summaryrefslogtreecommitdiffstats
path: root/src/Protocol/ChunkDataSerializer.cpp
blob: e850ceaeca707beb24463e4b963a768ebf9b776f (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251

// ChunkDataSerializer.cpp

// Implements the cChunkDataSerializer class representing the object that can:
//  - serialize chunk data to different protocol versions
//  - cache such serialized data for multiple clients

#include "Globals.h"
#include "ChunkDataSerializer.h"
#include "zlib/zlib.h"
#include "ByteBuffer.h"
#include "Protocol18x.h"




cChunkDataSerializer::cChunkDataSerializer(
	const cChunkDef::BlockTypes   & a_BlockTypes,
	const cChunkDef::BlockNibbles & a_BlockMetas,
	const cChunkDef::BlockNibbles & a_BlockLight,
	const cChunkDef::BlockNibbles & a_BlockSkyLight,
	const unsigned char *           a_BiomeData
) :
	m_BlockTypes(a_BlockTypes),
	m_BlockMetas(a_BlockMetas),
	m_BlockLight(a_BlockLight),
	m_BlockSkyLight(a_BlockSkyLight),
	m_BiomeData(a_BiomeData)
{
}




const AString & cChunkDataSerializer::Serialize(int a_Version, int a_ChunkX, int a_ChunkZ)
{
	Serializations::const_iterator itr = m_Serializations.find(a_Version);
	if (itr != m_Serializations.end())
	{
		return itr->second;
	}
	
	AString data;
	switch (a_Version)
	{
		case RELEASE_1_2_5: Serialize29(data); break;
		case RELEASE_1_3_2: Serialize39(data); break;
		case RELEASE_1_8_0: Serialize47(data, a_ChunkX, a_ChunkZ); break;
		// TODO: Other protocol versions may serialize the data differently; implement here
		
		default:
		{
			LOGERROR("cChunkDataSerializer::Serialize(): Unknown version: %d", a_Version);
			ASSERT(!"Unknown chunk data serialization version");
			break;
		}
	}
	if (!data.empty())
	{
		m_Serializations[a_Version] = data;
	}
	return m_Serializations[a_Version];
}





void cChunkDataSerializer::Serialize29(AString & a_Data)
{
	// TODO: Do not copy data and then compress it; rather, compress partial blocks of data (zlib *can* stream)

	const int BiomeDataSize    = cChunkDef::Width * cChunkDef::Width;
	const int MetadataOffset   = sizeof(m_BlockTypes);
	const int BlockLightOffset = MetadataOffset   + sizeof(m_BlockMetas);
	const int SkyLightOffset   = BlockLightOffset + sizeof(m_BlockLight);
	const int BiomeOffset      = SkyLightOffset   + sizeof(m_BlockSkyLight);
	const int DataSize         = BiomeOffset      + BiomeDataSize;
	
	// Temporary buffer for the composed data:
	char AllData [DataSize];

	memcpy(AllData, m_BlockTypes, sizeof(m_BlockTypes));
	memcpy(AllData + MetadataOffset,   m_BlockMetas,    sizeof(m_BlockMetas));
	memcpy(AllData + BlockLightOffset, m_BlockLight,    sizeof(m_BlockLight));
	memcpy(AllData + SkyLightOffset,   m_BlockSkyLight, sizeof(m_BlockSkyLight));
	memcpy(AllData + BiomeOffset,      m_BiomeData,     BiomeDataSize);

	// Compress the data:
	// In order not to use allocation, use a fixed-size buffer, with the size
	// that uses the same calculation as compressBound():
	const uLongf CompressedMaxSize = DataSize + (DataSize >> 12) + (DataSize >> 14) + (DataSize >> 25) + 16;
	char CompressedBlockData[CompressedMaxSize];

	uLongf CompressedSize = compressBound(DataSize);
	
	// Run-time check that our compile-time guess about CompressedMaxSize was enough:
	ASSERT(CompressedSize <= CompressedMaxSize);
	
	compress2((Bytef*)CompressedBlockData, &CompressedSize, (const Bytef*)AllData, sizeof(AllData), Z_DEFAULT_COMPRESSION);

	// Now put all those data into a_Data:
	
	// "Ground-up continuous", or rather, "biome data present" flag:
	a_Data.push_back('\x01');
	
	// Two bitmaps; we're aways sending the full chunk with no additional data, so the bitmaps are 0xffff and 0, respectively
	// Also, no endian flipping is needed because of the const values
	unsigned short BitMap1 = 0xffff;
	unsigned short BitMap2 = 0;
	a_Data.append((const char *)&BitMap1, sizeof(short));
	a_Data.append((const char *)&BitMap2, sizeof(short));
	
	UInt32 CompressedSizeBE = htonl((UInt32)CompressedSize);
	a_Data.append((const char *)&CompressedSizeBE, sizeof(CompressedSizeBE));
	
	Int32 UnusedInt32 = 0;
	a_Data.append((const char *)&UnusedInt32,      sizeof(UnusedInt32));
	
	a_Data.append(CompressedBlockData, CompressedSize);
}





void cChunkDataSerializer::Serialize39(AString & a_Data)
{
	// TODO: Do not copy data and then compress it; rather, compress partial blocks of data (zlib *can* stream)

	const int BiomeDataSize    = cChunkDef::Width * cChunkDef::Width;
	const int MetadataOffset   = sizeof(m_BlockTypes);
	const int BlockLightOffset = MetadataOffset   + sizeof(m_BlockMetas);
	const int SkyLightOffset   = BlockLightOffset + sizeof(m_BlockLight);
	const int BiomeOffset      = SkyLightOffset   + sizeof(m_BlockSkyLight);
	const int DataSize         = BiomeOffset      + BiomeDataSize;
	
