summaryrefslogblamecommitdiffstats
path: root/_signal_processing/krakenSDR_signal_processor.py
blob: 31f183693e46ccbaa7ca5ed652f00d205f10c104 (plain) (tree)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713








































































































































































































































































































































































































































































































































































































































































































































                                                                                                                                                                                                                                          
# KrakenSDR Signal Processor
#
# Copyright (C) 2018-2021  Carl Laufer, Tamás Pető
#
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program.  If not, see <https://www.gnu.org/licenses/>.
#
#
# - coding: utf-8 -*-

# Import built-in modules
import sys
import os
import time
import logging
import threading
import queue
import math

# Import optimization modules
import numba as nb
from numba import jit, njit
from functools import lru_cache

# Math support
import numpy as np
import numpy.linalg as lin
#from numba import jit
import pyfftw

# Signal processing support
import scipy
from scipy import fft
from scipy import signal
from scipy.signal import correlate
from scipy.signal import convolve

from pyapril import channelPreparation as cp
from pyapril import clutterCancellation as cc
from pyapril import detector as det

c_dtype = np.complex64

#import socket
# UDP is useless to us because it cannot work over mobile internet

# Init UDP
#server = socket.socket(socket.AF_INET, socket.SOCK_DGRAM, socket.IPPROTO_UDP)
#server.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEPORT, 1)
# Enable broadcasting mode
#server.setsockopt(socket.SOL_SOCKET, socket.SO_BROADCAST, 1)
# Set a timeout so the  socket does not block
# indefinitely when trying to receive data.
#server.settimeout(0.2)

class SignalProcessor(threading.Thread):
    
    def __init__(self, data_que, module_receiver, logging_level=10):

        """
            Parameters:
            -----------
            :param: data_que: Que to communicate with the UI (web iface/Qt GUI)
            :param: module_receiver: Kraken SDR DoA DSP receiver modules
        """        
        super(SignalProcessor, self).__init__()
        self.logger = logging.getLogger(__name__)
        self.logger.setLevel(logging_level)

        root_path      = os.path.dirname(os.path.dirname(os.path.realpath(__file__)))
        doa_res_file_path = os.path.join(os.path.join(root_path,"_android_web","DOA_value.html"))        
        self.DOA_res_fd = open(doa_res_file_path,"w+")

        self.module_receiver = module_receiver
        self.data_que = data_que
        self.en_spectrum = False
        self.en_record = False
        self.en_DOA_estimation = True
        self.first_frame = 1 # Used to configure local variables from the header fields
        self.processed_signal = np.empty(0)        

        # Squelch feature
        self.data_ready = False
        self.en_squelch = False
        self.squelch_threshold = 0.1
        self.squelch_trigger_channel = 0
        self.raw_signal_amplitude = np.empty(0)
        self.filt_signal = np.empty(0)
        self.squelch_mask = np.empty(0)
                
        # DOA processing options
        self.en_DOA_Bartlett = False
        self.en_DOA_Capon    = False
        self.en_DOA_MEM      = False
        self.en_DOA_MUSIC    = False
        self.en_DOA_FB_avg   = False
        self.DOA_offset      = 0
        self.DOA_inter_elem_space = 0.5
        self.DOA_ant_alignment    = "ULA"
        self.DOA_theta =  np.linspace(0,359,360)

        # PR processing options
        self.PR_clutter_cancellation = "Wiener MRE"
        self.max_bistatic_range = 128
        self.max_doppler = 256
        self.en_PR = True
            

