summaryrefslogtreecommitdiffstats
path: root/g4f/Provider/Airforce.py
blob: f5bcfefad2e664ebcc6f0377550dfbad4df1ac59 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
from __future__ import annotations

import random
import json
import re

import requests
from requests.packages.urllib3.exceptions import InsecureRequestWarning
requests.packages.urllib3.disable_warnings(InsecureRequestWarning)

from ..typing import AsyncResult, Messages
from .base_provider import AsyncGeneratorProvider, ProviderModelMixin
from ..image import ImageResponse
from ..requests import StreamSession, raise_for_status

class Airforce(AsyncGeneratorProvider, ProviderModelMixin):
    url = "https://llmplayground.net"
    api_endpoint_completions = "https://api.airforce/chat/completions"
    api_endpoint_imagine = "https://api.airforce/imagine2"
    working = True
    supports_system_message = True
    supports_message_history = True

    @classmethod
    def fetch_completions_models(cls):
        response = requests.get('https://api.airforce/models', verify=False)
        response.raise_for_status()
        data = response.json()
        return [model['id'] for model in data['data']]

    @classmethod
    def fetch_imagine_models(cls):
        response = requests.get('https://api.airforce/imagine/models', verify=False)
        response.raise_for_status()
        return response.json()

    default_model = "gpt-4o-mini"
    default_image_model = "flux"
    additional_models_imagine = ["stable-diffusion-xl-base", "stable-diffusion-xl-lightning", "Flux-1.1-Pro"]

    @classmethod
    def get_models(cls):
        if not cls.models:
            cls.image_models = [*cls.fetch_imagine_models(), *cls.additional_models_imagine]
            cls.models = [
                *cls.fetch_completions_models(),
                *cls.image_models
            ]
        return cls.models

    model_aliases = {        
        ### completions ###
        # openchat
        "openchat-3.5": "openchat-3.5-0106",
        
        # deepseek-ai
        "deepseek-coder": "deepseek-coder-6.7b-instruct",
        
        # NousResearch
        "hermes-2-dpo": "Nous-Hermes-2-Mixtral-8x7B-DPO",
        "hermes-2-pro": "hermes-2-pro-mistral-7b",
        
        # teknium
        "openhermes-2.5": "openhermes-2.5-mistral-7b",
        
        # liquid
        "lfm-40b": "lfm-40b-moe",
        
        # DiscoResearch
        "german-7b": "discolm-german-7b-v1",
            
        # meta-llama
        "llama-2-7b": "llama-2-7b-chat-int8",
        "llama-2-7b": "llama-2-7b-chat-fp16",
        "llama-3.1-70b": "llama-3.1-70b-chat",
        "llama-3.1-8b": "llama-3.1-8b-chat",
        "llama-3.1-70b": "llama-3.1-70b-turbo",
        "llama-3.1-8b": "llama-3.1-8b-turbo",
        
        # inferless
        "neural-7b": "neural-chat-7b-v3-1",
        
        # HuggingFaceH4
        "zephyr-7b": "zephyr-7b-beta",
        
        ### imagine ###
        "sdxl": "stable-diffusion-xl-base",
        "sdxl": "stable-diffusion-xl-lightning", 
        "flux-pro": "Flux-1.1-Pro",
    }

    @classmethod
    def create_async_generator(
        cls,
        model: str,
        messages: Messages,
        proxy: str = None,
        seed: int = None,
        size: str = "1:1", # "1:1", "16:9", "9:16", "21:9", "9:21", "1:2", "2:1"
        stream: bool = False,
        **kwargs
    ) -> AsyncResult:
        model = cls.get_model(model)
        if model in cls.image_models:
            return cls._generate_image(model, messages, proxy, seed, size)
        else:
            return cls._generate_text(model, messages, proxy, stream, **kwargs)

    @classmethod
    async def _generate_image(
        cls,
        model: str,
        messages: Messages,
        proxy: str = None,
        seed: int = None,
        size: str = "1:1",
        **kwargs
    ) -> AsyncResult:
        headers = {
            "accept": "*/*",
            "accept-language": "en-US,en;q=0.9",
            "cache-control": "no-cache",
            "origin": "https://llmplayground.net",
            "user-agent": "Mozilla/5.0"
        }
        if seed is None:
            seed = random.randint(0, 100000)
        prompt = messages[-1]['content']

        async with StreamSession(headers=headers, proxy=proxy) as session:
            params = {
                "model": model,
                "prompt": prompt,
                "size": size,
                "seed": seed
            }
            async with session.get(f"{cls.api_endpoint_imagine}", params=params) as response:
                await raise_for_status(response)
                content_type = response.headers.get('Content-Type', '').lower()

                if 'application/json' in content_type:
                    raise RuntimeError(await response.json().get("error", {}).get("message"))
                elif 'image' in content_type:
                    image_data = b""
                    async for chunk in response.iter_content():
                        if chunk:
                            image_data += chunk
                    image_url = f"{cls.api_endpoint_imagine}?model={model}&prompt={prompt}&size={size}&seed={seed}"
                    yield ImageResponse(images=image_url, alt=prompt)

    @classmethod
    async def _generate_text(
        cls,
        model: str,
        messages: Messages,
        proxy: str = None,
        stream: bool = False,
        max_tokens: int = 4096,
        temperature: float = 1,
        top_p: float = 1,
        **kwargs
    ) -> AsyncResult:
        headers = {
            "accept": "*/*",
            "accept-language": "en-US,en;q=0.9",
            "authorization": "Bearer missing api key",
            "content-type": "application/json",
            "user-agent": "Mozilla/5.0"
        }
        async with StreamSession(headers=headers, proxy=proxy) as session:
            data = {
                "messages": messages,
                "model": model,
                "max_tokens": max_tokens,
                "temperature": temperature,
                "top_p": top_p,
                "stream": stream
            }
            async with session.post(cls.api_endpoint_completions, json=data) as response:
                await raise_for_status(response)
                content_type = response.headers.get('Content-Type', '').lower()
                if 'application/json' in content_type:
                    json_data = await response.json()
                    if json_data.get("model") == "error":
                        raise RuntimeError(json_data['choices'][0]['message'].get('content', ''))
                if stream:
                    async for line in response.iter_lines():
                        if line:
                            line = line.decode('utf-8').strip()
                            if line.startswith("data: ") and line != "data: [DONE]":
                                json_data = json.loads(line[6:])
                                content = json_data['choices'][0]['delta'].get('content', '')
                                if content:
                                    yield cls._filter_content(content)
                else:
                    json_data = await response.json()
                    content = json_data['choices'][0]['message']['content']
                    yield cls._filter_content(content)

    @classmethod
    def _filter_content(cls, part_response: str) -> str:
        part_response = re.sub(
            r"One message exceeds the \d+chars per message limit\..+https:\/\/discord\.com\/invite\/\S+",
            '',
            part_response
        )
        
        part_response = re.sub(
            r"Rate limit \(\d+\/minute\) exceeded\. Join our discord for more: .+https:\/\/discord\.com\/invite\/\S+",
            '',
            part_response
        )
        return part_response