summaryrefslogtreecommitdiffstats
path: root/external/include/glm/gtc/matrix_transform.inl
diff options
context:
space:
mode:
Diffstat (limited to 'external/include/glm/gtc/matrix_transform.inl')
-rw-r--r--external/include/glm/gtc/matrix_transform.inl575
1 files changed, 575 insertions, 0 deletions
diff --git a/external/include/glm/gtc/matrix_transform.inl b/external/include/glm/gtc/matrix_transform.inl
new file mode 100644
index 0000000..b9ff418
--- /dev/null
+++ b/external/include/glm/gtc/matrix_transform.inl
@@ -0,0 +1,575 @@
+/// @ref gtc_matrix_transform
+/// @file glm/gtc/matrix_transform.inl
+
+#include "../geometric.hpp"
+#include "../trigonometric.hpp"
+#include "../matrix.hpp"
+
+namespace glm
+{
+ template <typename T, precision P>
+ GLM_FUNC_QUALIFIER tmat4x4<T, P> translate(tmat4x4<T, P> const & m, tvec3<T, P> const & v)
+ {
+ tmat4x4<T, P> Result(m);
+ Result[3] = m[0] * v[0] + m[1] * v[1] + m[2] * v[2] + m[3];
+ return Result;
+ }
+
+ template <typename T, precision P>
+ GLM_FUNC_QUALIFIER tmat4x4<T, P> rotate(tmat4x4<T, P> const & m, T angle, tvec3<T, P> const & v)
+ {
+ T const a = angle;
+ T const c = cos(a);
+ T const s = sin(a);
+
+ tvec3<T, P> axis(normalize(v));
+ tvec3<T, P> temp((T(1) - c) * axis);
+
+ tmat4x4<T, P> Rotate(uninitialize);
+ Rotate[0][0] = c + temp[0] * axis[0];
+ Rotate[0][1] = temp[0] * axis[1] + s * axis[2];
+ Rotate[0][2] = temp[0] * axis[2] - s * axis[1];
+
+ Rotate[1][0] = temp[1] * axis[0] - s * axis[2];
+ Rotate[1][1] = c + temp[1] * axis[1];
+ Rotate[1][2] = temp[1] * axis[2] + s * axis[0];
+
+ Rotate[2][0] = temp[2] * axis[0] + s * axis[1];
+ Rotate[2][1] = temp[2] * axis[1] - s * axis[0];
+ Rotate[2][2] = c + temp[2] * axis[2];
+
+ tmat4x4<T, P> Result(uninitialize);
+ Result[0] = m[0] * Rotate[0][0] + m[1] * Rotate[0][1] + m[2] * Rotate[0][2];
+ Result[1] = m[0] * Rotate[1][0] + m[1] * Rotate[1][1] + m[2] * Rotate[1][2];
+ Result[2] = m[0] * Rotate[2][0] + m[1] * Rotate[2][1] + m[2] * Rotate[2][2];
+ Result[3] = m[3];
+ return Result;
+ }
+
+ template <typename T, precision P>
+ GLM_FUNC_QUALIFIER tmat4x4<T, P> rotate_slow(tmat4x4<T, P> const & m, T angle, tvec3<T, P> const & v)
+ {
+ T const a = angle;
+ T const c = cos(a);
+ T const s = sin(a);
+ tmat4x4<T, P> Result;
+
+ tvec3<T, P> axis = normalize(v);
+
+ Result[0][0] = c + (static_cast<T>(1) - c) * axis.x * axis.x;
+ Result[0][1] = (static_cast<T>(1) - c) * axis.x * axis.y + s * axis.z;
+ Result[0][2] = (static_cast<T>(1) - c) * axis.x * axis.z - s * axis.y;
+ Result[0][3] = static_cast<T>(0);
+
+ Result[1][0] = (static_cast<T>(1) - c) * axis.y * axis.x - s * axis.z;
+ Result[1][1] = c + (static_cast<T>(1) - c) * axis.y * axis.y;
+ Result[1][2] = (static_cast<T>(1) - c) * axis.y * axis.z + s * axis.x;
+ Result[1][3] = static_cast<T>(0);