        # Processing parameters        
        self.spectrum_window_size = 2048 #1024
        self.spectrum_window = "hann"
        self.run_processing = False
        self.is_running = False 


        self.channel_number = 4  # Update from header
        
        # Result vectors
        self.DOA_Bartlett_res = np.ones(181)
        self.DOA_Capon_res = np.ones(181)
        self.DOA_MEM_res = np.ones(181)
        self.DOA_MUSIC_res = np.ones(181)
        self.DOA_theta = np.arange(0,181,1)

        self.max_index = 0
        self.max_frequency = 0
        self.fft_signal_width = 0

        self.DOA_theta =  np.linspace(0,359,360)

        self.spectrum = None #np.ones((self.channel_number+2,N), dtype=np.float32)
        self.spectrum_upd_counter = 0


    def run(self):
        """
            Main processing thread        
        """

        pyfftw.config.NUM_THREADS = 4
        scipy.fft.set_backend(pyfftw.interfaces.scipy_fft)
        pyfftw.interfaces.cache.enable()

        while True:
            self.is_running = False
            time.sleep(1)
            while self.run_processing:  
                self.is_running = True

                que_data_packet = []
                start_time = time.time()

                #-----> ACQUIRE NEW DATA FRAME <-----
                self.module_receiver.get_iq_online()

                # Check frame type for processing
                en_proc = (self.module_receiver.iq_header.frame_type == self.module_receiver.iq_header.FRAME_TYPE_DATA)# or \
                          #(self.module_receiver.iq_header.frame_type == self.module_receiver.iq_header.FRAME_TYPE_CAL)# For debug purposes
                """
                    You can enable here to process other frame types (such as call type frames)
                """

                que_data_packet.append(['iq_header',self.module_receiver.iq_header])
                self.logger.debug("IQ header has been put into the data que entity")

                # Configure processing parameteres based on the settings of the DAQ chain
                if self.first_frame:
                    self.channel_number = self.module_receiver.iq_header.active_ant_chs
                    self.spectrum_upd_counter = 0
                    self.spectrum = np.ones((self.channel_number+2, self.spectrum_window_size), dtype=np.float32)
                    self.first_frame = 0

                decimation_factor = 1

                self.data_ready = False

                if en_proc:
                    self.processed_signal = self.module_receiver.iq_samples
                    self.data_ready = True

                    first_decimation_factor = 1 #480

                    # TESTING: DSP side main decimation - significantly slower than NE10 but it works ok-ish
                    #decimated_signal = signal.decimate(self.processed_signal, first_decimation_factor, n = 584, ftype='fir', zero_phase=True) #first_decimation_factor * 2, ftype='fir')
                    #self.processed_signal = decimated_signal #.copy()
                    #spectrum_signal = decimated_signal.copy()

                    max_amplitude = -100

                    #max_ch = np.argmax(np.max(self.spectrum[1:self.module_receiver.iq_header.active_ant_chs+1,:], axis=1)) # Find the channel that had the max amplitude
                    max_amplitude = 0 #np.max(self.spectrum[1+max_ch, :]) #Max amplitude out of all 5 channels
                    #max_spectrum = self.spectrum[1+max_ch, :] #Send max ch to channel centering

                    que_data_packet.append(['max_amplitude',max_amplitude])

                    #-----> SQUELCH PROCESSING <-----

                    if self.en_squelch:                    
                        self.data_ready = False

                        self.processed_signal, decimation_factor, self.fft_signal_width, self.max_index = \
                                               center_max_signal(self.processed_signal, self.spectrum[0,:], max_spectrum, self.module_receiver.daq_squelch_th_dB, self.module_receiver.iq_header.sampling_freq)

                        #decimated_signal = []
                        #if(decimation_factor > 1):
                        #    decimated_signal = signal.decimate(self.processed_signal, decimation_factor, n = decimation_factor * 2, ftype='fir')
                        #    self.processed_signal = decimated_signal #.copy()


                        #Only update if we're above the threshold
                        if max_amplitude > self.module_receiver.daq_squelch_th_dB:
                            self.data_ready = True

                     
                    #-----> SPECTRUM PROCESSING <----- 
                    
                    if self.en_spectrum and self.data_ready:

                        spectrum_samples = self.module_receiver.iq_samples #spectrum_signal #self.processed_signal #self.module_receiver.iq_samples #self.processed_signal


