summaryrefslogtreecommitdiffstats
path: root/src/Mobs/Path.cpp
blob: ba8046a2b7b9a120ac82c3a70ae16c5e3b099c66 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410

#include "Globals.h"

#include <cmath>

#include "Path.h"
#include "../Chunk.h"

#define DISTANCE_MANHATTAN 0  // 1: More speed, a bit less accuracy 0: Max accuracy, less speed.
#define HEURISTICS_ONLY 0  // 1: Much more speed, much less accurate.
#define CALCULATIONS_PER_STEP 10  // Higher means more CPU load but faster path calculations.
// The only version which guarantees the shortest path is 0, 0.

enum class eCellStatus {OPENLIST,  CLOSEDLIST,  NOLIST};
struct cPathCell
{
	Vector3i m_Location;   // Location of the cell in the world.
	int m_F, m_G, m_H;  // F, G, H as defined in regular A*.
	eCellStatus m_Status;  // Which list is the cell in? Either non, open, or closed.
	cPathCell * m_Parent;  // Cell's parent, as defined in regular A*.
	bool m_IsSolid;	   // Is the cell an air or a solid? Partial solids are currently considered solids.
};





bool compareHeuristics::operator()(cPathCell * & a_Cell1, cPathCell * & a_Cell2)
{
	return a_Cell1->m_F > a_Cell2->m_F;
}





/* cPath implementation */
cPath::cPath(
	cChunk & a_Chunk,
	const Vector3i & a_StartingPoint, const Vector3i & a_EndingPoint, int a_MaxSteps,
	double a_BoundingBoxWidth, double a_BoundingBoxHeight,
	int a_MaxUp, int a_MaxDown
) :
	m_Destination(a_EndingPoint.Floor()),
	m_Source(a_StartingPoint.Floor()),
	m_CurrentPoint(0),  // GetNextPoint increments this to 1, but that's fine, since the first cell is always a_StartingPoint
	m_Chunk(&a_Chunk),
	m_BadChunkFound(false)
{
	// TODO: if src not walkable OR dest not walkable, then abort.
	// Borrow a new "isWalkable" from ProcessIfWalkable, make ProcessIfWalkable also call isWalkable

	if (GetCell(m_Source)->m_IsSolid || GetCell(m_Destination)->m_IsSolid)
	{
		m_Status = ePathFinderStatus::PATH_NOT_FOUND;
		return;
	}

	m_NearestPointToTarget = GetCell(m_Source);
	m_Status = ePathFinderStatus::CALCULATING;
	m_StepsLeft = a_MaxSteps;

	ProcessCell(GetCell(a_StartingPoint), nullptr, 0);
	m_Chunk = nullptr;
}





cPath::~cPath()
{
	if (m_Status == ePathFinderStatus::CALCULATING)
	{
		FinishCalculation();
	}
}





ePathFinderStatus cPath::Step(cChunk & a_Chunk)
{
	m_Chunk = &a_Chunk;
	if (m_Status != ePathFinderStatus::CALCULATING)
	{
		return m_Status;
	}

	if (m_BadChunkFound)
	{
		FinishCalculation(ePathFinderStatus::PATH_NOT_FOUND);
		return m_Status;
	}

	if (m_StepsLeft == 0)
	{
		AttemptToFindAlternative();
	}
	else
	{
		--m_StepsLeft;
		int i;
		for (i = 0; i < CALCULATIONS_PER_STEP; ++i)
		{
			if (Step_Internal())  // Step_Internal returns true when no more calculation is needed.
			{
				break;  // if we're here, m_Status must have changed either to PATH_FOUND or PATH_NOT_FOUND.
			}
		}

		m_Chunk = nullptr;
	}
	return m_Status;
}





Vector3i cPath::AcceptNearbyPath()
{
	ASSERT(m_Status == ePathFinderStatus::NEARBY_FOUND);
	m_Status = ePathFinderStatus::PATH_FOUND;
	return m_Destination;
}





bool cPath::IsSolid(const Vector3i & a_Location)
{
	ASSERT(m_Chunk != nullptr);

	auto Chunk = m_Chunk->GetNeighborChunk(a_Location.x, a_Location.z);
	if ((Chunk == nullptr) || !Chunk->IsValid())
	{
		m_BadChunkFound = true;
		return true;
	}
	m_Chunk = Chunk;

