
return 0; // Using existing directory
}
static int FreeStash(const std::string& base, const std::string& id) {
if (base.empty() || id.empty()) {
return -1;
}
DeleteFile(GetStashFileName(base, id, ""));
return 0;
}
static void MoveRange(std::vector<uint8_t>& dest, const RangeSet& locs,
const std::vector<uint8_t>& source) {
// source contains packed data, which we want to move to the
// locations given in locs in the dest buffer. source and dest
// may be the same buffer.
const uint8_t* from = source.data();
uint8_t* to = dest.data();
size_t start = locs.size;
for (int i = locs.count-1; i >= 0; --i) {
size_t blocks = locs.pos[i*2+1] - locs.pos[i*2];
start -= blocks;
memmove(to + (locs.pos[i*2] * BLOCKSIZE), from + (start * BLOCKSIZE),
blocks * BLOCKSIZE);
}
}
/**
* We expect to parse the remainder of the parameter tokens as one of:
*
* <src_block_count> <src_range>
* (loads data from source image only)
*
* <src_block_count> - <[stash_id:stash_range] ...>
* (loads data from stashes only)
*
* <src_block_count> <src_range> <src_loc> <[stash_id:stash_range] ...>
* (loads data from both source image and stashes)
*
* On return, params.buffer is filled with the loaded source data (rearranged and combined with
* stashed data as necessary). buffer may be reallocated if needed to accommodate the source data.
* tgt is the target RangeSet for detecting overlaps. Any stashes required are loaded using
* LoadStash.
*/
static int LoadSourceBlocks(CommandParameters& params, const RangeSet& tgt, size_t* src_blocks,
bool* overlap) {
CHECK(src_blocks != nullptr);
CHECK(overlap != nullptr);
// <src_block_count>
const std::string& token = params.tokens[params.cpos++];
if (!android::base::ParseUint(token, src_blocks)) {
LOG(ERROR) << "invalid src_block_count \"" << token << "\"";
return -1;
}
allocate(*src_blocks * BLOCKSIZE, params.buffer);
// "-" or <src_range> [<src_loc>]
if (params.tokens[params.cpos] == "-") {
// no source ranges, only stashes
params.cpos++;
} else {
RangeSet src = parse_range(params.tokens[params.cpos++]);
*overlap = range_overlaps(src, tgt);
if (ReadBlocks(src, params.buffer, params.fd) == -1) {
return -1;
}
if (params.cpos >= params.tokens.size()) {
// no stashes, only source range
return 0;
}
RangeSet locs = parse_range(params.tokens[params.cpos++]);
MoveRange(params.buffer, locs, params.buffer);
}
// <[stash_id:stash_range]>
while (params.cpos < params.tokens.size()) {
// Each word is a an index into the stash table, a colon, and then a RangeSet describing where
// in the source block that stashed data should go.
std::vector<std::string> tokens = android::base::Split(params.tokens[params.cpos++], ":");
if (tokens.size() != 2) {
LOG(ERROR) << "invalid parameter";
return -1;
}
std::vector<uint8_t> stash;
if (LoadStash(params, tokens[0], false, nullptr, stash, true) == -1) {
// These source blocks will fail verification if used later, but we
// will let the caller decide if this is a fatal failure
LOG(ERROR) << "failed to load stash " << tokens[0];
continue;
}
RangeSet locs = parse_range(tokens[1]);
MoveRange(params.buffer, locs, stash);
}
return 0;
}
/**
* Do a source/target load for move/bsdiff/imgdiff in version 3.
*
* We expect to parse the remainder of the parameter tokens as one of:
*
* <tgt_range> <src_block_count> <src_range>
* (loads data from source image only)
*
* <tgt_range> <src_block_count> - <[stash_id:stash_range] ...>
* (loads data from stashes only)
*
* <tgt_range> <src_block_count> <src_range> <src_loc> <[stash_id:stash_range] ...>
* (loads data from both source image and stashes)
*
* 'onehash' tells whether to expect separate source and targe block hashes, or if they are both the
* same and only one hash should be expected. params.isunresumable will be set to true if block
* verification fails in a way that the update cannot be resumed anymore.
*
* If the function is unable to load the necessary blocks or their contents don't match the hashes,
* the return value is -1 and the command should be aborted.
*
* If the return value is 1, the command has already been completed according to the contents of the
* target blocks, and should not be performed again.
*
* If the return value is 0, source blocks have expected content and the command can be performed.