                        N = self.spectrum_window_size

                        N_perseg = 0
                        N_perseg = min(N, len(self.processed_signal[0,:])//25)
                        N_perseg = N_perseg // 1

                        # Get power spectrum
                        f, Pxx_den = signal.welch(self.processed_signal, self.module_receiver.iq_header.sampling_freq//first_decimation_factor,
                                                nperseg=N_perseg,
                                                nfft=N,
                                                noverlap=int(N_perseg*0.25),
                                                detrend=False,
                                                return_onesided=False,
                                                window= ('tukey', 0.25), #tukey window gives better time resolution for squelching #self.spectrum_window, #('tukey', 0.25), #self.spectrum_window, 
                                                #window=self.spectrum_window,
                                                scaling="spectrum")

                        self.spectrum[1:self.module_receiver.iq_header.active_ant_chs+1,:] = np.fft.fftshift(10*np.log10(Pxx_den))

                        self.spectrum[0,:] = np.fft.fftshift(f)


                        # Create signal window for plot
#                        signal_window = np.ones(len(self.spectrum[1,:])) * -100
 #                       signal_window[max(self.max_index - self.fft_signal_width//2, 0) : min(self.max_index + self.fft_signal_width//2, len(self.spectrum[1,:]))] = max(self.spectrum[1,:])
                        #signal_window = np.ones(len(max_spectrum)) * -100
                        #signal_window[max(self.max_index - self.fft_signal_width//2, 0) : min(self.max_index + self.fft_signal_width//2, len(max_spectrum))] = max(max_spectrum)

                        #self.spectrum[self.channel_number+1, :] = signal_window #np.ones(len(spectrum[1,:])) * self.module_receiver.daq_squelch_th_dB # Plot threshold line
                        que_data_packet.append(['spectrum', self.spectrum])

                    #-----> Passive Radar <----- 
                    conf_val = 0
                    theta_0 = 0
                    if self.en_PR and self.data_ready and self.channel_number > 1:

                        ref_ch = self.module_receiver.iq_samples[0,:]
                        surv_ch = self.module_receiver.iq_samples[1,:]

                        td_filter_dimension = self.max_bistatic_range

                        start = time.time()

                        if self.PR_clutter_cancellation == "Wiener MRE":
                            surv_ch, w = Wiener_SMI_MRE(ref_ch, surv_ch, td_filter_dimension)
                            #surv_ch, w = cc.Wiener_SMI_MRE(ref_ch, surv_ch, td_filter_dimension)

                        surv_ch = det.windowing(surv_ch, "Hamming") #surv_ch * signal.tukey(surv_ch.size, alpha=0.25) #det.windowing(surv_ch, "hamming")

                        max_Doppler = self.max_doppler #256
                        max_range = self.max_bistatic_range

                        #RD_matrix = det.cc_detector_ons(ref_ch, surv_ch, self.module_receiver.iq_header.sampling_freq, max_Doppler, max_range, verbose=0, Qt_obj=None)
                        RD_matrix = cc_detector_ons(ref_ch, surv_ch, self.module_receiver.iq_header.sampling_freq, max_Doppler, max_range)

                        end = time.time()
                        print("Time: " + str((end-start) * 1000))

                        que_data_packet.append(['RD_matrix', RD_matrix])

                    # Record IQ samples
                    if self.en_record:
                        # TODO: Implement IQ frame recording
                        self.logger.error("Saving IQ samples to npy is obsolete, IQ Frame saving is currently not implemented")

                stop_time = time.time()
                que_data_packet.append(['update_rate', stop_time-start_time])
                que_data_packet.append(['latency', int(stop_time*10**3)-self.module_receiver.iq_header.time_stamp])

