// SPDX-FileCopyrightText: Copyright 2021 yuzu Emulator Project
// SPDX-License-Identifier: GPL-2.0-or-later
#include <algorithm>
#include <atomic>
#include <cinttypes>
#include <optional>
#include <vector>
#include "common/assert.h"
#include "common/bit_util.h"
#include "common/common_funcs.h"
#include "common/common_types.h"
#include "common/fiber.h"
#include "common/logging/log.h"
#include "common/settings.h"
#include "core/core.h"
#include "core/cpu_manager.h"
#include "core/hardware_properties.h"
#include "core/hle/kernel/k_condition_variable.h"
#include "core/hle/kernel/k_handle_table.h"
#include "core/hle/kernel/k_memory_layout.h"
#include "core/hle/kernel/k_process.h"
#include "core/hle/kernel/k_resource_limit.h"
#include "core/hle/kernel/k_scheduler.h"
#include "core/hle/kernel/k_scoped_scheduler_lock_and_sleep.h"
#include "core/hle/kernel/k_system_control.h"
#include "core/hle/kernel/k_thread.h"
#include "core/hle/kernel/k_thread_queue.h"
#include "core/hle/kernel/k_worker_task_manager.h"
#include "core/hle/kernel/kernel.h"
#include "core/hle/kernel/svc.h"
#include "core/hle/kernel/svc_results.h"
#include "core/hle/kernel/svc_types.h"
#include "core/hle/result.h"
#include "core/memory.h"
namespace {
constexpr inline s32 TerminatingThreadPriority = Kernel::Svc::SystemThreadPriorityHighest - 1;
static void ResetThreadContext32(Kernel::KThread::ThreadContext32& context, u32 stack_top,
u32 entry_point, u32 arg) {
context = {};
context.cpu_registers[0] = arg;
context.cpu_registers[15] = entry_point;
context.cpu_registers[13] = stack_top;
context.fpscr = 0;
}
static void ResetThreadContext64(Kernel::KThread::ThreadContext64& context, VAddr stack_top,
VAddr entry_point, u64 arg) {
context = {};
context.cpu_registers[0] = arg;
context.cpu_registers[18] = Kernel::KSystemControl::GenerateRandomU64() | 1;
context.pc = entry_point;
context.sp = stack_top;
context.fpcr = 0;
context.fpsr = 0;
}
} // namespace
namespace Kernel {
namespace {
struct ThreadLocalRegion {
static constexpr std::size_t MessageBufferSize = 0x100;
std::array<u32, MessageBufferSize / sizeof(u32)> message_buffer;
std::atomic_uint16_t disable_count;
std::atomic_uint16_t interrupt_flag;
};
class ThreadQueueImplForKThreadSleep final : public KThreadQueueWithoutEndWait {
public:
explicit ThreadQueueImplForKThreadSleep(KernelCore& kernel)
: KThreadQueueWithoutEndWait(kernel) {}
};
class ThreadQueueImplForKThreadSetProperty final : public KThreadQueue {
public:
explicit ThreadQueueImplForKThreadSetProperty(KernelCore& kernel, KThread::WaiterList* wl)
: KThreadQueue(kernel), m_wait_list(wl) {}
void CancelWait(KThread* waiting_thread, Result wait_result, bool cancel_timer_task) override {
// Remove the thread from the wait list.
m_wait_list->erase(m_wait_list->iterator_to(*waiting_thread));
// Invoke the base cancel wait handler.
KThreadQueue::CancelWait(waiting_thread, wait_result, cancel_timer_task);
}
private:
KThread::WaiterList* m_wait_list{};
};
} // namespace
KThread::KThread(KernelCore& kernel)
: KAutoObjectWithSlabHeapAndContainer{kernel}, m_activity_pause_lock{kernel} {}
KThread::~KThread() = default;
Result KThread::Initialize(KThreadFunction func, uintptr_t arg, VAddr user_stack_top, s32 prio,
s32 virt_core, KProcess* owner, ThreadType type) {
// Assert parameters are valid.
ASSERT((type == ThreadType::Main) || (type == ThreadType::Dummy) ||
(Svc::HighestThreadPriority <= prio && prio <= Svc::LowestThreadPriority));
ASSERT((owner != nullptr) || (type != ThreadType::User));
ASSERT(0 <= virt_core && virt_core < static_cast<s32>(Common::BitSize<u64>()));
// Convert the virtual core to a physical core.
const s32 phys_core = Core::Hardware::VirtualToPhysicalCoreMap[virt_core];
ASSERT(0 <= phys_core && phys_core < static_cast<s32>(Core::Hardware::NUM_CPU_CORES));
// First, clear the TLS address.
m_tls_address = {};
// Next, assert things based on the type.
