1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
|
from __future__ import annotations
from aiohttp import ClientSession
import random
import string
import json
import re
import aiohttp
from ..typing import AsyncResult, Messages, ImageType
from .base_provider import AsyncGeneratorProvider, ProviderModelMixin
from ..image import ImageResponse, to_data_uri
from .helper import get_random_string
class Blackbox(AsyncGeneratorProvider, ProviderModelMixin):
label = "Blackbox AI"
url = "https://www.blackbox.ai"
api_endpoint = "https://www.blackbox.ai/api/chat"
working = True
supports_stream = True
supports_system_message = True
supports_message_history = True
_last_validated_value = None
default_model = 'blackboxai'
default_vision_model = default_model
default_image_model = 'generate_image'
image_models = [default_image_model, 'repomap']
text_models = [default_model, 'gpt-4o', 'gemini-pro', 'claude-sonnet-3.5', 'blackboxai-pro']
vision_models = [default_model, 'gpt-4o', 'gemini-pro', 'blackboxai-pro']
model_aliases = {
"claude-3.5-sonnet": "claude-sonnet-3.5",
}
agentMode = {
default_image_model: {'mode': True, 'id': "ImageGenerationLV45LJp", 'name': "Image Generation"},
}
trendingAgentMode = {
"gemini-1.5-flash": {'mode': True, 'id': 'Gemini'},
"llama-3.1-8b": {'mode': True, 'id': "llama-3.1-8b"},
'llama-3.1-70b': {'mode': True, 'id': "llama-3.1-70b"},
'llama-3.1-405b': {'mode': True, 'id': "llama-3.1-405"},
#
'Python Agent': {'mode': True, 'id': "Python Agent"},
'Java Agent': {'mode': True, 'id': "Java Agent"},
'JavaScript Agent': {'mode': True, 'id': "JavaScript Agent"},
'HTML Agent': {'mode': True, 'id': "HTML Agent"},
'Google Cloud Agent': {'mode': True, 'id': "Google Cloud Agent"},
'Android Developer': {'mode': True, 'id': "Android Developer"},
'Swift Developer': {'mode': True, 'id': "Swift Developer"},
'Next.js Agent': {'mode': True, 'id': "Next.js Agent"},
'MongoDB Agent': {'mode': True, 'id': "MongoDB Agent"},
'PyTorch Agent': {'mode': True, 'id': "PyTorch Agent"},
'React Agent': {'mode': True, 'id': "React Agent"},
'Xcode Agent': {'mode': True, 'id': "Xcode Agent"},
'AngularJS Agent': {'mode': True, 'id': "AngularJS Agent"},
'blackboxai-pro': {'mode': True, 'id': "BLACKBOXAI-PRO"},
#
'repomap': {'mode': True, 'id': "repomap"},
#
'Heroku Agent': {'mode': True, 'id': "Heroku Agent"},
'Godot Agent': {'mode': True, 'id': "Godot Agent"},
'Go Agent': {'mode': True, 'id': "Go Agent"},
'Gitlab Agent': {'mode': True, 'id': "Gitlab Agent"},
'Git Agent': {'mode': True, 'id': "Git Agent"},
'Flask Agent': {'mode': True, 'id': "Flask Agent"},
'Firebase Agent': {'mode': True, 'id': "Firebase Agent"},
'FastAPI Agent': {'mode': True, 'id': "FastAPI Agent"},
'Erlang Agent': {'mode': True, 'id': "Erlang Agent"},
'Electron Agent': {'mode': True, 'id': "Electron Agent"},
'Docker Agent': {'mode': True, 'id': "Docker Agent"},
'DigitalOcean Agent': {'mode': True, 'id': "DigitalOcean Agent"},
'Bitbucket Agent': {'mode': True, 'id': "Bitbucket Agent"},
'Azure Agent': {'mode': True, 'id': "Azure Agent"},
'Flutter Agent': {'mode': True, 'id': "Flutter Agent"},
'Youtube Agent': {'mode': True, 'id': "Youtube Agent"},
'builder Agent': {'mode': True, 'id': "builder Agent"},
}
model_prefixes = {mode: f"@{value['id']}" for mode, value in trendingAgentMode.items() if mode not in ["gemini-1.5-flash", "llama-3.1-8b", "llama-3.1-70b", "llama-3.1-405b", "repomap"]}
models = [*text_models, default_image_model, *list(trendingAgentMode.keys())]
model_aliases = {
"gemini-flash": "gemini-1.5-flash",
"claude-3.5-sonnet": "claude-sonnet-3.5",
"flux": "Image Generation",
}
@classmethod
async def fetch_validated(cls):
# If the key is already stored in memory, return it
if cls._last_validated_value:
return cls._last_validated_value
# If the key is not found, perform a search
async with aiohttp.ClientSession() as session:
try:
async with session.get(cls.url) as response:
if response.status != 200:
print("Failed to load the page.")