*/
static int LoadSrcTgtVersion3(CommandParameters& params, RangeSet& tgt, size_t* src_blocks,
bool onehash, bool* overlap) {
CHECK(src_blocks != nullptr);
CHECK(overlap != nullptr);
if (params.cpos >= params.tokens.size()) {
LOG(ERROR) << "missing source hash";
return -1;
}
std::string srchash = params.tokens[params.cpos++];
std::string tgthash;
if (onehash) {
tgthash = srchash;
} else {
if (params.cpos >= params.tokens.size()) {
LOG(ERROR) << "missing target hash";
return -1;
}
tgthash = params.tokens[params.cpos++];
}
// At least it needs to provide three parameters: <tgt_range>, <src_block_count> and
// "-"/<src_range>.
if (params.cpos + 2 >= params.tokens.size()) {
LOG(ERROR) << "invalid parameters";
return -1;
}
// <tgt_range>
tgt = parse_range(params.tokens[params.cpos++]);
std::vector<uint8_t> tgtbuffer(tgt.size * BLOCKSIZE);
if (ReadBlocks(tgt, tgtbuffer, params.fd) == -1) {
return -1;
}
// Return now if target blocks already have expected content.
if (VerifyBlocks(tgthash, tgtbuffer, tgt.size, false) == 0) {
return 1;
}
// Load source blocks.
if (LoadSourceBlocks(params, tgt, src_blocks, overlap) == -1) {
return -1;
}
if (VerifyBlocks(srchash, params.buffer, *src_blocks, true) == 0) {
// If source and target blocks overlap, stash the source blocks so we can
// resume from possible write errors. In verify mode, we can skip stashing
// because the source blocks won't be overwritten.
if (*overlap && params.canwrite) {
LOG(INFO) << "stashing " << *src_blocks << " overlapping blocks to " << srchash;
bool stash_exists = false;
if (WriteStash(params.stashbase, srchash, *src_blocks, params.buffer, true,
&stash_exists) != 0) {
LOG(ERROR) << "failed to stash overlapping source blocks";
return -1;
}
params.stashed += *src_blocks;
// Can be deleted when the write has completed.
if (!stash_exists) {
params.freestash = srchash;
}
}
// Source blocks have expected content, command can proceed.
return 0;
}
if (*overlap && LoadStash(params, srchash, true, nullptr, params.buffer, true) == 0) {
// Overlapping source blocks were previously stashed, command can proceed. We are recovering
// from an interrupted command, so we don't know if the stash can safely be deleted after this
// command.
return 0;
}
// Valid source data not available, update cannot be resumed.
LOG(ERROR) << "partition has unexpected contents";
PrintHashForCorruptedSourceBlocks(params, params.buffer);
params.isunresumable = true;
return -1;
}
static int PerformCommandMove(CommandParameters& params) {
size_t blocks = 0;
bool overlap = false;
RangeSet tgt;
int status = LoadSrcTgtVersion3(params, tgt, &blocks, true, &overlap);
if (status == -1) {
LOG(ERROR) << "failed to read blocks for move";
return -1;
}
if (status == 0) {
params.foundwrites = true;
} else if (params.foundwrites) {
LOG(WARNING) << "warning: commands executed out of order [" << params.cmdname << "]";
}
if (params.canwrite) {
if (status == 0) {
LOG(INFO) << " moving " << blocks << " blocks";
if (WriteBlocks(tgt, params.buffer, params.fd) == -1) {
return -1;
}
} else {
LOG(INFO) << "skipping " << blocks << " already moved blocks";
}
}
if (!params.freestash.empty()) {
FreeStash(params.stashbase, params.freestash);
params.freestash.clear();
}
params.written += tgt.size;
return 0;
}
static int PerformCommandStash(CommandParameters& params) {
// <stash_id> <src_range>
if (params.cpos + 1 >= params.tokens.size()) {
LOG(ERROR) << "missing id and/or src range fields in stash command";
return -1;
}
const std::string& id = params.tokens[params.cpos++];
size_t blocks = 0;
if (LoadStash(params, id, true, &blocks, params.buffer, false) == 0) {
// Stash file already exists and has expected contents. Do not read from source again, as the
// source may have been already overwritten during a previous attempt.
return 0;
}
RangeSet src = parse_range(params.tokens[params.cpos++]);
allocate(src.size * BLOCKSIZE, params.buffer);
if (ReadBlocks(src, params.buffer, params.fd) == -1) {
return -1;
}
blocks = src.size;
stash_map[id] = src;
if (VerifyBlocks(id, params.buffer, blocks, true) != 0) {
// Source blocks have unexpected contents. If we actually need this data later, this is an
// unrecoverable error. However, the command that uses the data may have already completed
// previously, so the possible failure will occur during source block verification.