+
+ Result[2][0] = (static_cast<T>(1) - c) * axis.z * axis.x + s * axis.y;
+ Result[2][1] = (static_cast<T>(1) - c) * axis.z * axis.y - s * axis.x;
+ Result[2][2] = c + (static_cast<T>(1) - c) * axis.z * axis.z;
+ Result[2][3] = static_cast<T>(0);
+
+ Result[3] = tvec4<T, P>(0, 0, 0, 1);
+ return m * Result;
+ }
+
+ template <typename T, precision P>
+ GLM_FUNC_QUALIFIER tmat4x4<T, P> scale(tmat4x4<T, P> const & m, tvec3<T, P> const & v)
+ {
+ tmat4x4<T, P> Result(uninitialize);
+ Result[0] = m[0] * v[0];
+ Result[1] = m[1] * v[1];
+ Result[2] = m[2] * v[2];
+ Result[3] = m[3];
+ return Result;
+ }
+
+ template <typename T, precision P>
+ GLM_FUNC_QUALIFIER tmat4x4<T, P> scale_slow(tmat4x4<T, P> const & m, tvec3<T, P> const & v)
+ {
+ tmat4x4<T, P> Result(T(1));
+ Result[0][0] = v.x;
+ Result[1][1] = v.y;
+ Result[2][2] = v.z;
+ return m * Result;
+ }
+
+ template <typename T>
+ GLM_FUNC_QUALIFIER tmat4x4<T, defaultp> ortho
+ (
+ T left, T right,
+ T bottom, T top,
+ T zNear, T zFar
+ )
+ {
+# if GLM_COORDINATE_SYSTEM == GLM_LEFT_HANDED
+ return orthoLH(left, right, bottom, top, zNear, zFar);
+# else
+ return orthoRH(left, right, bottom, top, zNear, zFar);
+# endif
+ }
+
+ template <typename T>
+ GLM_FUNC_QUALIFIER tmat4x4<T, defaultp> orthoLH
+ (
+ T left, T right,
+ T bottom, T top,
+ T zNear, T zFar
+ )
+ {
+ tmat4x4<T, defaultp> Result(1);
+ Result[0][0] = static_cast<T>(2) / (right - left);
+ Result[1][1] = static_cast<T>(2) / (top - bottom);
+ Result[3][0] = - (right + left) / (right - left);
+ Result[3][1] = - (top + bottom) / (top - bottom);
+
+# if GLM_DEPTH_CLIP_SPACE == GLM_DEPTH_ZERO_TO_ONE
+ Result[2][2] = static_cast<T>(1) / (zFar - zNear);
+ Result[3][2] = - zNear / (zFar - zNear);
+# else
+ Result[2][2] = static_cast<T>(2) / (zFar - zNear);
+ Result[3][2] = - (zFar + zNear) / (zFar - zNear);
+# endif
+
+ return Result;
+ }
+
+ template <typename T>
+ GLM_FUNC_QUALIFIER tmat4x4<T, defaultp> orthoRH
+ (
+ T left, T right,
+ T bottom, T top,
+ T zNear, T zFar
+ )
+ {
+ tmat4x4<T, defaultp> Result(1);
+ Result[0][0] = static_cast<T>(2) / (right - left);
+ Result[1][1] = static_cast<T>(2) / (top - bottom);
+ Result[3][0] = - (right + left) / (right - left);
+ Result[3][1] = - (top + bottom) / (top - bottom);
+
+# if GLM_DEPTH_CLIP_SPACE == GLM_DEPTH_ZERO_TO_ONE
+ Result[2][2] = - static_cast<T>(1) / (zFar - zNear);
+ Result[3][2] = - zNear / (zFar - zNear);
+# else
+ Result[2][2] = - static_cast<T>(2) / (zFar - zNear);
+ Result[3][2] = - (zFar + zNear) / (zFar - zNear);
+# endif
+
+ return Result;
+ }
+
+ template <typename T>
+ GLM_FUNC_QUALIFIER tmat4x4<T, defaultp> ortho
+ (
+ T left, T right,
+ T bottom, T top
+ )
+ {
+ tmat4x4<T, defaultp> Result(static_cast<T>(1));
+ Result[0][0] = static_cast<T>(2) / (right - left);
