summaryrefslogtreecommitdiffstats
path: root/g4f/Provider/GizAI.py
blob: 127edc9e42d3c6d8eea256a6d1c76b71936dd956 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
from __future__ import annotations

import json
from aiohttp import ClientSession

from ..typing import AsyncResult, Messages
from ..image import ImageResponse
from .base_provider import AsyncGeneratorProvider, ProviderModelMixin
from .helper import format_prompt

class GizAI(AsyncGeneratorProvider, ProviderModelMixin):
    url = "https://app.giz.ai/assistant/"
    api_endpoint = "https://app.giz.ai/api/data/users/inferenceServer.infer"
    working = True
    
    supports_system_message = True
    supports_message_history = True
    
    # Chat models
    default_model = 'chat-gemini-flash'
    chat_models = [
        default_model,
        'chat-gemini-pro',
        'chat-gpt4m',
        'chat-gpt4',
        'claude-sonnet',
        'claude-haiku',
        'llama-3-70b',
        'llama-3-8b',
        'mistral-large',
        'chat-o1-mini'
    ]

    # Image models
    image_models = [
        'flux1',
        'sdxl',
        'sd',
        'sd35',
    ]

    models = [*chat_models, *image_models]
    
    model_aliases = {
        # Chat model aliases
        "gemini-flash": "chat-gemini-flash",
        "gemini-pro": "chat-gemini-pro",
        "gpt-4o-mini": "chat-gpt4m",
        "gpt-4o": "chat-gpt4",
        "claude-3.5-sonnet": "claude-sonnet",
        "claude-3-haiku": "claude-haiku",
        "llama-3.1-70b": "llama-3-70b",
        "llama-3.1-8b": "llama-3-8b",
        "o1-mini": "chat-o1-mini",
        # Image model aliases
        "sd-1.5": "sd",
        "sd-3.5": "sd35",
        "flux-schnell": "flux1",
    }

    @classmethod
    def get_model(cls, model: str) -> str:
        if model in cls.models:
            return model
        elif model in cls.model_aliases:
            return cls.model_aliases[model]
        else:
            return cls.default_model

    @classmethod
    def is_image_model(cls, model: str) -> bool:
        return model in cls.image_models

    @classmethod
    async def create_async_generator(
        cls,
        model: str,
        messages: Messages,
        proxy: str = None,
        **kwargs
    ) -> AsyncResult:
        model = cls.get_model(model)
        
        headers = {
            'Accept': 'application/json, text/plain, */*',
            'Accept-Language': 'en-US,en;q=0.9',
            'Cache-Control': 'no-cache',
            'Connection': 'keep-alive',
            'Content-Type': 'application/json',
            'Origin': 'https://app.giz.ai',
            'Pragma': 'no-cache',
            'Sec-Fetch-Dest': 'empty',
            'Sec-Fetch-Mode': 'cors',
            'Sec-Fetch-Site': 'same-origin',
            'User-Agent': 'Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/130.0.0.0 Safari/537.36',
            'sec-ch-ua': '"Not?A_Brand";v="99", "Chromium";v="130"',
            'sec-ch-ua-mobile': '?0',
            'sec-ch-ua-platform': '"Linux"'
        }

        async with ClientSession() as session:
            if cls.is_image_model(model):
                # Image generation
                prompt = messages[-1]["content"]
                data = {
                    "model": model,
                    "input": {
                        "width": "1024",
                        "height": "1024",
                        "steps": 4,
                        "output_format": "webp",
                        "batch_size": 1,
                        "mode": "plan",
                        "prompt": prompt
                    }
                }
                async with session.post(
                    cls.api_endpoint,
                    headers=headers,
                    data=json.dumps(data),
                    proxy=proxy
                ) as response:
                    response.raise_for_status()
                    response_data = await response.json()
                    if response_data.get('status') == 'completed' and response_data.get('output'):
                        for url in response_data['output']:
                            yield ImageResponse(images=url, alt="Generated Image")
            else:
                # Chat completion
                data = {
                    "model": model,
                    "input": {
                        "messages": [
                            {
                                "type": "human",
                                "content": format_prompt(messages)
                            }
                        ],
                        "mode": "plan"
                    },
                    "noStream": True
                }
                async with session.post(
                    cls.api_endpoint,
                    headers=headers,
                    data=json.dumps(data),
                    proxy=proxy
                ) as response:
                    response.raise_for_status()
                    result = await response.json()
                    yield result.get('output', '')