LOG(ERROR) << "failed to load source blocks for stash " << id;
return 0;
}
// In verify mode, we don't need to stash any blocks.
if (!params.canwrite) {
return 0;
}
LOG(INFO) << "stashing " << blocks << " blocks to " << id;
params.stashed += blocks;
return WriteStash(params.stashbase, id, blocks, params.buffer, false, nullptr);
}
static int PerformCommandFree(CommandParameters& params) {
// <stash_id>
if (params.cpos >= params.tokens.size()) {
LOG(ERROR) << "missing stash id in free command";
return -1;
}
const std::string& id = params.tokens[params.cpos++];
stash_map.erase(id);
if (params.createdstash || params.canwrite) {
return FreeStash(params.stashbase, id);
}
return 0;
}
static int PerformCommandZero(CommandParameters& params) {
if (params.cpos >= params.tokens.size()) {
LOG(ERROR) << "missing target blocks for zero";
return -1;
}
RangeSet tgt = parse_range(params.tokens[params.cpos++]);
LOG(INFO) << " zeroing " << tgt.size << " blocks";
allocate(BLOCKSIZE, params.buffer);
memset(params.buffer.data(), 0, BLOCKSIZE);
if (params.canwrite) {
for (size_t i = 0; i < tgt.count; ++i) {
off64_t offset = static_cast<off64_t>(tgt.pos[i * 2]) * BLOCKSIZE;
size_t size = (tgt.pos[i * 2 + 1] - tgt.pos[i * 2]) * BLOCKSIZE;
if (!discard_blocks(params.fd, offset, size)) {
return -1;
}
if (!check_lseek(params.fd, offset, SEEK_SET)) {
return -1;
}
for (size_t j = tgt.pos[i * 2]; j < tgt.pos[i * 2 + 1]; ++j) {
if (write_all(params.fd, params.buffer, BLOCKSIZE) == -1) {
return -1;
}
}
}
}
if (params.cmdname[0] == 'z') {
// Update only for the zero command, as the erase command will call
// this if DEBUG_ERASE is defined.
params.written += tgt.size;
}
return 0;
}
static int PerformCommandNew(CommandParameters& params) {
if (params.cpos >= params.tokens.size()) {
LOG(ERROR) << "missing target blocks for new";
return -1;
}
RangeSet tgt = parse_range(params.tokens[params.cpos++]);
if (params.canwrite) {
LOG(INFO) << " writing " << tgt.size << " blocks of new data";
RangeSinkState rss(tgt);
rss.fd = params.fd;
rss.p_block = 0;
rss.p_remain = (tgt.pos[1] - tgt.pos[0]) * BLOCKSIZE;
off64_t offset = static_cast<off64_t>(tgt.pos[0]) * BLOCKSIZE;
if (!discard_blocks(params.fd, offset, tgt.size * BLOCKSIZE)) {
return -1;
}
if (!check_lseek(params.fd, offset, SEEK_SET)) {
return -1;
}
pthread_mutex_lock(¶ms.nti.mu);
params.nti.rss = &rss;
pthread_cond_broadcast(¶ms.nti.cv);
while (params.nti.rss) {
pthread_cond_wait(¶ms.nti.cv, ¶ms.nti.mu);
}
pthread_mutex_unlock(¶ms.nti.mu);
}
params.written += tgt.size;
return 0;
}
static int PerformCommandDiff(CommandParameters& params) {
// <offset> <length>
if (params.cpos + 1 >= params.tokens.size()) {
LOG(ERROR) << "missing patch offset or length for " << params.cmdname;
return -1;
}
size_t offset;
if (!android::base::ParseUint(params.tokens[params.cpos++], &offset)) {
LOG(ERROR) << "invalid patch offset";
return -1;
}
size_t len;
if (!android::base::ParseUint(params.tokens[params.cpos++], &len)) {
LOG(ERROR) << "invalid patch len";
return -1;
}
RangeSet tgt;
size_t blocks = 0;
bool overlap = false;
int status = LoadSrcTgtVersion3(params, tgt, &blocks, false, &overlap);
if (status == -1) {
LOG(ERROR) << "failed to read blocks for diff";
return -1;
}
if (status == 0) {
params.foundwrites = true;
} else if (params.foundwrites) {
LOG(WARNING) << "warning: commands executed out of order [" << params.cmdname << "]";