+ Result[1][1] = static_cast<T>(2) / (top - bottom);
+ Result[2][2] = - static_cast<T>(1);
+ Result[3][0] = - (right + left) / (right - left);
+ Result[3][1] = - (top + bottom) / (top - bottom);
+ return Result;
+ }
+
+ template <typename T>
+ GLM_FUNC_QUALIFIER tmat4x4<T, defaultp> frustum
+ (
+ T left, T right,
+ T bottom, T top,
+ T nearVal, T farVal
+ )
+ {
+# if GLM_COORDINATE_SYSTEM == GLM_LEFT_HANDED
+ return frustumLH(left, right, bottom, top, nearVal, farVal);
+# else
+ return frustumRH(left, right, bottom, top, nearVal, farVal);
+# endif
+ }
+
+ template <typename T>
+ GLM_FUNC_QUALIFIER tmat4x4<T, defaultp> frustumLH
+ (
+ T left, T right,
+ T bottom, T top,
+ T nearVal, T farVal
+ )
+ {
+ tmat4x4<T, defaultp> Result(0);
+ Result[0][0] = (static_cast<T>(2) * nearVal) / (right - left);
+ Result[1][1] = (static_cast<T>(2) * nearVal) / (top - bottom);
+ Result[2][0] = (right + left) / (right - left);
+ Result[2][1] = (top + bottom) / (top - bottom);
+ Result[2][3] = static_cast<T>(1);
+
+# if GLM_DEPTH_CLIP_SPACE == GLM_DEPTH_ZERO_TO_ONE
+ Result[2][2] = farVal / (farVal - nearVal);
+ Result[3][2] = -(farVal * nearVal) / (farVal - nearVal);
+# else
+ Result[2][2] = (farVal + nearVal) / (farVal - nearVal);
+ Result[3][2] = - (static_cast<T>(2) * farVal * nearVal) / (farVal - nearVal);
+# endif
+
+ return Result;
+ }
+
+ template <typename T>
+ GLM_FUNC_QUALIFIER tmat4x4<T, defaultp> frustumRH
+ (
+ T left, T right,
+ T bottom, T top,
+ T nearVal, T farVal
+ )
+ {
+ tmat4x4<T, defaultp> Result(0);
+ Result[0][0] = (static_cast<T>(2) * nearVal) / (right - left);
+ Result[1][1] = (static_cast<T>(2) * nearVal) / (top - bottom);
+ Result[2][0] = (right + left) / (right - left);
+ Result[2][1] = (top + bottom) / (top - bottom);
+ Result[2][3] = static_cast<T>(-1);
+
+# if GLM_DEPTH_CLIP_SPACE == GLM_DEPTH_ZERO_TO_ONE
+ Result[2][2] = farVal / (nearVal - farVal);
+ Result[3][2] = -(farVal * nearVal) / (farVal - nearVal);
+# else
+ Result[2][2] = - (farVal + nearVal) / (farVal - nearVal);
+ Result[3][2] = - (static_cast<T>(2) * farVal * nearVal) / (farVal - nearVal);
+# endif
+
+ return Result;
+ }
+
+ template <typename T>
+ GLM_FUNC_QUALIFIER tmat4x4<T, defaultp> perspective(T fovy, T aspect, T zNear, T zFar)
+ {
+# if GLM_COORDINATE_SYSTEM == GLM_LEFT_HANDED
+ return perspectiveLH(fovy, aspect, zNear, zFar);
+# else
+ return perspectiveRH(fovy, aspect, zNear, zFar);
+# endif
+ }
+
+ template <typename T>
+ GLM_FUNC_QUALIFIER tmat4x4<T, defaultp> perspectiveRH(T fovy, T aspect, T zNear, T zFar)
+ {
+ assert(abs(aspect - std::numeric_limits<T>::epsilon()) > static_cast<T>(0));
+
+ T const tanHalfFovy = tan(fovy / static_cast<T>(2));
+
+ tmat4x4<T, defaultp> Result(static_cast<T>(0));
+ Result[0][0] = static_cast<T>(1) / (aspect * tanHalfFovy);