return cls._last_validated_value
page_content = await response.text()
js_files = re.findall(r'static/chunks/\d{4}-[a-fA-F0-9]+\.js', page_content)
key_pattern = re.compile(r'w="([0-9a-fA-F]{8}-[0-9a-fA-F]{4}-[0-9a-fA-F]{4}-[0-9a-fA-F]{4}-[0-9a-fA-F]{12})"')
for js_file in js_files:
js_url = f"{cls.url}/_next/{js_file}"
async with session.get(js_url) as js_response:
if js_response.status == 200:
js_content = await js_response.text()
match = key_pattern.search(js_content)
if match:
validated_value = match.group(1)
cls._last_validated_value = validated_value # Keep in mind
return validated_value
except Exception as e:
print(f"Error fetching validated value: {e}")
return cls._last_validated_value
@classmethod
def add_prefix_to_messages(cls, messages: Messages, model: str) -> Messages:
prefix = cls.model_prefixes.get(model, "")
if not prefix:
return messages
new_messages = []
for message in messages:
new_message = message.copy()
if message['role'] == 'user':
new_message['content'] = (prefix + " " + message['content']).strip()
new_messages.append(new_message)
return new_messages
@classmethod
async def create_async_generator(
cls,
model: str,
messages: Messages,
proxy: str = None,
web_search: bool = False,
image: ImageType = None,
image_name: str = None,
**kwargs
) -> AsyncResult:
model = cls.get_model(model)
message_id = get_random_string(7)
messages = cls.add_prefix_to_messages(messages, model)
validated_value = await cls.fetch_validated()
if image is not None:
messages[-1]['data'] = {
'fileText': '',
'imageBase64': to_data_uri(image),
'title': image_name
}
headers = {
'accept': '*/*',
'accept-language': 'en-US,en;q=0.9',
'cache-control': 'no-cache',
'content-type': 'application/json',
'origin': cls.url,
'pragma': 'no-cache',
'priority': 'u=1, i',
'referer': f'{cls.url}/',
'sec-ch-ua': '"Not?A_Brand";v="99", "Chromium";v="130"',
'sec-ch-ua-mobile': '?0',
'sec-ch-ua-platform': '"Linux"',
'sec-fetch-dest': 'empty',
'sec-fetch-mode': 'cors',
'sec-fetch-site': 'same-origin',
'user-agent': 'Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/130.0.0.0 Safari/537.36'
}
data = {
"messages": messages,
"id": message_id,
"previewToken": None,
"userId": None,
"codeModelMode": True,
"agentMode": cls.agentMode.get(model, {}) if model in cls.agentMode else {},
"trendingAgentMode": cls.trendingAgentMode.get(model, {}) if model in cls.trendingAgentMode else {},
"isMicMode": False,
"userSystemPrompt": None,
"maxTokens": 1024,
"playgroundTopP": 0.9,
"playgroundTemperature": 0.5,
"isChromeExt": False,
"githubToken": None,
"clickedAnswer2": False,
"clickedAnswer3": False,
"clickedForceWebSearch": False,
"visitFromDelta": False,
"mobileClient": False,
"userSelectedModel": model if model in cls.text_models else None,
"webSearchMode": web_search,
"validated": validated_value,
}
async with ClientSession(headers=headers) as session:
async with session.post(cls.api_endpoint, json=data, proxy=proxy) as response:
response.raise_for_status()
is_first = False
async for chunk in response.content.iter_any():
text_chunk = chunk.decode(errors="ignore")
if model in cls.image_models:
image_matches = re.findall(r'!\[.*?\]\((https?://[^\)]+)\)', text_chunk)
if image_matches:
image_url = image_matches[0]
image_response = ImageResponse(images=[image_url])
yield image_response
continue
text_chunk = re.sub(r'Generated by BLACKBOX.AI, try unlimited chat https://www.blackbox.ai', '', text_chunk, flags=re.DOTALL)
json_match = re.search(r'\$~~~\$(.*?)\$~~~\$', text_chunk, re.DOTALL)
if json_match:
search_results = json.loads(json_match.group(1))
answer = text_chunk.split('$~~~$')[-1].strip()
formatted_response = f"{answer}\n\n**Source:**"
for i, result in enumerate(search_results, 1):
formatted_response += f"\n{i}. {result['title']}: {result['link']}"
yield formatted_response
elif text_chunk:
if is_first:
is_first = False
yield text_chunk.lstrip()
else:
yield text_chunk
|