}
if (params.canwrite) {
if (status == 0) {
LOG(INFO) << "patching " << blocks << " blocks to " << tgt.size;
Value patch_value(
VAL_BLOB, std::string(reinterpret_cast<const char*>(params.patch_start + offset), len));
RangeSinkState rss(tgt);
rss.fd = params.fd;
rss.p_block = 0;
rss.p_remain = (tgt.pos[1] - tgt.pos[0]) * BLOCKSIZE;
off64_t offset = static_cast<off64_t>(tgt.pos[0]) * BLOCKSIZE;
if (!discard_blocks(params.fd, offset, rss.p_remain)) {
return -1;
}
if (!check_lseek(params.fd, offset, SEEK_SET)) {
return -1;
}
if (params.cmdname[0] == 'i') { // imgdiff
if (ApplyImagePatch(
params.buffer.data(), blocks * BLOCKSIZE, &patch_value,
std::bind(&RangeSinkWrite, std::placeholders::_1, std::placeholders::_2, &rss),
nullptr, nullptr) != 0) {
LOG(ERROR) << "Failed to apply image patch.";
return -1;
}
} else {
if (ApplyBSDiffPatch(
params.buffer.data(), blocks * BLOCKSIZE, &patch_value, 0,
std::bind(&RangeSinkWrite, std::placeholders::_1, std::placeholders::_2, &rss),
nullptr) != 0) {
LOG(ERROR) << "Failed to apply bsdiff patch.";
return -1;
}
}
// We expect the output of the patcher to fill the tgt ranges exactly.
if (rss.p_block != tgt.count || rss.p_remain != 0) {
LOG(ERROR) << "range sink underrun?";
}
} else {
LOG(INFO) << "skipping " << blocks << " blocks already patched to " << tgt.size << " ["
<< params.cmdline << "]";
}
}
if (!params.freestash.empty()) {
FreeStash(params.stashbase, params.freestash);
params.freestash.clear();
}
params.written += tgt.size;
return 0;
}
static int PerformCommandErase(CommandParameters& params) {
if (DEBUG_ERASE) {
return PerformCommandZero(params);
}
struct stat sb;
if (fstat(params.fd, &sb) == -1) {
PLOG(ERROR) << "failed to fstat device to erase";
return -1;
}
if (!S_ISBLK(sb.st_mode)) {
LOG(ERROR) << "not a block device; skipping erase";
return -1;
}
if (params.cpos >= params.tokens.size()) {
LOG(ERROR) << "missing target blocks for erase";
return -1;
}
RangeSet tgt = parse_range(params.tokens[params.cpos++]);
if (params.canwrite) {
LOG(INFO) << " erasing " << tgt.size << " blocks";
for (size_t i = 0; i < tgt.count; ++i) {
uint64_t blocks[2];
// offset in bytes
blocks[0] = tgt.pos[i * 2] * (uint64_t) BLOCKSIZE;
// length in bytes
blocks[1] = (tgt.pos[i * 2 + 1] - tgt.pos[i * 2]) * (uint64_t) BLOCKSIZE;
if (ioctl(params.fd, BLKDISCARD, &blocks) == -1) {
PLOG(ERROR) << "BLKDISCARD ioctl failed";
return -1;
}
}
}
return 0;
}
// Definitions for transfer list command functions
typedef int (*CommandFunction)(CommandParameters&);
struct Command {
const char* name;
CommandFunction f;
};
// args:
// - block device (or file) to modify in-place
// - transfer list (blob)
// - new data stream (filename within package.zip)
// - patch stream (filename within package.zip, must be uncompressed)
static Value* PerformBlockImageUpdate(const char* name, State* state,
const std::vector<std::unique_ptr<Expr>>& argv,
const Command* commands, size_t cmdcount, bool dryrun) {
CommandParameters params = {};
params.canwrite = !dryrun;
LOG(INFO) << "performing " << (dryrun ? "verification" : "update");
if (state->is_retry) {
is_retry = true;
LOG(INFO) << "This update is a retry.";
}
if (argv.size() != 4) {
ErrorAbort(state, kArgsParsingFailure, "block_image_update expects 4 arguments, got %zu",
argv.size());
return StringValue("");
}
std::vector<std::unique_ptr<Value>> args;