                # If the que is full, and data is ready (from squelching), clear the buffer immediately so that useful data has the priority
                if self.data_que.full() and self.data_ready:
                    try:
                        #self.logger.info("BUFFER WAS NOT EMPTY, EMPTYING NOW")
                        self.data_que.get(False) #empty que if not taken yet so fresh data is put in
                    except queue.Empty:
                        #self.logger.info("DIDNT EMPTY")
                        pass

                # Put data into buffer, but if there is no data because its a cal/trig wait frame etc, then only write if the buffer is empty
                # Otherwise just discard the data so that we don't overwrite good DATA frames.
                try:
                    self.data_que.put(que_data_packet, False) # Must be non-blocking so DOA can update when dash browser window is closed
                except:
                    # Discard data, UI couldn't consume fast enough
                    pass

                """
                start = time.time()
                end = time.time()
                thetime = ((end - start) * 1000)
                print ("Time elapsed: ", thetime)
                """
@jit(fastmath=True)
def Wiener_SMI_MRE(ref_ch, surv_ch, K):
    """
        Description:
        ------------
            Performs Wiener filtering with applying the Minimum Redundance Estimation (MRE) technique. 
            When using MRE, the autocorrelation matrix is not fully estimated, but only the first column.
            With this modification the required calculations can be reduced from KxK to K element.
            
        Parameters:
        -----------
            :param K      : Filter tap number
            :param ref_ch : Reference signal array
            :param surv_ch: Surveillance signal array
            
            :type K      : int
            :type ref_ch : 1 x N complex numpy array
            :type surv_ch: 1 x N complex numpy array
        Return values:
        --------------
            :return filt: Filtered surveillance channel
            :rtype filt: 1 x N complex numpy array
            
            :return None: Input parameters are not consistent
    """

    N = ref_ch.shape[0]  # Number of time samples
    R, r = pruned_correlation(ref_ch, surv_ch, K, N)
    R_mult = R_eye_memoize(K)
    w = fast_w(R, r, K, R_mult)

    #return surv_ch - np.convolve(ref_ch, w)[0:N], w  # subtract the zero doppler clutter
    return surv_ch - signal.oaconvolve(ref_ch, w)[0:N], w  # subtract the zero doppler clutter #oaconvolve saves us about 100-200 ms

@njit(fastmath=True, parallel=True, cache=True)
def fast_w(R, r, K, R_mult):
    # Complete the R matrix based on its Hermitian and Toeplitz property

    for k in range(1, K):
        R[:, k] = shift(R[:, 0], k)
    #R[:, K] = shift(R[:,0], K)

    R += np.transpose(np.conjugate(R))
    R *= R_mult #(np.ones(K) - np.eye(K) * 0.5)

    #w = np.dot(lin.inv(R), r)  # weight vector
    w = lin.inv(R) @ r #np.dot(lin.inv(R), r)  # weight vector #matmul (@) may be slightly faster that np.dot for 1D, 2D arrays.
    # inverse and dot product run time : 1.1s for 2048*2048 matrix

    return w

#Memoize ~50ms speedup?
@lru_cache(maxsize=2)
def R_eye_memoize(K):
    return (np.ones(K) - np.eye(K) * 0.5)

#Modified pruned correlation, returns R and r directly and saves one FFT
@jit(fastmath=True, cache=True)
def pruned_correlation(ref_ch, surv_ch, clen, N):
    """
        Description:
        -----------
        Calculates the part of the correlation function of arrays with same size
        The total length of the cross-correlation function is 2*N-1, but this
        function calculates the values of the cross-correlation between [N-1 : N+clen-1]
        Parameters:
        -----------
        :param x : input array
        :param y : input array
        :param clen: correlation length

        :type x: 1 x N complex numpy array
        :type y: 1 x N complex numpy array
        :type clen: int
        Return values:
        --------------
        :return corr : part of the cross-correlation function
        :rtype  corr : 1 x clen complex numpy array

        :return None : inconsistent array size
    """
    R = np.zeros((clen, clen), dtype=c_dtype)  # Autocorrelation mtx.