	// Temporary buffer for the composed data:
	char AllData [DataSize];

	memcpy(AllData, m_BlockTypes, sizeof(m_BlockTypes));
	memcpy(AllData + MetadataOffset,   m_BlockMetas,    sizeof(m_BlockMetas));
	memcpy(AllData + BlockLightOffset, m_BlockLight,    sizeof(m_BlockLight));
	memcpy(AllData + SkyLightOffset,   m_BlockSkyLight, sizeof(m_BlockSkyLight));
	memcpy(AllData + BiomeOffset,      m_BiomeData,     BiomeDataSize);

	// Compress the data:
	// In order not to use allocation, use a fixed-size buffer, with the size
	// that uses the same calculation as compressBound():
	const uLongf CompressedMaxSize = DataSize + (DataSize >> 12) + (DataSize >> 14) + (DataSize >> 25) + 16;
	char CompressedBlockData[CompressedMaxSize];

	uLongf CompressedSize = compressBound(DataSize);
	
	// Run-time check that our compile-time guess about CompressedMaxSize was enough:
	ASSERT(CompressedSize <= CompressedMaxSize);
	
	compress2((Bytef*)CompressedBlockData, &CompressedSize, (const Bytef*)AllData, sizeof(AllData), Z_DEFAULT_COMPRESSION);

	// Now put all those data into a_Data:
	
	// "Ground-up continuous", or rather, "biome data present" flag:
	a_Data.push_back('\x01');
	
	// Two bitmaps; we're aways sending the full chunk with no additional data, so the bitmaps are 0xffff and 0, respectively
	// Also, no endian flipping is needed because of the const values
	unsigned short BitMap1 = 0xffff;
	unsigned short BitMap2 = 0;
	a_Data.append((const char *)&BitMap1, sizeof(short));
	a_Data.append((const char *)&BitMap2, sizeof(short));
	
	UInt32 CompressedSizeBE = htonl((UInt32)CompressedSize);
	a_Data.append((const char *)&CompressedSizeBE, sizeof(CompressedSizeBE));
	
	// Unlike 29, 39 doesn't have the "unused" int
	
	a_Data.append(CompressedBlockData, CompressedSize);
}





void cChunkDataSerializer::Serialize47(AString & a_Data, int a_ChunkX, int a_ChunkZ)
{
	// This function returns the fully compressed packet (including packet size), not the raw packet!

	// Create the packet:
	cByteBuffer Packet(512 KiB);
	Packet.WriteVarInt(0x21);  // Packet id (Chunk Data packet)
	Packet.WriteBEInt32(a_ChunkX);
	Packet.WriteBEInt32(a_ChunkZ);
	Packet.WriteBool(true);        // "Ground-up continuous", or rather, "biome data present" flag
	Packet.WriteBEUInt16(0xffff);  // We're aways sending the full chunk with no additional data, so the bitmap is 0xffff

	// Write the chunk size:
	const int BiomeDataSize = cChunkDef::Width * cChunkDef::Width;
	UInt32 ChunkSize = (
		(cChunkDef::NumBlocks * 2) +  // Block meta + type
		sizeof(m_BlockLight) +        // Block light
		sizeof(m_BlockSkyLight) +     // Block sky light
		BiomeDataSize                 // Biome data
	);
	Packet.WriteVarInt(ChunkSize);

	// Write the block types to the packet:
	for (size_t Index = 0; Index < cChunkDef::NumBlocks; Index++)
	{
		BLOCKTYPE BlockType = m_BlockTypes[Index] & 0xFF;
		NIBBLETYPE BlockMeta = m_BlockMetas[Index / 2] >> ((Index & 1) * 4) & 0x0f;
		Packet.WriteBEUInt8(static_cast<unsigned char>(BlockType << 4) | BlockMeta);
		Packet.WriteBEUInt8(static_cast<unsigned char>(BlockType >> 4));
	}

	// Write the rest:
	Packet.WriteBuf(m_BlockLight,    sizeof(m_BlockLight));
	Packet.WriteBuf(m_BlockSkyLight, sizeof(m_BlockSkyLight));
	Packet.WriteBuf(m_BiomeData,     BiomeDataSize);

	AString PacketData;
	Packet.ReadAll(PacketData);
	Packet.CommitRead();

	cByteBuffer Buffer(20);
	if (PacketData.size() >= 256)
	{
		if (!cProtocol180::CompressPacket(PacketData, a_Data))
		{
			ASSERT(!"Packet compression failed.");
			a_Data.clear();
			return;
		}
	}
	else
	{
		AString PostData;
		Buffer.WriteVarInt((UInt32)Packet.GetUsedSpace() + 1);
		Buffer.WriteVarInt(0);
		Buffer.ReadAll(PostData);
		Buffer.CommitRead();

		a_Data.clear();
		a_Data.reserve(PostData.size() + PacketData.size());
		a_Data.append(PostData.data(), PostData.size());
		a_Data.append(PacketData.data(), PacketData.size());
	}
}