	BLOCKTYPE BlockType;
	NIBBLETYPE BlockMeta;
	int RelX = a_Location.x - m_Chunk->GetPosX() * cChunkDef::Width;
	int RelZ = a_Location.z - m_Chunk->GetPosZ() * cChunkDef::Width;

	m_Chunk->GetBlockTypeMeta(RelX, a_Location.y, RelZ, BlockType, BlockMeta);
	if ((BlockType == E_BLOCK_FENCE) || (BlockType == E_BLOCK_FENCE_GATE))
	{
		GetCell(a_Location + Vector3i(0, 1, 0))->m_IsSolid = true;  // Mobs will always think that the fence is 2 blocks high and therefore won't jump over.
	}
	if (BlockType == E_BLOCK_STATIONARY_WATER)
	{
		GetCell(a_Location + Vector3i(0, -1, 0))->m_IsSolid = true;  // Mobs will always think that the fence is 2 blocks high and therefore won't jump over.
	}

	return cBlockInfo::IsSolid(BlockType);
}





bool cPath::Step_Internal()
{
	cPathCell * CurrentCell = OpenListPop();

	// Path not reachable.
	if (CurrentCell == nullptr)
	{
		AttemptToFindAlternative();
		return true;
	}

	// Path found.
	if (CurrentCell->m_Location == m_Destination)
	{
		BuildPath();
		FinishCalculation(ePathFinderStatus::PATH_FOUND);
		return true;
	}

	// Calculation not finished yet.
	// Check if we have a new NearestPoint.
	if (CurrentCell->m_H < m_NearestPointToTarget->m_H)
	{
		m_NearestPointToTarget = CurrentCell;
	}

	// process a currentCell by inspecting all neighbors.

	// Check North, South, East, West on all 3 different heights.
	int i;
	for (i = -1; i <= 1; ++i)
	{
		ProcessIfWalkable(CurrentCell->m_Location + Vector3i(1, i, 0),  CurrentCell, 10);
		ProcessIfWalkable(CurrentCell->m_Location + Vector3i(-1, i, 0), CurrentCell, 10);
		ProcessIfWalkable(CurrentCell->m_Location + Vector3i(0, i, 1),  CurrentCell, 10);
		ProcessIfWalkable(CurrentCell->m_Location + Vector3i(0, i, -1), CurrentCell, 10);
	}

	// Check diagonals on mob's height only.
	int x, z;
	for (x = -1; x <= 1; x += 2)
	{
		for (z = -1; z <= 1; z += 2)
		{
			// This condition prevents diagonal corner cutting.
			if (!GetCell(CurrentCell->m_Location + Vector3i(x, 0, 0))->m_IsSolid && !GetCell(CurrentCell->m_Location + Vector3i(0, 0, z))->m_IsSolid)
			{
				// This prevents falling of "sharp turns" e.g. a 1x1x20 rectangle in the air which breaks in a right angle suddenly.
				if (GetCell(CurrentCell->m_Location + Vector3i(x, -1, 0))->m_IsSolid && GetCell(CurrentCell->m_Location + Vector3i(0, -1, z))->m_IsSolid)
				{
					ProcessIfWalkable(CurrentCell->m_Location + Vector3i(x, 0, z), CurrentCell, 14);  // 14 is a good enough approximation of sqrt(10 + 10).
				}
			}
		}
	}

	return false;
}





void cPath::AttemptToFindAlternative()
{
	if (m_NearestPointToTarget == GetCell(m_Source))
	{
		FinishCalculation(ePathFinderStatus::PATH_NOT_FOUND);
	}
	else
	{
		m_Destination = m_NearestPointToTarget->m_Location;
		BuildPath();
		FinishCalculation(ePathFinderStatus::NEARBY_FOUND);
	}
}





void cPath::BuildPath()
{
	cPathCell * CurrentCell = GetCell(m_Destination);
	do
	{
		m_PathPoints.push_back(CurrentCell->m_Location);  // Populate the cPath with points.
		CurrentCell = CurrentCell->m_Parent;
	} while (CurrentCell != nullptr);
}





void cPath::FinishCalculation()
{
	m_Map.clear();
	m_OpenList = std::priority_queue<cPathCell *, std::vector<cPathCell *>, compareHeuristics>{};
}





void cPath::FinishCalculation(ePathFinderStatus a_NewStatus)
{
	if (m_BadChunkFound)
	{
		a_NewStatus = ePathFinderStatus::PATH_NOT_FOUND;
	}
	m_Status = a_NewStatus;
	FinishCalculation();
}





void cPath::OpenListAdd(cPathCell * a_Cell)
{
	a_Cell->m_Status = eCellStatus::OPENLIST;
	m_OpenList.push(a_Cell);
	#ifdef COMPILING_PATHFIND_DEBUGGER
	si::setBlock(a_Cell->m_Location.x, a_Cell->m_Location.y, a_Cell->m_Location.z, debug_open, SetMini(a_Cell));
	#endif
}





