summaryrefslogtreecommitdiffstats
path: root/src/OSSupport/UDPEndpointImpl.cpp
blob: ece521ab8aef25a058a8cc38abf6d2fcd7c97e5c (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608

// UDPEndpointImpl.cpp

// Implements the cUDPEndpointImpl class representing an implementation of an endpoint in UDP communication

#include "Globals.h"
#include "UDPEndpointImpl.h"
#include "NetworkSingleton.h"





////////////////////////////////////////////////////////////////////////////////
// Globals:

static bool IsValidSocket(evutil_socket_t a_Socket)
{
	#ifdef _WIN32
		return (a_Socket != INVALID_SOCKET);
	#else  // _WIN32
		return (a_Socket >= 0);
	#endif  // else _WIN32
}





/** Converts a_SrcAddr in IPv4 format to a_DstAddr in IPv6 format (using IPv4-mapped IPv6). */
static void ConvertIPv4ToMappedIPv6(sockaddr_in & a_SrcAddr, sockaddr_in6 & a_DstAddr)
{
	memset(&a_DstAddr, 0, sizeof(a_DstAddr));
	a_DstAddr.sin6_family = AF_INET6;
	a_DstAddr.sin6_addr.s6_addr[10] = 0xff;
	a_DstAddr.sin6_addr.s6_addr[11] = 0xff;
	a_DstAddr.sin6_addr.s6_addr[12] = static_cast<Byte>((a_SrcAddr.sin_addr.s_addr >>  0) & 0xff);
	a_DstAddr.sin6_addr.s6_addr[13] = static_cast<Byte>((a_SrcAddr.sin_addr.s_addr >>  8) & 0xff);
	a_DstAddr.sin6_addr.s6_addr[14] = static_cast<Byte>((a_SrcAddr.sin_addr.s_addr >> 16) & 0xff);
	a_DstAddr.sin6_addr.s6_addr[15] = static_cast<Byte>((a_SrcAddr.sin_addr.s_addr >> 24) & 0xff);
	a_DstAddr.sin6_port = a_SrcAddr.sin_port;
}





////////////////////////////////////////////////////////////////////////////////
// cUDPSendAfterLookup:

/** A hostname-to-IP resolver callback that sends the data stored within to the resolved IP address.
This is used for sending UDP datagrams to hostnames, so that the cUDPEndpoint::Send() doesn't block.
Instead an instance of this callback is queued for resolving and the data is sent once the IP is resolved. */
class cUDPSendAfterLookup:
	public cNetwork::cResolveNameCallbacks
{
public:
	cUDPSendAfterLookup(const AString & a_Data, UInt16 a_Port, evutil_socket_t a_MainSock, evutil_socket_t a_SecondSock, bool a_IsMainSockIPv6):
		m_Data(a_Data),
		m_Port(a_Port),
		m_MainSock(a_MainSock),
		m_SecondSock(a_SecondSock),
		m_IsMainSockIPv6(a_IsMainSockIPv6),
		m_HasIPv4(false),
		m_HasIPv6(false)
	{
	}

protected:
	/** The data to send after the hostname is resolved. */
	AString m_Data;

	/** The port to which to send the data. */
	UInt16 m_Port;

	/** The primary socket to use for sending. */
	evutil_socket_t m_MainSock;

	/** The secondary socket to use for sending, if needed by the OS. */
	evutil_socket_t m_SecondSock;

	/** True if m_MainSock is an IPv6 socket. */
	bool m_IsMainSockIPv6;

	/** The IPv4 address resolved, if any. */
	sockaddr_in m_AddrIPv4;

	/** Set to true if the name resolved to an IPv4 address. */
	bool m_HasIPv4;

	/** The IPv6 address resolved, if any. */
	sockaddr_in6 m_AddrIPv6;

	/** Set to true if the name resolved to an IPv6 address. */
	bool m_HasIPv6;