+ Result[1][1] = static_cast<T>(1) / (tanHalfFovy);
+ Result[2][3] = - static_cast<T>(1);
+
+# if GLM_DEPTH_CLIP_SPACE == GLM_DEPTH_ZERO_TO_ONE
+ Result[2][2] = zFar / (zNear - zFar);
+ Result[3][2] = -(zFar * zNear) / (zFar - zNear);
+# else
+ Result[2][2] = - (zFar + zNear) / (zFar - zNear);
+ Result[3][2] = - (static_cast<T>(2) * zFar * zNear) / (zFar - zNear);
+# endif
+
+ return Result;
+ }
+
+ template <typename T>
+ GLM_FUNC_QUALIFIER tmat4x4<T, defaultp> perspectiveLH(T fovy, T aspect, T zNear, T zFar)
+ {
+ assert(abs(aspect - std::numeric_limits<T>::epsilon()) > static_cast<T>(0));
+
+ T const tanHalfFovy = tan(fovy / static_cast<T>(2));
+
+ tmat4x4<T, defaultp> Result(static_cast<T>(0));
+ Result[0][0] = static_cast<T>(1) / (aspect * tanHalfFovy);
+ Result[1][1] = static_cast<T>(1) / (tanHalfFovy);
+ Result[2][3] = static_cast<T>(1);
+
+# if GLM_DEPTH_CLIP_SPACE == GLM_DEPTH_ZERO_TO_ONE
+ Result[2][2] = zFar / (zFar - zNear);
+ Result[3][2] = -(zFar * zNear) / (zFar - zNear);
+# else
+ Result[2][2] = (zFar + zNear) / (zFar - zNear);
+ Result[3][2] = - (static_cast<T>(2) * zFar * zNear) / (zFar - zNear);
+# endif
+
+ return Result;
+ }
+
+ template <typename T>
+ GLM_FUNC_QUALIFIER tmat4x4<T, defaultp> perspectiveFov(T fov, T width, T height, T zNear, T zFar)
+ {
+# if GLM_COORDINATE_SYSTEM == GLM_LEFT_HANDED
+ return perspectiveFovLH(fov, width, height, zNear, zFar);
+# else
+ return perspectiveFovRH(fov, width, height, zNear, zFar);
+# endif
+ }
+
+ template <typename T>
+ GLM_FUNC_QUALIFIER tmat4x4<T, defaultp> perspectiveFovRH(T fov, T width, T height, T zNear, T zFar)
+ {
+ assert(width > static_cast<T>(0));
+ assert(height > static_cast<T>(0));
+ assert(fov > static_cast<T>(0));
+
+ T const rad = fov;
+ T const h = glm::cos(static_cast<T>(0.5) * rad) / glm::sin(static_cast<T>(0.5) * rad);
+ T const w = h * height / width; ///todo max(width , Height) / min(width , Height)?
+
+ tmat4x4<T, defaultp> Result(static_cast<T>(0));
+ Result[0][0] = w;
+ Result[1][1] = h;
+ Result[2][3] = - static_cast<T>(1);
+
+# if GLM_DEPTH_CLIP_SPACE == GLM_DEPTH_ZERO_TO_ONE
+ Result[2][2] = zFar / (zNear - zFar);
+ Result[3][2] = -(zFar * zNear) / (zFar - zNear);
+# else
+ Result[2][2] = - (zFar + zNear) / (zFar - zNear);
+ Result[3][2] = - (static_cast<T>(2) * zFar * zNear) / (zFar - zNear);
+# endif
+
+ return Result;
+ }
+
+ template <typename T>
+ GLM_FUNC_QUALIFIER tmat4x4<T, defaultp> perspectiveFovLH(T fov, T width, T height, T zNear, T zFar)
+ {
+ assert(width > static_cast<T>(0));
+ assert(height > static_cast<T>(0));
+ assert(fov > static_cast<T>(0));
+
+ T const rad = fov;
+ T const h = glm::cos(static_cast<T>(0.5) * rad) / glm::sin(static_cast<T>(0.5) * rad);
+ T const w = h * height / width; ///todo max(width , Height) / min(width , Height)?