    # --calculation--
    # set up input matrices pad zeros if not multiply of the correlation length
    cols = clen - 1 #(clen = Filter drowsimension)
    rows = np.int32(N / (cols)) + 1

    zeropads = cols * rows - N
    x = np.pad(ref_ch, (0, zeropads))

    # shaping inputs into matrices
    xp = np.reshape(x, (rows, cols))

    # padding matrices for FFT
    ypp = np.vstack([xp[1:, :], np.zeros(cols, dtype=c_dtype)]) #vstack appears to be faster than pad
    yp = np.concatenate([xp, ypp], axis=1)

    # execute FFT on the matrices
    xpw = fft.fft(xp, n = 2*cols, axis=1, workers=4, overwrite_x=True)
    bpw = fft.fft(yp, axis=1, workers=4, overwrite_x=True)

    # magic formula which describes the unified equation of the universe
   # corr_batches = np.fliplr(fft.fftshift(fft.ifft(corr_mult(xpw, bpw), axis=1, workers=4, overwrite_x=True)).conj()[:, 0:clen])
    corr_batches = fft.fftshift(fft.ifft(corr_mult(xpw, bpw), axis=1, workers=4, overwrite_x=True)).conj()[:, 0:clen]

    # sum each value in a column of the batched correlation matrix
    R[:,0] = np.fliplr([np.sum(corr_batches, axis=0)])[0]

    #calc r
    y = np.pad(surv_ch, (0, zeropads))
    yp = np.reshape(y, (rows, cols))
    ypp = np.vstack([yp[1:, :], np.zeros(cols, dtype=c_dtype)]) #vstack appears to be faster than pad
    yp = np.concatenate([yp, ypp], axis=1)
    bpw = fft.fft(yp, axis=1, workers=4, overwrite_x=True)
    #corr_batches = np.fliplr(fft.fftshift(fft.ifft(corr_mult(xpw, bpw), axis=1, workers=4, overwrite_x=True)).conj()[:, 0:clen])
    corr_batches = fft.fftshift(fft.ifft(corr_mult(xpw, bpw), axis=1, workers=4, overwrite_x=True)).conj()[:, 0:clen]
    #r = np.sum(corr_batches, axis=0)
    r = np.fliplr([np.sum(corr_batches, axis=0)])[0]

    return R, r

@njit(fastmath=True, cache=True)
def shift(x, i):
    """
        Description:
        -----------
        Similar to np.roll function, but not circularly shift values
        Example:
        x = |x0|x1|...|xN-1|
        y = shift(x,2)
        x --> y: |0|0|x0|x1|...|xN-3|
        Parameters:
        -----------
        :param:x : input array on which the roll will be performed
        :param i : delay value [sample]
        
        :type i :int
        :type x: N x 1 complex numpy array
        Return values:
        --------------
        :return shifted : shifted version of x
        :rtype shifted: N x 1 complex numpy array
    """

    N = x.shape[0]
    if np.abs(i) >= N:
        return np.zeros(N, dtype=c_dtype)
    if i == 0:
        return x
    shifted = np.roll(x, i)
    if i < 0:
        shifted[np.mod(N + i, N):] = np.zeros(np.abs(i), dtype=c_dtype)
    if i > 0:
        shifted[0:i] = np.zeros(np.abs(i), dtype=c_dtype)
    return shifted


