summaryrefslogtreecommitdiffstats
path: root/src/Noise/Noise.h
blob: 03f61643ded4a0d5a97de4c6aacea82c2091020e (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326

// Noise.h

// Declares the cNoise, cCubicNoise and cPerlinNoise classes for generating noise

#pragma once

#include <cmath>

/** The datatype used by all the noise generators. */
typedef float NOISE_DATATYPE;

#include "OctavedNoise.h"
#include "RidgedNoise.h"





class cNoise
{
public:
	cNoise(int a_Seed);
	cNoise(const cNoise & a_Noise);

	// The following functions, if not marked INLINE, are about 20 % slower
	inline NOISE_DATATYPE IntNoise1D(int a_X) const;
	inline NOISE_DATATYPE IntNoise2D(int a_X, int a_Y) const;
	inline NOISE_DATATYPE IntNoise3D(int a_X, int a_Y, int a_Z) const;

	// Return a float number in the specified range:
	inline NOISE_DATATYPE IntNoise2DInRange(int a_X, int a_Y, float a_Min, float a_Max) const
	{
		return a_Min + std::abs(IntNoise2D(a_X, a_Y)) * (a_Max - a_Min);
	}

	// Note: These functions have a mod8-irregular chance - each of the mod8 remainders has different chance of occurrence. Divide by 8 to rectify.
	inline int IntNoise1DInt(int a_X) const;
	inline int IntNoise2DInt(int a_X, int a_Y) const;
	inline int IntNoise3DInt(int a_X, int a_Y, int a_Z) const;

	NOISE_DATATYPE LinearNoise1D(NOISE_DATATYPE a_X) const;
	NOISE_DATATYPE CosineNoise1D(NOISE_DATATYPE a_X) const;
	NOISE_DATATYPE CubicNoise1D (NOISE_DATATYPE a_X) const;
	NOISE_DATATYPE SmoothNoise1D(int a_X) const;

	NOISE_DATATYPE CubicNoise2D (NOISE_DATATYPE a_X, NOISE_DATATYPE a_Y) const;

	NOISE_DATATYPE CubicNoise3D (NOISE_DATATYPE a_X, NOISE_DATATYPE a_Y, NOISE_DATATYPE a_Z) const;

	void SetSeed(int a_Seed) { m_Seed = a_Seed; }
	int GetSeed(void) const { return m_Seed; }

	inline static NOISE_DATATYPE CubicInterpolate (NOISE_DATATYPE a_A, NOISE_DATATYPE a_B, NOISE_DATATYPE a_C, NOISE_DATATYPE a_D, NOISE_DATATYPE a_Pct);
	inline static NOISE_DATATYPE CosineInterpolate(NOISE_DATATYPE a_A, NOISE_DATATYPE a_B, NOISE_DATATYPE a_Pct);
	inline static NOISE_DATATYPE LinearInterpolate(NOISE_DATATYPE a_A, NOISE_DATATYPE a_B, NOISE_DATATYPE a_Pct);

private:
	int m_Seed;
} ;





class cCubicNoise
{
public:
	/** Maximum size of each dimension of the query arrays. */
	static const int MAX_SIZE = 512;


	/** Creates a new instance with the specified seed. */
	cCubicNoise(int a_Seed);


	/** Fills a 2D array with the values of the noise. */
	void Generate2D(
		NOISE_DATATYPE * a_Array,                        ///< Array to generate into [x + a_SizeX * y]
		int a_SizeX, int a_SizeY,                        ///< Count of the array, in each direction
		NOISE_DATATYPE a_StartX, NOISE_DATATYPE a_EndX,  ///< Noise-space coords of the array in the X direction
		NOISE_DATATYPE a_StartY, NOISE_DATATYPE a_EndY   ///< Noise-space coords of the array in the Y direction
	) const;


	/** Fills a 3D array with the values of the noise. */
	void Generate3D(
		NOISE_DATATYPE * a_Array,                        ///< Array to generate into [x + a_SizeX * y + a_SizeX * a_SizeY * z]
		int a_SizeX, int a_SizeY, int a_SizeZ,           ///< Count of the array, in each direction
		NOISE_DATATYPE a_StartX, NOISE_DATATYPE a_EndX,  ///< Noise-space coords of the array in the X direction
		NOISE_DATATYPE a_StartY, NOISE_DATATYPE a_EndY,  ///< Noise-space coords of the array in the Y direction
		NOISE_DATATYPE a_StartZ, NOISE_DATATYPE a_EndZ   ///< Noise-space coords of the array in the Z direction
	) const;

protected:

	/** Noise used for integral random values. */
	cNoise m_Noise;