+
+ tmat4x4<T, defaultp> Result(static_cast<T>(0));
+ Result[0][0] = w;
+ Result[1][1] = h;
+ Result[2][3] = static_cast<T>(1);
+
+# if GLM_DEPTH_CLIP_SPACE == GLM_DEPTH_ZERO_TO_ONE
+ Result[2][2] = zFar / (zFar - zNear);
+ Result[3][2] = -(zFar * zNear) / (zFar - zNear);
+# else
+ Result[2][2] = (zFar + zNear) / (zFar - zNear);
+ Result[3][2] = - (static_cast<T>(2) * zFar * zNear) / (zFar - zNear);
+# endif
+
+ return Result;
+ }
+
+ template <typename T>
+ GLM_FUNC_QUALIFIER tmat4x4<T, defaultp> infinitePerspective(T fovy, T aspect, T zNear)
+ {
+# if GLM_COORDINATE_SYSTEM == GLM_LEFT_HANDED
+ return infinitePerspectiveLH(fovy, aspect, zNear);
+# else
+ return infinitePerspectiveRH(fovy, aspect, zNear);
+# endif
+ }
+
+ template <typename T>
+ GLM_FUNC_QUALIFIER tmat4x4<T, defaultp> infinitePerspectiveRH(T fovy, T aspect, T zNear)
+ {
+ T const range = tan(fovy / static_cast<T>(2)) * zNear;
+ T const left = -range * aspect;
+ T const right = range * aspect;
+ T const bottom = -range;
+ T const top = range;
+
+ tmat4x4<T, defaultp> Result(static_cast<T>(0));
+ Result[0][0] = (static_cast<T>(2) * zNear) / (right - left);
+ Result[1][1] = (static_cast<T>(2) * zNear) / (top - bottom);
+ Result[2][2] = - static_cast<T>(1);
+ Result[2][3] = - static_cast<T>(1);
+ Result[3][2] = - static_cast<T>(2) * zNear;
+ return Result;
+ }
+
+ template <typename T>
+ GLM_FUNC_QUALIFIER tmat4x4<T, defaultp> infinitePerspectiveLH(T fovy, T aspect, T zNear)
+ {
+ T const range = tan(fovy / static_cast<T>(2)) * zNear;
+ T const left = -range * aspect;
+ T const right = range * aspect;
+ T const bottom = -range;
+ T const top = range;
+
+ tmat4x4<T, defaultp> Result(T(0));
+ Result[0][0] = (static_cast<T>(2) * zNear) / (right - left);
+ Result[1][1] = (static_cast<T>(2) * zNear) / (top - bottom);
+ Result[2][2] = static_cast<T>(1);
+ Result[2][3] = static_cast<T>(1);
+ Result[3][2] = - static_cast<T>(2) * zNear;
+ return Result;
+ }
+
+ // Infinite projection matrix: http://www.terathon.com/gdc07_lengyel.pdf
+ template <typename T>
+ GLM_FUNC_QUALIFIER tmat4x4<T, defaultp> tweakedInfinitePerspective(T fovy, T aspect, T zNear, T ep)
+ {
+ T const range = tan(fovy / static_cast<T>(2)) * zNear;
+ T const left = -range * aspect;
+ T const right = range * aspect;
+ T const bottom = -range;
+ T const top = range;
+
+ tmat4x4<T, defaultp> Result(static_cast<T>(0));
+ Result[0][0] = (static_cast<T>(2) * zNear) / (right - left);
+ Result[1][1] = (static_cast<T>(2) * zNear) / (top - bottom);
+ Result[2][2] = ep - static_cast<T>(1);
+ Result[2][3] = static_cast<T>(-1);
+ Result[3][2] = (ep - static_cast<T>(2)) * zNear;
+ return Result;
+ }
+
+ template <typename T>
+ GLM_FUNC_QUALIFIER tmat4x4<T, defaultp> tweakedInfinitePerspective(T fovy, T aspect, T zNear)
+ {
+ return tweakedInfinitePerspective(fovy, aspect, zNear, epsilon<T>());
+ }
+
+ template <typename T, typename U, precision P>
+ GLM_FUNC_QUALIFIER tvec3<T, P> project
+ (
+ tvec3<T, P> const & obj,
+ tmat4x4<T, P> const & model,
+ tmat4x4<T, P> const & proj,
+ tvec4<U, P> const & viewport
+ )
+ {
+ tvec4<T, P> tmp = tvec4<T, P>(obj, static_cast<T>(1));
+ tmp = model * tmp;
+ tmp = proj * tmp;
+
+ tmp /= tmp.w;
+# if GLM_DEPTH_CLIP_SPACE == GLM_DEPTH_ZERO_TO_ONE
+ tmp.x = tmp.x * static_cast<T>(0.5) + static_cast<T>(0.5);
+ tmp.y = tmp.y * static_cast<T>(0.5) + static_cast<T>(0.5);
+# else
+ tmp = tmp * static_cast<T>(0.5) + static_cast<T>(0.5);