if (!ReadValueArgs(state, argv, &args)) {
return nullptr;
}
const Value* blockdev_filename = args[0].get();
const Value* transfer_list_value = args[1].get();
const Value* new_data_fn = args[2].get();
const Value* patch_data_fn = args[3].get();
if (blockdev_filename->type != VAL_STRING) {
ErrorAbort(state, kArgsParsingFailure, "blockdev_filename argument to %s must be string", name);
return StringValue("");
}
if (transfer_list_value->type != VAL_BLOB) {
ErrorAbort(state, kArgsParsingFailure, "transfer_list argument to %s must be blob", name);
return StringValue("");
}
if (new_data_fn->type != VAL_STRING) {
ErrorAbort(state, kArgsParsingFailure, "new_data_fn argument to %s must be string", name);
return StringValue("");
}
if (patch_data_fn->type != VAL_STRING) {
ErrorAbort(state, kArgsParsingFailure, "patch_data_fn argument to %s must be string", name);
return StringValue("");
}
UpdaterInfo* ui = static_cast<UpdaterInfo*>(state->cookie);
if (ui == nullptr) {
return StringValue("");
}
FILE* cmd_pipe = ui->cmd_pipe;
ZipArchiveHandle za = ui->package_zip;
if (cmd_pipe == nullptr || za == nullptr) {
return StringValue("");
}
ZipString path_data(patch_data_fn->data.c_str());
ZipEntry patch_entry;
if (FindEntry(za, path_data, &patch_entry) != 0) {
LOG(ERROR) << name << "(): no file \"" << patch_data_fn->data << "\" in package";
return StringValue("");
}
params.patch_start = ui->package_zip_addr + patch_entry.offset;
ZipString new_data(new_data_fn->data.c_str());
ZipEntry new_entry;
if (FindEntry(za, new_data, &new_entry) != 0) {
LOG(ERROR) << name << "(): no file \"" << new_data_fn->data << "\" in package";
return StringValue("");
}
params.fd.reset(TEMP_FAILURE_RETRY(ota_open(blockdev_filename->data.c_str(), O_RDWR)));
if (params.fd == -1) {
PLOG(ERROR) << "open \"" << blockdev_filename->data << "\" failed";
return StringValue("");
}
if (params.canwrite) {
params.nti.za = za;
params.nti.entry = new_entry;
pthread_mutex_init(¶ms.nti.mu, nullptr);
pthread_cond_init(¶ms.nti.cv, nullptr);
pthread_attr_t attr;
pthread_attr_init(&attr);
pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_JOINABLE);
int error = pthread_create(¶ms.thread, &attr, unzip_new_data, ¶ms.nti);
if (error != 0) {
PLOG(ERROR) << "pthread_create failed";
return StringValue("");
}
}
std::vector<std::string> lines = android::base::Split(transfer_list_value->data, "\n");
if (lines.size() < 2) {
ErrorAbort(state, kArgsParsingFailure, "too few lines in the transfer list [%zd]\n",
lines.size());
return StringValue("");
}
// First line in transfer list is the version number.
if (!android::base::ParseInt(lines[0], ¶ms.version, 3, 4)) {
LOG(ERROR) << "unexpected transfer list version [" << lines[0] << "]";
return StringValue("");
}
LOG(INFO) << "blockimg version is " << params.version;
// Second line in transfer list is the total number of blocks we expect to write.
size_t total_blocks;
if (!android::base::ParseUint(lines[1], &total_blocks)) {
ErrorAbort(state, kArgsParsingFailure, "unexpected block count [%s]\n", lines[1].c_str());
return StringValue("");
}
if (total_blocks == 0) {
return StringValue("t");
}
size_t start = 2;
if (lines.size() < 4) {
ErrorAbort(state, kArgsParsingFailure, "too few lines in the transfer list [%zu]\n",
lines.size());
return StringValue("");
}
// Third line is how many stash entries are needed simultaneously.