	/** Calculates the integral and fractional parts along one axis.
	a_Floor will receive the integral parts (array of a_Size ints).
	a_Frac will receive the fractional parts (array of a_Size floats).
	a_Same will receive the counts of items that have the same integral parts (array of up to a_Size ints).
	a_NumSame will receive the count of a_Same elements (total count of different integral parts). */
	void CalcFloorFrac(
		int a_Size,
		NOISE_DATATYPE a_Start, NOISE_DATATYPE a_End,
		int * a_Floor, NOISE_DATATYPE * a_Frac,
		int * a_Same, int & a_NumSame
	) const;
} ;





/** Improved noise, as described by Ken Perlin: https://mrl.nyu.edu/~perlin/paper445.pdf
Implementation adapted from Perlin's Java implementation: https://mrl.nyu.edu/~perlin/noise/ */
class cImprovedNoise
{
public:
	/** Constructs a new instance of the noise obbject.
	Note that this operation is quite expensive (the permutation array being constructed). */
	cImprovedNoise(int a_Seed);


	/** Fills a 2D array with the values of the noise. */
	void Generate2D(
		NOISE_DATATYPE * a_Array,                        ///< Array to generate into [x + a_SizeX * y]
		int a_SizeX, int a_SizeY,                        ///< Count of the array, in each direction
		NOISE_DATATYPE a_StartX, NOISE_DATATYPE a_EndX,  ///< Noise-space coords of the array in the X direction
		NOISE_DATATYPE a_StartY, NOISE_DATATYPE a_EndY   ///< Noise-space coords of the array in the Y direction
	) const;


	/** Fills a 3D array with the values of the noise. */
	void Generate3D(
		NOISE_DATATYPE * a_Array,                        ///< Array to generate into [x + a_SizeX * y + a_SizeX * a_SizeY * z]
		int a_SizeX, int a_SizeY, int a_SizeZ,           ///< Count of the array, in each direction
		NOISE_DATATYPE a_StartX, NOISE_DATATYPE a_EndX,  ///< Noise-space coords of the array in the X direction
		NOISE_DATATYPE a_StartY, NOISE_DATATYPE a_EndY,  ///< Noise-space coords of the array in the Y direction
		NOISE_DATATYPE a_StartZ, NOISE_DATATYPE a_EndZ   ///< Noise-space coords of the array in the Z direction
	) const;

	/** Returns the value at the specified integral coords. Used for raw speed measurement. */
	NOISE_DATATYPE GetValueAt(int a_X, int a_Y, int a_Z);

protected:

	/** The permutation table used by the noise function. Initialized using seed. */
	int m_Perm[512];


	/** Calculates the fade curve, 6 * t^5 - 15 * t^4 + 10 * t^3. */
	inline static NOISE_DATATYPE Fade(NOISE_DATATYPE a_T)
	{
		return a_T * a_T * a_T * (a_T * (a_T * 6 - 15) + 10);
	}

	/** Returns the gradient value based on the hash. */
	inline static NOISE_DATATYPE Grad(int a_Hash, NOISE_DATATYPE a_X, NOISE_DATATYPE a_Y, NOISE_DATATYPE a_Z)
	{
		int hash = a_Hash % 16;
		NOISE_DATATYPE u = (hash < 8) ? a_X : a_Y;
		NOISE_DATATYPE v = (hash < 4) ? a_Y : (((hash == 12) || (hash == 14)) ? a_X : a_Z);
		return (((hash & 1) == 0) ? u : -u) + (((hash & 2) == 0) ? v : -v);
	}
};





typedef cOctavedNoise<cCubicNoise> cPerlinNoise;
typedef cOctavedNoise<cRidgedNoise<cCubicNoise>> cRidgedMultiNoise;





////////////////////////////////////////////////////////////////////////////////
// Inline function definitions:
// These need to be in the header, otherwise linker error occur in MSVC

NOISE_DATATYPE cNoise::IntNoise1D(int a_X) const
{
	int x = ((a_X * m_Seed) << 13) ^ a_X;
	return (1 - static_cast<NOISE_DATATYPE>((x * (x * x * 15731 + 789221) + 1376312589) & 0x7fffffff) / 1073741824);
	// returns a float number in the range of [-1, 1]
}





NOISE_DATATYPE cNoise::IntNoise2D(int a_X, int a_Y) const
{
	int n = a_X + a_Y * 57 + m_Seed * 57 * 57;
	n = (n << 13) ^ n;
	return (1 - static_cast<NOISE_DATATYPE>((n * (n * n * 15731 + 789221) + 1376312589) & 0x7fffffff) / 1073741824);
	// returns a float number in the range of [-1, 1]
}





