summaryrefslogtreecommitdiffstats
path: root/g4f/Provider/Nexra.py
blob: e2c3e197b63fc33df47b33ebd23f49f66fc152a3 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
from __future__ import annotations

import json
import base64
from aiohttp import ClientSession
from typing import AsyncGenerator

from ..typing import AsyncResult, Messages
from .base_provider import AsyncGeneratorProvider, ProviderModelMixin
from ..image import ImageResponse
from .helper import format_prompt

class Nexra(AsyncGeneratorProvider, ProviderModelMixin):
    url = "https://nexra.aryahcr.cc"
    api_endpoint_text = "https://nexra.aryahcr.cc/api/chat/gpt"
    api_endpoint_image = "https://nexra.aryahcr.cc/api/image/complements"
    working = True
    supports_gpt_35_turbo = True
    supports_gpt_4 = True
    supports_stream = True
    supports_system_message = True
    supports_message_history = True
    
    default_model = 'gpt-3.5-turbo'
    models = [
        # Text models
        'gpt-4', 'gpt-4-0613', 'gpt-4-32k', 'gpt-4-0314', 'gpt-4-32k-0314',
        'gpt-3.5-turbo', 'gpt-3.5-turbo-16k', 'gpt-3.5-turbo-0613', 'gpt-3.5-turbo-16k-0613', 'gpt-3.5-turbo-0301',
        'gpt-3', 'text-davinci-003', 'text-davinci-002', 'code-davinci-002',
        'text-curie-001', 'text-babbage-001', 'text-ada-001',
        'davinci', 'curie', 'babbage', 'ada', 'babbage-002', 'davinci-002',
        # Image models
        'dalle', 'dalle-mini', 'emi'
    ]
    
    image_models = {"dalle", "dalle-mini", "emi"}
    text_models = set(models) - image_models
    
    model_aliases = {
        "gpt-4": "gpt-4-0613",
        "gpt-4": "gpt-4-32k",
        "gpt-4": "gpt-4-0314",
        "gpt-4": "gpt-4-32k-0314",
        
        "gpt-3.5-turbo": "gpt-3.5-turbo-16k",
        "gpt-3.5-turbo": "gpt-3.5-turbo-0613",
        "gpt-3.5-turbo": "gpt-3.5-turbo-16k-0613",
        "gpt-3.5-turbo": "gpt-3.5-turbo-0301",
        
        "gpt-3": "text-davinci-003",
        "gpt-3": "text-davinci-002",
        "gpt-3": "code-davinci-002",
        "gpt-3": "text-curie-001",
        "gpt-3": "text-babbage-001",
        "gpt-3": "text-ada-001",
        "gpt-3": "text-ada-001",
        "gpt-3": "davinci",
        "gpt-3": "curie",
        "gpt-3": "babbage",
        "gpt-3": "ada",
        "gpt-3": "babbage-002",
        "gpt-3": "davinci-002",
    }

    @classmethod
    def get_model(cls, model: str) -> str:
        if model in cls.models:
            return model
        elif model in cls.model_aliases:
            return cls.model_aliases[model]
        else:
            return cls.default_model

    @classmethod
    async def create_async_generator(
        cls,
        model: str,
        messages: Messages,
        proxy: str = None,
        **kwargs
    ) -> AsyncGenerator[str | ImageResponse, None]:
        model = cls.get_model(model)
        
        if model in cls.image_models:
            async for result in cls.create_image_async_generator(model, messages, proxy, **kwargs):
                yield result
        else:
            async for result in cls.create_text_async_generator(model, messages, proxy, **kwargs):
                yield result

    @classmethod
    async def create_text_async_generator(
        cls,
        model: str,
        messages: Messages,
        proxy: str = None,
        **kwargs
    ) -> AsyncGenerator[str, None]:
        headers = {
            "Content-Type": "application/json",
        }
        async with ClientSession(headers=headers) as session:
            data = {
                "messages": messages,
                "prompt": format_prompt(messages),
                "model": model,
                "markdown": False,
                "stream": False,
            }
            async with session.post(cls.api_endpoint_text, json=data, proxy=proxy) as response:
                response.raise_for_status()
                result = await response.text()
                json_result = json.loads(result)
                yield json_result["gpt"]

    @classmethod
    async def create_image_async_generator(
        cls,
        model: str,
        messages: Messages,
        proxy: str = None,
        **kwargs
    ) -> AsyncGenerator[ImageResponse | str, None]:
        headers = {
            "Content-Type": "application/json"
        }

        prompt = messages[-1]['content'] if messages else ""

        data = {
            "prompt": prompt,
            "model": model
        }

        async def process_response(response_text: str) -> ImageResponse | None:
            json_start = response_text.find('{')
            if json_start != -1:
                json_data = response_text[json_start:]
                try:
                    response_data = json.loads(json_data)
                    image_data = response_data.get('images', [])[0]
                    
                    if image_data.startswith('data:image/'):
                        return ImageResponse([image_data], "Generated image")
                    
                    try:
                        base64.b64decode(image_data)
                        data_uri = f"data:image/jpeg;base64,{image_data}"
                        return ImageResponse([data_uri], "Generated image")
                    except:
                        print("Invalid base64 data")
                        return None
                except json.JSONDecodeError:
                    print("Failed to parse JSON.")
            else:
                print("No JSON data found in the response.")
            return None

        async with ClientSession(headers=headers) as session:
            async with session.post(cls.api_endpoint_image, json=data, proxy=proxy) as response:
                response.raise_for_status()
                response_text = await response.text()
                
                image_response = await process_response(response_text)
                if image_response:
                    yield image_response
                else:
                    yield "Failed to process image data."

    @classmethod
    async def create_async(
        cls,
        model: str,
        messages: Messages,
        proxy: str = None,
        **kwargs
    ) -> str:
        async for response in cls.create_async_generator(model, messages, proxy, **kwargs):
            if isinstance(response, ImageResponse):
                return response.images[0]
            return response