	// cNetwork::cResolveNameCallbacks overrides:
	virtual void OnNameResolved(const AString & a_Name, const AString & a_PI) override
	{
		// Not needed
	}

	virtual bool OnNameResolvedV4(const AString & a_Name, const sockaddr_in * a_IP) override
	{
		if (!m_HasIPv4)
		{
			m_AddrIPv4 = *a_IP;
			m_AddrIPv4.sin_port = htons(m_Port);
			m_HasIPv4 = true;
		}

		// Don't want OnNameResolved() callback
		return false;
	}

	virtual bool OnNameResolvedV6(const AString & a_Name, const sockaddr_in6 * a_IP) override
	{
		if (!m_HasIPv6)
		{
			m_AddrIPv6 = *a_IP;
			m_AddrIPv6.sin6_port = htons(m_Port);
			m_HasIPv6 = true;
		}

		// Don't want OnNameResolved() callback
		return false;
	}

	virtual void OnFinished(void) override
	{
		// Send the actual data, through the correct socket and using the correct resolved address:
		if (m_IsMainSockIPv6)
		{
			if (m_HasIPv6)
			{
				sendto(m_MainSock, m_Data.data(), static_cast<socklen_t>(m_Data.size()), 0, reinterpret_cast<const sockaddr *>(&m_AddrIPv6), static_cast<socklen_t>(sizeof(m_AddrIPv6)));
			}
			else if (m_HasIPv4)
			{
				// If the secondary socket is valid, it is an IPv4 socket, so use that:
				if (m_SecondSock != -1)
				{
					sendto(m_SecondSock, m_Data.data(), static_cast<socklen_t>(m_Data.size()), 0, reinterpret_cast<const sockaddr *>(&m_AddrIPv4), static_cast<socklen_t>(sizeof(m_AddrIPv4)));
				}
				else
				{
					// Need an address conversion from IPv4 to IPv6-mapped-IPv4:
					ConvertIPv4ToMappedIPv6(m_AddrIPv4, m_AddrIPv6);
					sendto(m_MainSock, m_Data.data(), static_cast<socklen_t>(m_Data.size()), 0, reinterpret_cast<const sockaddr *>(&m_AddrIPv6), static_cast<socklen_t>(sizeof(m_AddrIPv6)));
				}
			}
			else
			{
				LOGD("UDP endpoint queued sendto: Name not resolved");
				return;
			}
		}
		else  // m_IsMainSockIPv6
		{
			// Main socket is IPv4 only, only allow IPv4 dst address:
			if (!m_HasIPv4)
			{
				LOGD("UDP endpoint queued sendto: Name not resolved to IPv4 for an IPv4-only socket");
				return;
			}
			sendto(m_MainSock, m_Data.data(), static_cast<socklen_t>(m_Data.size()), 0, reinterpret_cast<const sockaddr *>(&m_AddrIPv4), static_cast<socklen_t>(sizeof(m_AddrIPv4)));
		}
	}

	virtual void OnError(int a_ErrorCode, const AString & a_ErrorMsg) override
	{
		// Nothing needed
	}
};





////////////////////////////////////////////////////////////////////////////////
// cUDPEndpointImpl:

cUDPEndpointImpl::cUDPEndpointImpl(UInt16 a_Port, cUDPEndpoint::cCallbacks & a_Callbacks):
	super(a_Callbacks),
	m_Port(0),
	m_MainSock(-1),
	m_IsMainSockIPv6(true),
	m_SecondarySock(-1),
	m_MainEvent(nullptr),
	m_SecondaryEvent(nullptr)
{
	Open(a_Port);
}





void cUDPEndpointImpl::Close(void)
{
	if (m_Port == 0)
	{
		// Already closed
		return;
	}