+# endif
+ tmp[0] = tmp[0] * T(viewport[2]) + T(viewport[0]);
+ tmp[1] = tmp[1] * T(viewport[3]) + T(viewport[1]);
+
+ return tvec3<T, P>(tmp);
+ }
+
+ template <typename T, typename U, precision P>
+ GLM_FUNC_QUALIFIER tvec3<T, P> unProject
+ (
+ tvec3<T, P> const & win,
+ tmat4x4<T, P> const & model,
+ tmat4x4<T, P> const & proj,
+ tvec4<U, P> const & viewport
+ )
+ {
+ tmat4x4<T, P> Inverse = inverse(proj * model);
+
+ tvec4<T, P> tmp = tvec4<T, P>(win, T(1));
+ tmp.x = (tmp.x - T(viewport[0])) / T(viewport[2]);
+ tmp.y = (tmp.y - T(viewport[1])) / T(viewport[3]);
+# if GLM_DEPTH_CLIP_SPACE == GLM_DEPTH_ZERO_TO_ONE
+ tmp.x = tmp.x * static_cast<T>(2) - static_cast<T>(1);
+ tmp.y = tmp.y * static_cast<T>(2) - static_cast<T>(1);
+# else
+ tmp = tmp * static_cast<T>(2) - static_cast<T>(1);
+# endif
+
+ tvec4<T, P> obj = Inverse * tmp;
+ obj /= obj.w;
+
+ return tvec3<T, P>(obj);
+ }
+
+ template <typename T, precision P, typename U>
+ GLM_FUNC_QUALIFIER tmat4x4<T, P> pickMatrix(tvec2<T, P> const & center, tvec2<T, P> const & delta, tvec4<U, P> const & viewport)
+ {
+ assert(delta.x > static_cast<T>(0) && delta.y > static_cast<T>(0));
+ tmat4x4<T, P> Result(static_cast<T>(1));
+
+ if(!(delta.x > static_cast<T>(0) && delta.y > static_cast<T>(0)))
+ return Result; // Error
+
+ tvec3<T, P> Temp(
+ (static_cast<T>(viewport[2]) - static_cast<T>(2) * (center.x - static_cast<T>(viewport[0]))) / delta.x,
+ (static_cast<T>(viewport[3]) - static_cast<T>(2) * (center.y - static_cast<T>(viewport[1]))) / delta.y,
+ static_cast<T>(0));
+
+ // Translate and scale the picked region to the entire window
+ Result = translate(Result, Temp);
+ return scale(Result, tvec3<T, P>(static_cast<T>(viewport[2]) / delta.x, static_cast<T>(viewport[3]) / delta.y, static_cast<T>(1)));
+ }
+
+ template <typename T, precision P>
+ GLM_FUNC_QUALIFIER tmat4x4<T, P> lookAt(tvec3<T, P> const & eye, tvec3<T, P> const & center, tvec3<T, P> const & up)
+ {
+# if GLM_COORDINATE_SYSTEM == GLM_LEFT_HANDED
+ return lookAtLH(eye, center, up);
+# else
+ return lookAtRH(eye, center, up);
+# endif
+ }
+
+ template <typename T, precision P>
+ GLM_FUNC_QUALIFIER tmat4x4<T, P> lookAtRH
+ (
+ tvec3<T, P> const & eye,
+ tvec3<T, P> const & center,
+ tvec3<T, P> const & up
+ )
+ {
+ tvec3<T, P> const f(normalize(center - eye));
+ tvec3<T, P> const s(normalize(cross(f, up)));
+ tvec3<T, P> const u(cross(s, f));
+
+ tmat4x4<T, P> Result(1);
+ Result[0][0] = s.x;
+ Result[1][0] = s.y;
+ Result[2][0] = s.z;
+ Result[0][1] = u.x;
+ Result[1][1] = u.y;
+ Result[2][1] = u.z;
+ Result[0][2] =-f.x;
+ Result[1][2] =-f.y;
+ Result[2][2] =-f.z;
+ Result[3][0] =-dot(s, eye);
+ Result[3][1] =-dot(u, eye);
+ Result[3][2] = dot(f, eye);
+ return Result;
+ }
+
+ template <typename T, precision P>
+ GLM_FUNC_QUALIFIER tmat4x4<T, P> lookAtLH
+ (
+ tvec3<T, P> const & eye,
+ tvec3<T, P> const & center,
+ tvec3<T, P> const & up
+ )
+ {
+ tvec3<T, P> const f(normalize(center - eye));
+ tvec3<T, P> const s(normalize(cross(up, f)));
+ tvec3<T, P> const u(cross(f, s));
+
+ tmat4x4<T, P> Result(1);
+ Result[0][0] = s.x;
+ Result[1][0] = s.y;
+ Result[2][0] = s.z;
+ Result[0][1] = u.x;
+ Result[1][1] = u.y;
+ Result[2][1] = u.z;
+ Result[0][2] = f.x;
+ Result[1][2] = f.y;
+ Result[2][2] = f.z;
+ Result[3][0] = -dot(s, eye);
+ Result[3][1] = -dot(u, eye);
+ Result[3][2] = -dot(f, eye);
+ return Result;
+ }
+}//namespace glm