1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
|
from __future__ import annotations
import re
import json
import requests
from aiohttp import ClientSession
from typing import List
from ...typing import AsyncResult, Messages
from ..base_provider import AsyncGeneratorProvider, ProviderModelMixin
from ..helper import format_prompt
# Helper function to clean the response
def clean_response(text: str) -> str:
"""Clean response from unwanted patterns."""
patterns = [
r"One message exceeds the \d+chars per message limit\..+https:\/\/discord\.com\/invite\/\S+",
r"Rate limit \(\d+\/minute\) exceeded\. Join our discord for more: .+https:\/\/discord\.com\/invite\/\S+",
r"Rate limit \(\d+\/hour\) exceeded\. Join our discord for more: https:\/\/discord\.com\/invite\/\S+",
r"</s>", # zephyr-7b-beta
r"\[ERROR\] '\w{8}-\w{4}-\w{4}-\w{4}-\w{12}'", # Matches [ERROR] 'UUID'
]
for pattern in patterns:
text = re.sub(pattern, '', text)
# Remove the <|im_end|> token if present
text = text.replace("<|im_end|>", "").strip()
return text
def split_message(message: str, max_length: int = 1000) -> List[str]:
"""Splits the message into chunks of a given length (max_length)"""
# Split the message into smaller chunks to avoid exceeding the limit
chunks = []
while len(message) > max_length:
# Find the last space or punctuation before max_length to avoid cutting words
split_point = message.rfind(' ', 0, max_length)
if split_point == -1: # No space found, split at max_length
split_point = max_length
chunks.append(message[:split_point])
message = message[split_point:].strip()
if message:
chunks.append(message) # Append the remaining part of the message
return chunks
class AirforceChat(AsyncGeneratorProvider, ProviderModelMixin):
label = "AirForce Chat"
api_endpoint = "https://api.airforce/chat/completions"
supports_stream = True
supports_system_message = True
supports_message_history = True
default_model = 'llama-3.1-70b-chat'
@classmethod
def get_models(cls) -> list:
if not cls.models:
response = requests.get('https://api.airforce/models')
data = response.json()
cls.models = [model['id'] for model in data['data']]
model_aliases = {
# openchat
"openchat-3.5": "openchat-3.5-0106",
# deepseek-ai
"deepseek-coder": "deepseek-coder-6.7b-instruct",
# NousResearch
"hermes-2-dpo": "Nous-Hermes-2-Mixtral-8x7B-DPO",
"hermes-2-pro": "hermes-2-pro-mistral-7b",
# teknium
"openhermes-2.5": "openhermes-2.5-mistral-7b",
# liquid
"lfm-40b": "lfm-40b-moe",
# DiscoResearch
"german-7b": "discolm-german-7b-v1",
# meta-llama
"llama-2-7b": "llama-2-7b-chat-int8",
"llama-2-7b": "llama-2-7b-chat-fp16",
"llama-3.1-70b": "llama-3.1-70b-chat",
"llama-3.1-8b": "llama-3.1-8b-chat",
"llama-3.1-70b": "llama-3.1-70b-turbo",
"llama-3.1-8b": "llama-3.1-8b-turbo",
# inferless
"neural-7b": "neural-chat-7b-v3-1",
# HuggingFaceH4
"zephyr-7b": "zephyr-7b-beta",
# llmplayground.net
#"any-uncensored": "any-uncensored",
}
@classmethod
async def create_async_generator(
cls,
model: str,
messages: Messages,
stream: bool = False,
proxy: str = None,
max_tokens: str = 4096,
temperature: str = 1,
top_p: str = 1,
**kwargs
) -> AsyncResult:
model = cls.get_model(model)
headers = {
'accept': '*/*',
'accept-language': 'en-US,en;q=0.9',
'authorization': 'Bearer missing api key',
'cache-control': 'no-cache',
'content-type': 'application/json',
'origin': 'https://llmplayground.net',
'pragma': 'no-cache',
'priority': 'u=1, i',
'referer': 'https://llmplayground.net/',
'sec-ch-ua': '"Not?A_Brand";v="99", "Chromium";v="130"',
'sec-ch-ua-mobile': '?0',
'sec-ch-ua-platform': '"Linux"',
'sec-fetch-dest': 'empty',
'sec-fetch-mode': 'cors',
'sec-fetch-site': 'cross-site',
'user-agent': 'Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/130.0.0.0 Safari/537.36'
}
# Format the messages for the API
formatted_messages = format_prompt(messages)
message_chunks = split_message(formatted_messages)
full_response = ""
for chunk in message_chunks:
data = {
"messages": [{"role": "user", "content": chunk}],
"model": model,
"max_tokens": max_tokens,
"temperature": temperature,
"top_p": top_p,
"stream": stream
}
async with ClientSession(headers=headers) as session:
async with session.post(cls.api_endpoint, json=data, proxy=proxy) as response:
response.raise_for_status()
text = ""
if stream:
async for line in response.content:
line = line.decode('utf-8').strip()
if line.startswith('data: '):
json_str = line[6:]
try:
if json_str and json_str != "[DONE]":
chunk = json.loads(json_str)
if 'choices' in chunk and chunk['choices']:
content = chunk['choices'][0].get('delta', {}).get('content', '')
text += content
except json.JSONDecodeError as e:
print(f"Error decoding JSON: {json_str}, Error: {e}")
elif line == "[DONE]":
break
full_response += clean_response(text)
else:
response_json = await response.json()
text = response_json["choices"][0]["message"]["content"]
full_response += clean_response(text)
# Return the complete response after all chunks
yield full_response
|