	// Close the LibEvent handles:
	if (m_MainEvent != nullptr)
	{
		event_free(m_MainEvent);
		m_MainEvent = nullptr;
	}
	if (m_SecondaryEvent != nullptr)
	{
		event_free(m_SecondaryEvent);
		m_SecondaryEvent = nullptr;
	}

	// Close the OS sockets:
	evutil_closesocket(m_MainSock);
	m_MainSock = -1;
	evutil_closesocket(m_SecondarySock);
	m_SecondarySock = -1;

	// Mark as closed:
	m_Port = 0;
}





bool cUDPEndpointImpl::IsOpen(void) const
{
	return (m_Port != 0);
}





UInt16 cUDPEndpointImpl::GetPort(void) const
{
	return m_Port;
}





bool cUDPEndpointImpl::Send(const AString & a_Payload, const AString & a_Host, UInt16 a_Port)
{
	// If a_Host is an IP address, send the data directly:
	sockaddr_storage sa;
	int salen = static_cast<int>(sizeof(sa));
	memset(&sa, 0, sizeof(sa));
	if (evutil_parse_sockaddr_port(a_Host.c_str(), reinterpret_cast<sockaddr *>(&sa), &salen) != 0)
	{
		// a_Host is a hostname, we need to do a lookup first:
		auto queue = std::make_shared<cUDPSendAfterLookup>(a_Payload, a_Port, m_MainSock, m_SecondarySock, m_IsMainSockIPv6);
		return cNetwork::HostnameToIP(a_Host, queue);
	}

	// a_Host is an IP address and has been parsed into "sa"
	// Insert the correct port and send data:
	int NumSent;
	switch (sa.ss_family)
	{
		case AF_INET:
		{
			reinterpret_cast<sockaddr_in *>(&sa)->sin_port = htons(a_Port);
			if (m_IsMainSockIPv6)
			{
				if (IsValidSocket(m_SecondarySock))
				{
					// The secondary socket, which is always IPv4, is present:
					NumSent = static_cast<int>(sendto(m_SecondarySock, a_Payload.data(), static_cast<socklen_t>(a_Payload.size()), 0, reinterpret_cast<const sockaddr *>(&sa), static_cast<socklen_t>(salen)));
				}
				else
				{
					// Need to convert IPv4 to IPv6 address before sending:
					sockaddr_in6 IPv6;
					ConvertIPv4ToMappedIPv6(*reinterpret_cast<sockaddr_in *>(&sa), IPv6);
					NumSent = static_cast<int>(sendto(m_MainSock, a_Payload.data(), static_cast<socklen_t>(a_Payload.size()), 0, reinterpret_cast<const sockaddr *>(&IPv6), static_cast<socklen_t>(sizeof(IPv6))));
				}
			}
			else
			{
				NumSent = static_cast<int>(sendto(m_MainSock, a_Payload.data(), static_cast<socklen_t>(a_Payload.size()), 0, reinterpret_cast<const sockaddr *>(&sa), static_cast<socklen_t>(salen)));
			}
			break;
		}

		case AF_INET6:
		{
			reinterpret_cast<sockaddr_in6 *>(&sa)->sin6_port = htons(a_Port);
			NumSent = static_cast<int>(sendto(m_MainSock, a_Payload.data(), static_cast<socklen_t>(a_Payload.size()), 0, reinterpret_cast<const sockaddr *>(&sa), static_cast<socklen_t>(salen)));
			break;
		}
		default:
		{
			LOGD("UDP sendto: Invalid address family for address \"%s\".", a_Host.c_str());
			return false;
		}
	}
	return (NumSent > 0);
}





void cUDPEndpointImpl::EnableBroadcasts(void)
{
	ASSERT(IsOpen());