LOG(INFO) << "maximum stash entries " << lines[2];
// Fourth line is the maximum number of blocks that will be stashed simultaneously
size_t stash_max_blocks;
if (!android::base::ParseUint(lines[3], &stash_max_blocks)) {
ErrorAbort(state, kArgsParsingFailure, "unexpected maximum stash blocks [%s]\n",
lines[3].c_str());
return StringValue("");
}
int res = CreateStash(state, stash_max_blocks, blockdev_filename->data, params.stashbase);
if (res == -1) {
return StringValue("");
}
params.createdstash = res;
start += 2;
// Build a map of the available commands
std::unordered_map<std::string, const Command*> cmd_map;
for (size_t i = 0; i < cmdcount; ++i) {
if (cmd_map.find(commands[i].name) != cmd_map.end()) {
LOG(ERROR) << "Error: command [" << commands[i].name << "] already exists in the cmd map.";
return StringValue(strdup(""));
}
cmd_map[commands[i].name] = &commands[i];
}
int rc = -1;
// Subsequent lines are all individual transfer commands
for (auto it = lines.cbegin() + start; it != lines.cend(); it++) {
const std::string& line(*it);
if (line.empty()) continue;
params.tokens = android::base::Split(line, " ");
params.cpos = 0;
params.cmdname = params.tokens[params.cpos++].c_str();
params.cmdline = line.c_str();
if (cmd_map.find(params.cmdname) == cmd_map.end()) {
LOG(ERROR) << "unexpected command [" << params.cmdname << "]";
goto pbiudone;
}
const Command* cmd = cmd_map[params.cmdname];
if (cmd->f != nullptr && cmd->f(params) == -1) {
LOG(ERROR) << "failed to execute command [" << line << "]";
goto pbiudone;
}
if (params.canwrite) {
if (ota_fsync(params.fd) == -1) {
failure_type = kFsyncFailure;
PLOG(ERROR) << "fsync failed";
goto pbiudone;
}
fprintf(cmd_pipe, "set_progress %.4f\n", static_cast<double>(params.written) / total_blocks);
fflush(cmd_pipe);
}
}
if (params.canwrite) {
pthread_join(params.thread, nullptr);
LOG(INFO) << "wrote " << params.written << " blocks; expected " << total_blocks;
LOG(INFO) << "stashed " << params.stashed << " blocks";
LOG(INFO) << "max alloc needed was " << params.buffer.size();
const char* partition = strrchr(blockdev_filename->data.c_str(), '/');
if (partition != nullptr && *(partition + 1) != 0) {
fprintf(cmd_pipe, "log bytes_written_%s: %zu\n", partition + 1, params.written * BLOCKSIZE);
fprintf(cmd_pipe, "log bytes_stashed_%s: %zu\n", partition + 1, params.stashed * BLOCKSIZE);
fflush(cmd_pipe);
}
// Delete stash only after successfully completing the update, as it may contain blocks needed
// to complete the update later.
DeleteStash(params.stashbase);
} else {
LOG(INFO) << "verified partition contents; update may be resumed";
}
rc = 0;
pbiudone:
if (ota_fsync(params.fd) == -1) {
failure_type = kFsyncFailure;
PLOG(ERROR) << "fsync failed";
}
// params.fd will be automatically closed because it's a unique_fd.
// Only delete the stash if the update cannot be resumed, or it's a verification run and we
// created the stash.
if (params.isunresumable || (!params.canwrite && params.createdstash)) {
DeleteStash(params.stashbase);
}
if (failure_type != kNoCause && state->cause_code == kNoCause) {
state->cause_code = failure_type;
}
return StringValue(rc == 0 ? "t" : "");
}
/**
* The transfer list is a text file containing commands to transfer data from one place to another
* on the target partition. We parse it and execute the commands in order:
*
* zero [rangeset]
* - Fill the indicated blocks with zeros.
*
* new [rangeset]
* - Fill the blocks with data read from the new_data file.
*
* erase [rangeset]
* - Mark the given blocks as empty.
*
* move <...>
* bsdiff <patchstart> <patchlen> <...>
* imgdiff <patchstart> <patchlen> <...>
* - Read the source blocks, apply a patch (or not in the case of move), write result to target
* blocks. bsdiff or imgdiff specifies the type of patch; move means no patch at all.
*
* See the comments in LoadSrcTgtVersion3() for a description of the <...> format.
*
* stash <stash_id> <src_range>
* - Load the given source range and stash the data in the given slot of the stash table.
*
* free <stash_id>
* - Free the given stash data.
*
* The creator of the transfer list will guarantee that no block is read (ie, used as the source for
* a patch or move) after it has been written.
*
* The creator will guarantee that a given stash is loaded (with a stash command) before it's used
* in a move/bsdiff/imgdiff command.
*
* Within one command the source and target ranges may overlap so in general we need to read the
* entire source into memory before writing anything to the target blocks.
*
* All the patch data is concatenated into one patch_data file in the update package. It must be
* stored uncompressed because we memory-map it in directly from the archive. (Since patches are
* already compressed, we lose very little by not compressing their concatenation.)
*
* Commands that read data from the partition (i.e. move/bsdiff/imgdiff/stash) have one or more
* additional hashes before the range parameters, which are used to check if the command has already
* been completed and verify the integrity of the source data.