@njit(fastmath=True, parallel=True, cache=True)
def resize_and_align(no_sub_tasks, ref_ch, surv_ch, fs, fD_max, r_max):
    surv_ch_align = np.reshape(surv_ch,(no_sub_tasks, r_max))  # shaping surveillance signal array into a matrix
    pad_zeros = np.expand_dims(np.zeros(r_max, dtype=c_dtype), axis=0)
    surv_ch_align = np.vstack((surv_ch_align, pad_zeros))  # padding one row of zeros into the surv matrix
    surv_ch_align = np.concatenate((surv_ch_align[0 : no_sub_tasks,:], surv_ch_align[1 : no_sub_tasks +1, :]), axis = 1)

    ref_ch_align = np.reshape(ref_ch, (no_sub_tasks, r_max))  # shaping reference signal array into a matrix
    pad_zeros = np.zeros((no_sub_tasks, r_max),dtype = c_dtype)
    ref_ch_align = np.concatenate((ref_ch_align, pad_zeros),axis = 1)  # shaping

    return ref_ch_align, surv_ch_align

@njit(fastmath=True, cache=True)
def corr_mult(surv_fft, ref_fft):
    return np.multiply(surv_fft, ref_fft.conj())

@jit(fastmath=True, cache=True)
def cc_detector_ons(ref_ch, surv_ch, fs, fD_max, r_max):
    """
    Parameters:
    -----------
        :param N: Range resolution - N must be a divisor of the input length
        :param F: Doppler resolution, F has a theoretical limit. If you break the limit, the output may repeat
                    itself and get wrong results. F should be less than length/N otherwise use other method!
    Return values:
    --------------
        :return None: Improper input parameters

    """
    N = ref_ch.size

    # --> Set processing parameters
    fD_step = fs / (2 * N)  # Doppler frequency step size (with zero padding)
    Doppler_freqs_size = int(fD_max / fD_step)
    no_sub_tasks = N // r_max

    # Allocate range-Doppler maxtrix
    mx = np.zeros((2*Doppler_freqs_size+1, r_max),dtype = c_dtype) #memoize_zeros((2*Doppler_freqs_size+1, r_max), c_dtype) #np.zeros((2*Doppler_freqs_size+1, r_max),dtype = nb.c8)

    ref_ch_align, surv_ch_align = resize_and_align(no_sub_tasks, ref_ch, surv_ch, fs, fD_max, r_max)

    # row wise fft on both channels
    ref_fft = fft.fft(ref_ch_align, axis = 1, overwrite_x=True, workers=4) #pyfftw.interfaces.numpy_fft.fft(ref_ch_align_a, axis = 1, overwrite_input=True, threads=4) #fft.fft(ref_ch_align_a, axis = 1, overwrite_x=True, workers=4)
    surv_fft = fft.fft(surv_ch_align, axis = 1, overwrite_x=True, workers=4) #pyfftw.interfaces.numpy_fft.fft(surv_ch_align_a, axis = 1, overwrite_input=True, threads=4) #fft.fft(surv_ch_align_a, axis = 1, overwrite_x=True, workers=4)

    corr = corr_mult(surv_fft, ref_fft) #np.multiply(surv_fft, ref_fft.conj())

    corr = fft.ifft(corr,axis = 1, workers=4, overwrite_x=True)

    corr_a = pyfftw.empty_aligned(np.shape(corr), dtype=c_dtype)
    corr_a[:] = corr #.copy()

    # This is the most computationally intensive part ~120ms, overwrite_x=True gives a big speedup, not sure if it changes the result though...
    corr = fft.fft(corr_a, n=2* no_sub_tasks,  axis = 0, workers=4, overwrite_x=True) # Setting the output size with "n=.." is faster than doing a concat first.

    # crop and fft shift
    mx[ 0 : Doppler_freqs_size, 0 : r_max] = corr[2*no_sub_tasks - Doppler_freqs_size : 2*no_sub_tasks, 0 : r_max]
    mx[Doppler_freqs_size : 2 * Doppler_freqs_size+1, 0 : r_max] = corr[ 0 : Doppler_freqs_size+1 , 0 : r_max]

    return mx






#NUMBA optimized center tracking. Gives a mild speed boost ~25% faster.
@njit(fastmath=True, cache=True, parallel=True)
def center_max_signal(processed_signal, frequency, fft_spectrum, threshold, sample_freq):