	// Enable broadcasts on the main socket:
	// Some OSes use ints, others use chars, so we try both
	int broadcastInt = 1;
	char broadcastChar = 1;
	// (Note that Windows uses const char * for option values, while Linux uses const void *)
	if (setsockopt(m_MainSock, SOL_SOCKET, SO_BROADCAST, reinterpret_cast<const char *>(&broadcastInt), sizeof(broadcastInt)) == -1)
	{
		if (setsockopt(m_MainSock, SOL_SOCKET, SO_BROADCAST, &broadcastChar, sizeof(broadcastChar)) == -1)
		{
			int err = EVUTIL_SOCKET_ERROR();
			LOGWARNING("Cannot enable broadcasts on port %d: %d (%s)", m_Port, err, evutil_socket_error_to_string(err));
			return;
		}

		// Enable broadcasts on the secondary socket, if opened (use char, it worked for primary):
		if (IsValidSocket(m_SecondarySock))
		{
			if (setsockopt(m_SecondarySock, SOL_SOCKET, SO_BROADCAST, &broadcastChar, sizeof(broadcastChar)) == -1)
			{
				int err = EVUTIL_SOCKET_ERROR();
				LOGWARNING("Cannot enable broadcasts on port %d (secondary): %d (%s)", m_Port, err, evutil_socket_error_to_string(err));
			}
		}
		return;
	}

	// Enable broadcasts on the secondary socket, if opened (use int, it worked for primary):
	if (IsValidSocket(m_SecondarySock))
	{
		if (setsockopt(m_SecondarySock, SOL_SOCKET, SO_BROADCAST, reinterpret_cast<const char *>(&broadcastInt), sizeof(broadcastInt)) == -1)
		{
			int err = EVUTIL_SOCKET_ERROR();
			LOGWARNING("Cannot enable broadcasts on port %d (secondary): %d (%s)", m_Port, err, evutil_socket_error_to_string(err));
		}
	}
}





void cUDPEndpointImpl::Open(UInt16 a_Port)
{
	ASSERT(m_Port == 0);  // Must not be already open

	// Make sure the cNetwork internals are innitialized:
	cNetworkSingleton::Get();

	// Set up the main socket:
	// It should listen on IPv6 with IPv4 fallback, when available; IPv4 when IPv6 is not available.
	bool NeedsTwoSockets = false;
	m_IsMainSockIPv6 = true;
	m_MainSock = socket(AF_INET6, SOCK_DGRAM, IPPROTO_UDP);

	int err;
	if (!IsValidSocket(m_MainSock))
	{
		// Failed to create IPv6 socket, create an IPv4 one instead:
		m_IsMainSockIPv6 = false;
		err = EVUTIL_SOCKET_ERROR();
		LOGD("Failed to create IPv6 MainSock: %d (%s)", err, evutil_socket_error_to_string(err));
		m_MainSock = socket(AF_INET, SOCK_DGRAM, IPPROTO_UDP);
		if (!IsValidSocket(m_MainSock))
		{
			err = EVUTIL_SOCKET_ERROR();
			m_Callbacks.OnError(err, Printf("Cannot create UDP socket for port %d: %s", a_Port, evutil_socket_error_to_string(err)));
			return;
		}

		// Allow the port to be reused right after the socket closes:
		if (evutil_make_listen_socket_reuseable(m_MainSock) != 0)
		{
			err = EVUTIL_SOCKET_ERROR();
			LOG("UDP Port %d cannot be made reusable: %d (%s). Restarting the server might not work.",
				a_Port, err, evutil_socket_error_to_string(err)
			);
		}