*/
Value* BlockImageVerifyFn(const char* name, State* state,
const std::vector<std::unique_ptr<Expr>>& argv) {
// Commands which are not tested are set to nullptr to skip them completely
const Command commands[] = {
{ "bsdiff", PerformCommandDiff },
{ "erase", nullptr },
{ "free", PerformCommandFree },
{ "imgdiff", PerformCommandDiff },
{ "move", PerformCommandMove },
{ "new", nullptr },
{ "stash", PerformCommandStash },
{ "zero", nullptr }
};
// Perform a dry run without writing to test if an update can proceed
return PerformBlockImageUpdate(name, state, argv, commands,
sizeof(commands) / sizeof(commands[0]), true);
}
Value* BlockImageUpdateFn(const char* name, State* state,
const std::vector<std::unique_ptr<Expr>>& argv) {
const Command commands[] = {
{ "bsdiff", PerformCommandDiff },
{ "erase", PerformCommandErase },
{ "free", PerformCommandFree },
{ "imgdiff", PerformCommandDiff },
{ "move", PerformCommandMove },
{ "new", PerformCommandNew },
{ "stash", PerformCommandStash },
{ "zero", PerformCommandZero }
};
return PerformBlockImageUpdate(name, state, argv, commands,
sizeof(commands) / sizeof(commands[0]), false);
}
Value* RangeSha1Fn(const char* name, State* state, const std::vector<std::unique_ptr<Expr>>& argv) {
if (argv.size() != 2) {
ErrorAbort(state, kArgsParsingFailure, "range_sha1 expects 2 arguments, got %zu",
argv.size());
return StringValue("");
}
std::vector<std::unique_ptr<Value>> args;
if (!ReadValueArgs(state, argv, &args)) {
return nullptr;
}
const Value* blockdev_filename = args[0].get();
const Value* ranges = args[1].get();
if (blockdev_filename->type != VAL_STRING) {
ErrorAbort(state, kArgsParsingFailure, "blockdev_filename argument to %s must be string",
name);
return StringValue("");
}
if (ranges->type != VAL_STRING) {
ErrorAbort(state, kArgsParsingFailure, "ranges argument to %s must be string", name);
return StringValue("");
}
android::base::unique_fd fd(ota_open(blockdev_filename->data.c_str(), O_RDWR));
if (fd == -1) {
ErrorAbort(state, kFileOpenFailure, "open \"%s\" failed: %s",
blockdev_filename->data.c_str(), strerror(errno));
return StringValue("");
}
RangeSet rs = parse_range(ranges->data);
SHA_CTX ctx;
SHA1_Init(&ctx);
std::vector<uint8_t> buffer(BLOCKSIZE);
for (size_t i = 0; i < rs.count; ++i) {
if (!check_lseek(fd, (off64_t)rs.pos[i*2] * BLOCKSIZE, SEEK_SET)) {
ErrorAbort(state, kLseekFailure, "failed to seek %s: %s",
blockdev_filename->data.c_str(), strerror(errno));
return StringValue("");
}
for (size_t j = rs.pos[i*2]; j < rs.pos[i*2+1]; ++j) {
if (read_all(fd, buffer, BLOCKSIZE) == -1) {
ErrorAbort(state, kFreadFailure, "failed to read %s: %s",
blockdev_filename->data.c_str(), strerror(errno));
return StringValue("");
}
SHA1_Update(&ctx, buffer.data(), BLOCKSIZE);
}
}
uint8_t digest[SHA_DIGEST_LENGTH];
SHA1_Final(digest, &ctx);
return StringValue(print_sha1(digest));
}
// This function checks if a device has been remounted R/W prior to an incremental
// OTA update. This is an common cause of update abortion. The function reads the
// 1st block of each partition and check for mounting time/count. It return string "t"
// if executes successfully and an empty string otherwise.