switch (type) {
case ThreadType::Main:
ASSERT(arg == 0);
[[fallthrough]];
case ThreadType::HighPriority:
[[fallthrough]];
case ThreadType::Dummy:
[[fallthrough]];
case ThreadType::User:
ASSERT(((owner == nullptr) ||
(owner->GetCoreMask() | (1ULL << virt_core)) == owner->GetCoreMask()));
ASSERT(((owner == nullptr) ||
(owner->GetPriorityMask() | (1ULL << prio)) == owner->GetPriorityMask()));
break;
case ThreadType::Kernel:
UNIMPLEMENTED();
break;
default:
ASSERT_MSG(false, "KThread::Initialize: Unknown ThreadType {}", static_cast<u32>(type));
break;
}
m_thread_type = type;
// Set the ideal core ID and affinity mask.
m_virtual_ideal_core_id = virt_core;
m_physical_ideal_core_id = phys_core;
m_virtual_affinity_mask = 1ULL << virt_core;
m_physical_affinity_mask.SetAffinity(phys_core, true);
// Set the thread state.
m_thread_state = (type == ThreadType::Main || type == ThreadType::Dummy)
? ThreadState::Runnable
: ThreadState::Initialized;
// Set TLS address.
m_tls_address = 0;
// Set parent and condvar tree.
m_parent = nullptr;
m_condvar_tree = nullptr;
// Set sync booleans.
m_signaled = false;
m_termination_requested = false;
m_wait_cancelled = false;
m_cancellable = false;
// Set core ID and wait result.
m_core_id = phys_core;
m_wait_result = ResultNoSynchronizationObject;
// Set priorities.
m_priority = prio;
m_base_priority = prio;
// Initialize sleeping queue.
m_wait_queue = nullptr;
// Set suspend flags.
m_suspend_request_flags = 0;
m_suspend_allowed_flags = static_cast<u32>(ThreadState::SuspendFlagMask);
// We're neither debug attached, nor are we nesting our priority inheritance.
m_debug_attached = false;
m_priority_inheritance_count = 0;
// We haven't been scheduled, and we have done no light IPC.
m_schedule_count = -1;
m_last_scheduled_tick = 0;
m_light_ipc_data = nullptr;
// We're not waiting for a lock, and we haven't disabled migration.
m_waiting_lock_info = nullptr;
m_num_core_migration_disables = 0;
// We have no waiters, but we do have an entrypoint.
m_num_kernel_waiters = 0;
// Set our current core id.
m_current_core_id = phys_core;
// We haven't released our resource limit hint, and we've spent no time on the cpu.
m_resource_limit_release_hint = false;
m_cpu_time = 0;
// Set debug context.
m_stack_top = user_stack_top;
m_argument = arg;
// Clear our stack parameters.
std::memset(static_cast<void*>(std::addressof(GetStackParameters())), 0,
sizeof(StackParameters));
// Set parent, if relevant.
if (owner != nullptr) {
// Setup the TLS, if needed.
if (type == ThreadType::User) {
R_TRY(owner->CreateThreadLocalRegion(std::addressof(m_tls_address)));
}
m_parent = owner;
m_parent->Open();
}
// Initialize thread context.
ResetThreadContext64(m_thread_context_64, user_stack_top, func, arg);
ResetThreadContext32(m_thread_context_32, static_cast<u32>(user_stack_top),
static_cast<u32>(func), static_cast<u32>(arg));
// Setup the stack parameters.
StackParameters& sp = this->GetStackParameters();
sp.cur_thread = this;
sp.disable_count = 1;
this->SetInExceptionHandler();
// Set thread ID.
m_thread_id = m_kernel.CreateNewThreadID();
// We initialized!
m_initialized = true;
// Register ourselves with our parent process.
if (m_parent != nullptr) {
m_parent->RegisterThread(this);
if (m_parent->IsSuspended()) {
RequestSuspend(SuspendType::Process);
}
}
R_SUCCEED();
}
Result KThread::InitializeThread(KThread* thread, KThreadFunction func, uintptr_t arg,
VAddr user_stack_top, s32 prio, s32 core, KProcess* owner,
ThreadType type, std::function<void()>&& init_func) {
// Initialize the thread.
R_TRY(thread->Initialize(func, arg, user_stack_top, prio, core, owner, type));
// Initialize emulation parameters.
thread->m_host_context = std::make_shared<Common::Fiber>(std::move(init_func));
R_SUCCEED();
}
Result KThread::InitializeDummyThread(KThread* thread, KProcess* owner) {
// Initialize the thread.