		// Bind to all interfaces:
		sockaddr_in name;
		memset(&name, 0, sizeof(name));
		name.sin_family = AF_INET;
		name.sin_port = ntohs(a_Port);
		if (bind(m_MainSock, reinterpret_cast<const sockaddr *>(&name), sizeof(name)) != 0)
		{
			err = EVUTIL_SOCKET_ERROR();
			m_Callbacks.OnError(err, Printf("Cannot bind UDP port %d: %s", a_Port, evutil_socket_error_to_string(err)));
			evutil_closesocket(m_MainSock);
			return;
		}
	}
	else
	{
		// IPv6 socket created, switch it into "dualstack" mode:
		UInt32 Zero = 0;
		#ifdef _WIN32
			// WinXP doesn't support this feature, so if the setting fails, create another socket later on:
			int res = setsockopt(m_MainSock, IPPROTO_IPV6, IPV6_V6ONLY, reinterpret_cast<const char *>(&Zero), sizeof(Zero));
			err = EVUTIL_SOCKET_ERROR();
			NeedsTwoSockets = ((res == SOCKET_ERROR) && (err == WSAENOPROTOOPT));
		#else
			setsockopt(m_MainSock, IPPROTO_IPV6, IPV6_V6ONLY, reinterpret_cast<const char *>(&Zero), sizeof(Zero));
		#endif

		// Allow the port to be reused right after the socket closes:
		if (evutil_make_listen_socket_reuseable(m_MainSock) != 0)
		{
			err  = EVUTIL_SOCKET_ERROR();
			LOG("UDP Port %d cannot be made reusable: %d (%s). Restarting the server might not work.",
				a_Port, err, evutil_socket_error_to_string(err)
			);
		}

		// Bind to all interfaces:
		sockaddr_in6 name;
		memset(&name, 0, sizeof(name));
		name.sin6_family = AF_INET6;
		name.sin6_port = ntohs(a_Port);
		if (bind(m_MainSock, reinterpret_cast<const sockaddr *>(&name), sizeof(name)) != 0)
		{
			err = EVUTIL_SOCKET_ERROR();
			m_Callbacks.OnError(err, Printf("Cannot bind to UDP port %d: %s", a_Port, evutil_socket_error_to_string(err)));
			evutil_closesocket(m_MainSock);
			return;
		}
	}
	if (evutil_make_socket_nonblocking(m_MainSock) != 0)
	{
		err = EVUTIL_SOCKET_ERROR();
		m_Callbacks.OnError(err, Printf("Cannot make socket on UDP port %d nonblocking: %s", a_Port, evutil_socket_error_to_string(err)));
		evutil_closesocket(m_MainSock);
		return;
	}
	m_MainEvent = event_new(cNetworkSingleton::Get().GetEventBase(), m_MainSock, EV_READ | EV_PERSIST, RawCallback, this);
	event_add(m_MainEvent, nullptr);

	// Read the actual port number on which the socket is listening:
	{
		sockaddr_storage name;
		socklen_t namelen = static_cast<socklen_t>(sizeof(name));
		getsockname(m_MainSock, reinterpret_cast<sockaddr *>(&name), &namelen);
		switch (name.ss_family)
		{
			case AF_INET:
			{
				sockaddr_in * sin = reinterpret_cast<sockaddr_in *>(&name);
				m_Port = ntohs(sin->sin_port);
				break;
			}
			case AF_INET6:
			{
				sockaddr_in6 * sin6 = reinterpret_cast<sockaddr_in6 *>(&name);
				m_Port = ntohs(sin6->sin6_port);
				break;
			}
		}
	}

	// If we don't need to create another socket, bail out now:
	if (!NeedsTwoSockets)
	{
		return;
	}

	// If a secondary socket is required (WinXP dual-stack), create it here:
	LOGD("Creating a second UDP socket for IPv4");
	m_SecondarySock = socket(AF_INET, SOCK_DGRAM, IPPROTO_UDP);

	if (!IsValidSocket(m_SecondarySock))
	{
		// Don't report as an error, the primary socket is working
		err = EVUTIL_SOCKET_ERROR();
		LOGD("Socket creation failed for secondary UDP socket for port %d: %d, %s", m_Port, err, evutil_socket_error_to_string(err));
		return;
	}