Value* CheckFirstBlockFn(const char* name, State* state,
const std::vector<std::unique_ptr<Expr>>& argv) {
if (argv.size() != 1) {
ErrorAbort(state, kArgsParsingFailure, "check_first_block expects 1 argument, got %zu",
argv.size());
return StringValue("");
}
std::vector<std::unique_ptr<Value>> args;
if (!ReadValueArgs(state, argv, &args)) {
return nullptr;
}
const Value* arg_filename = args[0].get();
if (arg_filename->type != VAL_STRING) {
ErrorAbort(state, kArgsParsingFailure, "filename argument to %s must be string", name);
return StringValue("");
}
android::base::unique_fd fd(ota_open(arg_filename->data.c_str(), O_RDONLY));
if (fd == -1) {
ErrorAbort(state, kFileOpenFailure, "open \"%s\" failed: %s", arg_filename->data.c_str(),
strerror(errno));
return StringValue("");
}
RangeSet blk0 {1 /*count*/, 1/*size*/, std::vector<size_t> {0, 1}/*position*/};
std::vector<uint8_t> block0_buffer(BLOCKSIZE);
if (ReadBlocks(blk0, block0_buffer, fd) == -1) {
ErrorAbort(state, kFreadFailure, "failed to read %s: %s", arg_filename->data.c_str(),
strerror(errno));
return StringValue("");
}
// https://ext4.wiki.kernel.org/index.php/Ext4_Disk_Layout
// Super block starts from block 0, offset 0x400
// 0x2C: len32 Mount time
// 0x30: len32 Write time
// 0x34: len16 Number of mounts since the last fsck
// 0x38: len16 Magic signature 0xEF53
time_t mount_time = *reinterpret_cast<uint32_t*>(&block0_buffer[0x400+0x2C]);
uint16_t mount_count = *reinterpret_cast<uint16_t*>(&block0_buffer[0x400+0x34]);
if (mount_count > 0) {
uiPrintf(state, "Device was remounted R/W %d times\n", mount_count);
uiPrintf(state, "Last remount happened on %s", ctime(&mount_time));
}
return StringValue("t");
}
Value* BlockImageRecoverFn(const char* name, State* state,
const std::vector<std::unique_ptr<Expr>>& argv) {
if (argv.size() != 2) {
ErrorAbort(state, kArgsParsingFailure, "block_image_recover expects 2 arguments, got %zu",
argv.size());
return StringValue("");
}
std::vector<std::unique_ptr<Value>> args;
if (!ReadValueArgs(state, argv, &args)) {
return nullptr;
}
const Value* filename = args[0].get();
const Value* ranges = args[1].get();
if (filename->type != VAL_STRING) {
ErrorAbort(state, kArgsParsingFailure, "filename argument to %s must be string", name);
return StringValue("");
}
if (ranges->type != VAL_STRING) {
ErrorAbort(state, kArgsParsingFailure, "ranges argument to %s must be string", name);
return StringValue("");
}
// Output notice to log when recover is attempted
LOG(INFO) << filename->data << " image corrupted, attempting to recover...";
// When opened with O_RDWR, libfec rewrites corrupted blocks when they are read
fec::io fh(filename->data, O_RDWR);
if (!fh) {
ErrorAbort(state, kLibfecFailure, "fec_open \"%s\" failed: %s", filename->data.c_str(),
strerror(errno));
return StringValue("");
}
if (!fh.has_ecc() || !fh.has_verity()) {
ErrorAbort(state, kLibfecFailure, "unable to use metadata to correct errors");
return StringValue("");
}
fec_status status;
if (!fh.get_status(status)) {
ErrorAbort(state, kLibfecFailure, "failed to read FEC status");
return StringValue("");
}
RangeSet rs = parse_range(ranges->data);
uint8_t buffer[BLOCKSIZE];
for (size_t i = 0; i < rs.count; ++i) {
for (size_t j = rs.pos[i * 2]; j < rs.pos[i * 2 + 1]; ++j) {
// Stay within the data area, libfec validates and corrects metadata
if (status.data_size <= (uint64_t)j * BLOCKSIZE) {
continue;
}
if (fh.pread(buffer, BLOCKSIZE, (off64_t)j * BLOCKSIZE) != BLOCKSIZE) {
ErrorAbort(state, kLibfecFailure, "failed to recover %s (block %zu): %s",
filename->data.c_str(), j, strerror(errno));
return StringValue("");
}
// If we want to be able to recover from a situation where rewriting a corrected
// block doesn't guarantee the same data will be returned when re-read later, we
// can save a copy of corrected blocks to /cache. Note:
//
// 1. Maximum space required from /cache is the same as the maximum number of
// corrupted blocks we can correct. For RS(255, 253) and a 2 GiB partition,
// this would be ~16 MiB, for example.
//
// 2. To find out if this block was corrupted, call fec_get_status after each
// read and check if the errors field value has increased.
}
}
LOG(INFO) << "..." << filename->data << " image recovered successfully.";
return StringValue("t");
}
void RegisterBlockImageFunctions() {
RegisterFunction("block_image_verify", BlockImageVerifyFn);
RegisterFunction("block_image_update", BlockImageUpdateFn);
RegisterFunction("block_image_recover", BlockImageRecoverFn);
RegisterFunction("check_first_block", CheckFirstBlockFn);
RegisterFunction("range_sha1", RangeSha1Fn);
}