cPathCell * cPath::OpenListPop()  // Popping from the open list also means adding to the closed list.
{
	if (m_OpenList.size() == 0)
	{
		return nullptr;  // We've exhausted the search space and nothing was found, this will trigger a PATH_NOT_FOUND or NEARBY_FOUND status.
	}

	cPathCell * Ret = m_OpenList.top();
	m_OpenList.pop();
	Ret->m_Status = eCellStatus::CLOSEDLIST;
	#ifdef COMPILING_PATHFIND_DEBUGGER
si::setBlock((Ret)->m_Location.x, (Ret)->m_Location.y, (Ret)->m_Location.z, debug_closed, SetMini(Ret));
	#endif
	return Ret;
}





void cPath::ProcessIfWalkable(const Vector3i & a_Location, cPathCell * a_Parent, int a_Cost)
{
	cPathCell * cell = GetCell(a_Location);
	if (!cell->m_IsSolid && GetCell(a_Location + Vector3i(0, -1, 0))->m_IsSolid && !GetCell(a_Location + Vector3i(0, 1, 0))->m_IsSolid)
	{
		ProcessCell(cell, a_Parent, a_Cost);
	}
}





void cPath::ProcessCell(cPathCell * a_Cell, cPathCell * a_Caller, int a_GDelta)
{
	// Case 1: Cell is in the closed list, ignore it.
	if (a_Cell->m_Status == eCellStatus::CLOSEDLIST)
	{
		return;
	}
	if (a_Cell->m_Status == eCellStatus::NOLIST)  // Case 2: The cell is not in any list.
	{
		// Cell is walkable, add it to the open list.
		// Note that non-walkable cells are filtered out in Step_internal();
		// Special case: Start cell goes here, gDelta is 0, caller is NULL.
		a_Cell->m_Parent = a_Caller;
		if (a_Caller != nullptr)
		{
			a_Cell->m_G = a_Caller->m_G + a_GDelta;
		}
		else
		{
			a_Cell->m_G = 0;
		}

		// Calculate H. This is A*'s Heuristics value.
		#if DISTANCE_MANHATTAN == 1
			// Manhattan distance. DeltaX + DeltaY + DeltaZ.
			a_Cell->m_H = 10 * (abs(a_Cell->m_Location.x-m_Destination.x) + abs(a_Cell->m_Location.y-m_Destination.y) + abs(a_Cell->m_Location.z-m_Destination.z));
		#else
			// Euclidian distance. sqrt(DeltaX^2 + DeltaY^2 + DeltaZ^2), more precise.
			a_Cell->m_H = static_cast<decltype(a_Cell->m_H)>((a_Cell->m_Location - m_Destination).Length() * 10);
		#endif

		#if HEURISTICS_ONLY == 1
			a_Cell->m_F = a_Cell->m_H;  // Greedy search. https://en.wikipedia.org/wiki/Greedy_search
		#else
			a_Cell->m_F = a_Cell->m_H + a_Cell->m_G;  // Regular A*.
		#endif

		OpenListAdd(a_Cell);
		return;
	}

	// Case 3: Cell is in the open list, check if G and H need an update.
	int NewG = a_Caller->m_G + a_GDelta;
	if (NewG < a_Cell->m_G)
	{
		a_Cell->m_G = NewG;
		a_Cell->m_H = a_Cell->m_F + a_Cell->m_G;
		a_Cell->m_Parent = a_Caller;
	}

}





cPathCell * cPath::GetCell(const Vector3i & a_Location)
{
	// Create the cell in the hash table if it's not already there.
	cPathCell * Cell;
	if (m_Map.count(a_Location) == 0)  // Case 1: Cell is not on any list. We've never checked this cell before.
	{
		Cell = new cPathCell();
		Cell->m_Location = a_Location;
		m_Map[a_Location] = UniquePtr<cPathCell>(Cell);
		Cell->m_IsSolid = IsSolid(a_Location);
		Cell->m_Status = eCellStatus::NOLIST;
		#ifdef COMPILING_PATHFIND_DEBUGGER
			#ifdef COMPILING_PATHFIND_DEBUGGER_MARK_UNCHECKED
				si::setBlock(a_Location.x, a_Location.y, a_Location.z, debug_unchecked, Cell->m_IsSolid ? NORMAL : MINI);
			#endif
		#endif
		return Cell;
	}
	else
	{
		return m_Map[a_Location].get();
	}
}