	// Allow the port to be reused right after the socket closes:
	if (evutil_make_listen_socket_reuseable(m_SecondarySock) != 0)
	{
		// Don't report as an error, the primary socket is working
		err = EVUTIL_SOCKET_ERROR();
		LOGD("UDP Port %d cannot be made reusable (second socket): %d (%s). Restarting the server might not work.",
			a_Port, err, evutil_socket_error_to_string(err)
		);
		evutil_closesocket(m_SecondarySock);
		m_SecondarySock = -1;
		return;
	}

	// Make the secondary socket nonblocking:
	if (evutil_make_socket_nonblocking(m_SecondarySock) != 0)
	{
		// Don't report as an error, the primary socket is working
		err = EVUTIL_SOCKET_ERROR();
		LOGD("evutil_make_socket_nonblocking() failed for secondary UDP socket: %d, %s", err, evutil_socket_error_to_string(err));
		evutil_closesocket(m_SecondarySock);
		m_SecondarySock = -1;
		return;
	}

	// Bind to all IPv4 interfaces:
	sockaddr_in name;
	memset(&name, 0, sizeof(name));
	name.sin_family = AF_INET;
	name.sin_port = ntohs(m_Port);
	if (bind(m_SecondarySock, reinterpret_cast<const sockaddr *>(&name), sizeof(name)) != 0)
	{
		// Don't report as an error, the primary socket is working
		err = EVUTIL_SOCKET_ERROR();
		LOGD("Cannot bind secondary socket to UDP port %d: %d (%s)", m_Port, err, evutil_socket_error_to_string(err));
		evutil_closesocket(m_SecondarySock);
		m_SecondarySock = -1;
		return;
	}

	m_SecondaryEvent = event_new(cNetworkSingleton::Get().GetEventBase(), m_SecondarySock, EV_READ | EV_PERSIST, RawCallback, this);
	event_add(m_SecondaryEvent, nullptr);
}





void cUDPEndpointImpl::RawCallback(evutil_socket_t a_Socket, short a_What, void * a_Self)
{
	cUDPEndpointImpl * Self = reinterpret_cast<cUDPEndpointImpl *>(a_Self);
	Self->Callback(a_Socket, a_What);
}





void cUDPEndpointImpl::Callback(evutil_socket_t a_Socket, short a_What)
{
	if ((a_What & EV_READ) != 0)
	{
		// Receive datagram from the socket:
		char buf[64 KiB];
		socklen_t buflen = static_cast<socklen_t>(sizeof(buf));
		sockaddr_storage sa;
		socklen_t salen = static_cast<socklen_t>(sizeof(sa));
		auto len = recvfrom(a_Socket, buf, buflen, 0, reinterpret_cast<sockaddr *>(&sa), &salen);
		if (len >= 0)
		{
			// Convert the remote IP address to a string:
			char RemoteHost[128];
			UInt16 RemotePort;
			switch (sa.ss_family)
			{
				case AF_INET:
				{
					auto sin = reinterpret_cast<sockaddr_in *>(&sa);
					evutil_inet_ntop(sa.ss_family, &sin->sin_addr, RemoteHost, sizeof(RemoteHost));
					RemotePort = ntohs(sin->sin_port);
					break;
				}
				case AF_INET6:
				{
					auto sin = reinterpret_cast<sockaddr_in6 *>(&sa);
					evutil_inet_ntop(sa.ss_family, &sin->sin6_addr, RemoteHost, sizeof(RemoteHost));
					RemotePort = ntohs(sin->sin6_port);
					break;
				}
				default:
				{
					return;
				}
			}

			// Call the callback:
			m_Callbacks.OnReceivedData(buf, static_cast<size_t>(len), RemoteHost, RemotePort);
		}
	}
}





////////////////////////////////////////////////////////////////////////////////
// cNetwork API:

cUDPEndpointPtr cNetwork::CreateUDPEndpoint(UInt16 a_Port, cUDPEndpoint::cCallbacks & a_Callbacks)
{
	return std::make_shared<cUDPEndpointImpl>(a_Port, a_Callbacks);
}