    # Where is the max frequency? e.g. where is the signal?
    max_index = np.argmax(fft_spectrum)
    max_frequency = frequency[max_index]

    # Auto decimate down to exactly the max signal width
    fft_signal_width = np.sum(fft_spectrum > threshold) + 25
    decimation_factor = max((sample_freq // fft_signal_width) // 2, 1)

    # Auto shift peak frequency center of spectrum, this frequency will be decimated:
    # https://pysdr.org/content/filters.html
    f0 = -max_frequency #+10
    Ts = 1.0/sample_freq
    t = np.arange(0.0, Ts*len(processed_signal[0, :]), Ts)
    exponential = np.exp(2j*np.pi*f0*t) # this is essentially a complex sine wave

    return processed_signal * exponential, decimation_factor, fft_signal_width, max_index


# NUMBA optimized MUSIC function. About 100x faster on the Pi 4
@njit(fastmath=True, cache=True)
def DOA_MUSIC(R, scanning_vectors, signal_dimension, angle_resolution=1):
    # --> Input check
    if R[:,0].size != R[0,:].size:
        print("ERROR: Correlation matrix is not quadratic")
        return np.ones(1, dtype=nb.c16)*-1 #[(-1, -1j)]

    if R[:,0].size != scanning_vectors[:,0].size:
        print("ERROR: Correlation matrix dimension does not match with the antenna array dimension")
        return np.ones(1, dtype=nb.c16)*-2

    #ADORT = np.zeros(scanning_vectors[0,:].size, dtype=np.complex) #CHANGE TO nb.c16 for NUMBA
    ADORT = np.zeros(scanning_vectors[0,:].size, dtype=nb.c16)
    M = R[:,0].size #np.size(R, 0)

    # --- Calculation ---
    # Determine eigenvectors and eigenvalues
    sigmai, vi = lin.eig(R)
    sigmai = np.abs(sigmai)

    idx = sigmai.argsort()[::1] # Sort eigenvectors by eigenvalues, smallest to largest
    #sigmai = sigmai[idx] # Eigenvalues not used again
    vi = vi[:,idx]

    # Generate noise subspace matrix
    noise_dimension = M - signal_dimension
    #E = np.zeros((M, noise_dimension),dtype=np.complex)
    E = np.zeros((M, noise_dimension),dtype=nb.c16)
    for i in range(noise_dimension):
        E[:,i] = vi[:,i]

    theta_index=0
    for i in range(scanning_vectors[0,:].size):
        S_theta_ = scanning_vectors[:, i]
        S_theta_  = S_theta_.T
        ADORT[theta_index] = 1/np.abs(S_theta_.conj().T @ (E @ E.conj().T) @ S_theta_)
        theta_index += 1

    return ADORT

# Numba optimized version of pyArgus corr_matrix_estimate with "fast". About 2x faster on Pi4
@njit(fastmath=True, cache=True) #(nb.c8[:,:](nb.c16[:,:]))
def corr_matrix(X):
    M = X[:,0].size
    N = X[0,:].size
    #R = np.zeros((M, M), dtype=nb.c8)
    R = np.dot(X, X.conj().T)
    R = np.divide(R, N)
    return R

# Numba optimized scanning vectors generation for UCA arrays. About 10x faster on Pi4
# LRU cache memoize about 1000x faster.
@lru_cache(maxsize=8)
def uca_scanning_vectors(M, DOA_inter_elem_space):

    thetas =  np.linspace(0,359,360) # Remember to change self.DOA_thetas too, we didn't include that in this function due to memoization cannot work with arrays

    x = DOA_inter_elem_space * np.cos(2*np.pi/M * np.arange(M))
    y = -DOA_inter_elem_space * np.sin(2*np.pi/M * np.arange(M)) # For this specific array only

    scanning_vectors = np.zeros((M, thetas.size), dtype=np.complex)
    for i in range(thetas.size):
        scanning_vectors[:,i] = np.exp(1j*2*np.pi* (x*np.cos(np.deg2rad(thetas[i])) + y*np.sin(np.deg2rad(thetas[i]))))

    return scanning_vectors
   # scanning_vectors = de.gen_scanning_vectors(M, x, y, self.DOA_theta)

@njit(fastmath=True, cache=True)
def DOA_plot_util(DOA_data, log_scale_min=-100):
    """
        This function prepares the calulcated DoA estimation results for plotting.