NOISE_DATATYPE cNoise::IntNoise3D(int a_X, int a_Y, int a_Z) const
{
	int n = a_X + a_Y * 57 + a_Z * 57 * 57 + m_Seed * 57 * 57 * 57;
	n = (n << 13) ^ n;
	return (static_cast<NOISE_DATATYPE>(1) -
		static_cast<NOISE_DATATYPE>((n * (n * n * 15731 + 789221) + 1376312589) & 0x7fffffff) / 1073741824.0f
	);
	// returns a float number in the range of [-1, 1]
}





int cNoise::IntNoise1DInt(int a_X) const
{
	int x = ((a_X * m_Seed) << 13) ^ a_X;
	return ((x * (x * x * 15731 + 789221) + 1376312589) & 0x7fffffff);
}





int cNoise::IntNoise2DInt(int a_X, int a_Y) const
{
	int n = a_X + a_Y * 57 + m_Seed * 57 * 57;
	n = (n << 13) ^ n;
	return ((n * (n * n * 15731 + 789221) + 1376312589) & 0x7fffffff);
}





int cNoise::IntNoise3DInt(int a_X, int a_Y, int a_Z) const
{
	int n = a_X + a_Y * 57 + a_Z * 57 * 57 + m_Seed * 57 * 57 * 57;
	n = (n << 13) ^ n;
	return ((n * (n * n * 15731 + 789221) + 1376312589) & 0x7fffffff);
}





NOISE_DATATYPE cNoise::CubicInterpolate(NOISE_DATATYPE a_A, NOISE_DATATYPE a_B, NOISE_DATATYPE a_C, NOISE_DATATYPE a_D, NOISE_DATATYPE a_Pct)
{
	NOISE_DATATYPE P = (a_D - a_C) - (a_A - a_B);
	NOISE_DATATYPE Q = (a_A - a_B) - P;
	NOISE_DATATYPE R = a_C - a_A;
	NOISE_DATATYPE S = a_B;

	return ((P * a_Pct + Q) * a_Pct + R) * a_Pct + S;
}





NOISE_DATATYPE cNoise::CosineInterpolate(NOISE_DATATYPE a_A, NOISE_DATATYPE a_B, NOISE_DATATYPE a_Pct)
{
	const NOISE_DATATYPE ft = a_Pct * static_cast<NOISE_DATATYPE>(3.1415927);
	const NOISE_DATATYPE f = static_cast<NOISE_DATATYPE>(static_cast<NOISE_DATATYPE>(1 - cos(ft)) * static_cast<NOISE_DATATYPE>(0.5));
	return  a_A * (1 - f) + a_B * f;
}





NOISE_DATATYPE cNoise::LinearInterpolate(NOISE_DATATYPE a_A, NOISE_DATATYPE a_B, NOISE_DATATYPE a_Pct)
{
	return  a_A * (1 - a_Pct) + a_B * a_Pct;
}





////////////////////////////////////////////////////////////////////////////////
// Global functions:

/** Exports the noise array into a file.
a_Coeff specifies the value that each array value is multiplied by before being converted into a byte. */
extern void Debug2DNoise(const NOISE_DATATYPE * a_Array, size_t a_SizeX, size_t a_SizeY, const AString & a_FileNameBase, NOISE_DATATYPE a_Coeff = 32);

/** Exports the noise array into a set of files, ordered by XY and XZ.
a_Coeff specifies the value that each array value is multiplied by before being converted into a byte. */
extern void Debug3DNoise(const NOISE_DATATYPE * a_Array, size_t a_SizeX, size_t a_SizeY, size_t a_SizeZ, const AString & a_FileNameBase, NOISE_DATATYPE a_Coeff = 32);




/** Linearly interpolates between two values.
Assumes that a_Ratio is in range [0, 1]. */
inline NOISE_DATATYPE Lerp(NOISE_DATATYPE a_Val1, NOISE_DATATYPE a_Val2, NOISE_DATATYPE a_Ratio)
{
	return a_Val1 + (a_Val2 - a_Val1) * a_Ratio;
}





/** Linearly interpolates between two values, clamping the ratio to [0, 1] first. */
inline NOISE_DATATYPE ClampedLerp(NOISE_DATATYPE a_Val1, NOISE_DATATYPE a_Val2, NOISE_DATATYPE a_Ratio)
{
	if (a_Ratio < 0)
	{
		return a_Val1;
	}
	if (a_Ratio > 1)
	{
		return a_Val2;
	}
	return Lerp(a_Val1, a_Val2, a_Ratio);
}