        - Noramlize DoA estimation results
        - Changes to log scale
    """

    DOA_data = np.divide(np.abs(DOA_data), np.max(np.abs(DOA_data))) # Normalization
    DOA_data = 10*np.log10(DOA_data) # Change to logscale

    for i in range(len(DOA_data)): # Remove extremely low values
        if DOA_data[i] < log_scale_min:
            DOA_data[i] = log_scale_min

    return DOA_data

@njit(fastmath=True, cache=True)
def calculate_doa_papr(DOA_data):
    return 10*np.log10(np.max(np.abs(DOA_data))/np.mean(np.abs(DOA_data)))

# Old time-domain squelch algorithm (Unused as freq domain FFT with overlaps gives significantly better sensitivity with acceptable time resolution expense
"""
    K = 10
    self.filtered_signal = self.raw_signal_amplitude #convolve(np.abs(self.raw_signal_amplitude),np.ones(K), mode = 'same')/K

    # Burst is always started at the begining of the processed block, ensured by the squelch module in the DAQ FW
    burst_stop_index  = len(self.filtered_signal) # CARL FIX: Initialize this to the length of the signal, incase the signal is active the entire time
    self.logger.info("Original burst stop index: {:d}".format(burst_stop_index))

    min_burst_size = K                    
    burst_stop_amp_val = 0
    for n in np.arange(K, len(self.filtered_signal), 1):                        
        if self.filtered_signal[n] < self.squelch_threshold:
            burst_stop_amp_val = self.filtered_signal[n]
            burst_stop_index = n
            burst_stop_index-=K # Correction with the length of filter
            break

        #burst_stop_index-=K # Correction with the length of filter


    self.logger.info("Burst stop index: {:d}".format(burst_stop_index))
    self.logger.info("Burst stop ampl val: {:f}".format(burst_stop_amp_val))
    self.logger.info("Processed signal length: {:d}".format(len(self.processed_signal[0,:])))

    # If sign
    if burst_stop_index < min_burst_size:
        self.logger.debug("The length of the captured burst size is under the minimum: {:d}".format(burst_stop_index))
        burst_stop_index = 0

    if burst_stop_index !=0:                        
        self.logger.info("INSIDE burst_stop_index != 0")

       self.logger.debug("Burst stop index: {:d}".format(burst_stop_index))
       self.logger.debug("Burst stop ampl val: {:f}".format(burst_stop_amp_val))
       self.squelch_mask = np.zeros(len(self.filtered_signal))                        
       self.squelch_mask[0 : burst_stop_index] = np.ones(burst_stop_index)*self.squelch_threshold
       # Next line removes the end parts of the samples after where the signal ended, truncating the array
       self.processed_signal = self.module_receiver.iq_samples[: burst_stop_index, self.squelch_mask == self.squelch_threshold]
       self.logger.info("Raw signal length when burst_stop_index!=0: {:d}".format(len(self.module_receiver.iq_samples[0,:])))
       self.logger.info("Processed signal length when burst_stop_index!=0: {:d}".format(len(self.processed_signal[0,:])))

       #self.logger.info(' '.join(map(str, self.processed_signal)))

       self.data_ready=True
   else:
       self.logger.info("Signal burst is not found, try to adjust the threshold levels")
       #self.data_ready=True                            
       self.squelch_mask = np.ones(len(self.filtered_signal))*self.squelch_threshold
       self.processed_signal = np.zeros([self.channel_number, len(self.filtered_signal)])
"""