R_TRY(thread->Initialize({}, {}, {}, DummyThreadPriority, 3, owner, ThreadType::Dummy));
// Initialize emulation parameters.
thread->m_stack_parameters.disable_count = 0;
R_SUCCEED();
}
Result KThread::InitializeMainThread(Core::System& system, KThread* thread, s32 virt_core) {
R_RETURN(InitializeThread(thread, {}, {}, {}, IdleThreadPriority, virt_core, {},
ThreadType::Main, system.GetCpuManager().GetGuestActivateFunc()));
}
Result KThread::InitializeIdleThread(Core::System& system, KThread* thread, s32 virt_core) {
R_RETURN(InitializeThread(thread, {}, {}, {}, IdleThreadPriority, virt_core, {},
ThreadType::Main, system.GetCpuManager().GetIdleThreadStartFunc()));
}
Result KThread::InitializeHighPriorityThread(Core::System& system, KThread* thread,
KThreadFunction func, uintptr_t arg, s32 virt_core) {
R_RETURN(InitializeThread(thread, func, arg, {}, {}, virt_core, nullptr,
ThreadType::HighPriority,
system.GetCpuManager().GetShutdownThreadStartFunc()));
}
Result KThread::InitializeUserThread(Core::System& system, KThread* thread, KThreadFunction func,
uintptr_t arg, VAddr user_stack_top, s32 prio, s32 virt_core,
KProcess* owner) {
system.Kernel().GlobalSchedulerContext().AddThread(thread);
R_RETURN(InitializeThread(thread, func, arg, user_stack_top, prio, virt_core, owner,
ThreadType::User, system.GetCpuManager().GetGuestThreadFunc()));
}
Result KThread::InitializeServiceThread(Core::System& system, KThread* thread,
std::function<void()>&& func, s32 prio, s32 virt_core,
KProcess* owner) {
system.Kernel().GlobalSchedulerContext().AddThread(thread);
std::function<void()> func2{[&system, func{std::move(func)}] {
// Similar to UserModeThreadStarter.
system.Kernel().CurrentScheduler()->OnThreadStart();
// Run the guest function.
func();
// Exit.
Svc::ExitThread(system);
}};
R_RETURN(InitializeThread(thread, {}, {}, {}, prio, virt_core, owner, ThreadType::HighPriority,
std::move(func2)));
}
void KThread::PostDestroy(uintptr_t arg) {
KProcess* owner = reinterpret_cast<KProcess*>(arg & ~1ULL);
const bool resource_limit_release_hint = (arg & 1);
const s64 hint_value = (resource_limit_release_hint ? 0 : 1);
if (owner != nullptr) {
owner->GetResourceLimit()->Release(LimitableResource::ThreadCountMax, 1, hint_value);
owner->Close();
}
}
void KThread::Finalize() {
// If the thread has an owner process, unregister it.
if (m_parent != nullptr) {
m_parent->UnregisterThread(this);
}
// If the thread has a local region, delete it.
if (m_tls_address != 0) {
ASSERT(m_parent->DeleteThreadLocalRegion(m_tls_address).IsSuccess());
}
// Release any waiters.
{
ASSERT(m_waiting_lock_info == nullptr);
KScopedSchedulerLock sl{m_kernel};
// Check that we have no kernel waiters.
ASSERT(m_num_kernel_waiters == 0);
auto it = m_held_lock_info_list.begin();
while (it != m_held_lock_info_list.end()) {
// Get the lock info.
auto* const lock_info = std::addressof(*it);
// The lock shouldn't have a kernel waiter.
ASSERT(!lock_info->GetIsKernelAddressKey());
// Remove all waiters.
while (lock_info->GetWaiterCount() != 0) {
// Get the front waiter.
KThread* const waiter = lock_info->GetHighestPriorityWaiter();
// Remove it from the lock.
if (lock_info->RemoveWaiter(waiter)) {
ASSERT(lock_info->GetWaiterCount() == 0);
}
// Cancel the thread's wait.
waiter->CancelWait(ResultInvalidState, true);
}
// Remove the held lock from our list.
it = m_held_lock_info_list.erase(it);
// Free the lock info.
LockWithPriorityInheritanceInfo::Free(m_kernel, lock_info);
}
}
// Release host emulation members.
m_host_context.reset();
// Perform inherited finalization.
KSynchronizationObject::Finalize();
}
bool KThread::IsSignaled() const {
return m_signaled;
}
void KThread::OnTimer() {
ASSERT(KScheduler::IsSchedulerLockedByCurrentThread(m_kernel));
// If we're waiting, cancel the wait.
if (this->GetState() == ThreadState::Waiting) {
m_wait_queue->CancelWait(this, ResultTimedOut, false);
}
}
void KThread::StartTermination() {
ASSERT(KScheduler::IsSchedulerLockedByCurrentThread(m_kernel));
// Release user exception and unpin, if relevant.
if (m_parent != nullptr) {
m_parent->ReleaseUserException(this);
if (m_parent->GetPinnedThread(GetCurrentCoreId(m_kernel)) == this) {
m_parent->UnpinCurrentThread(m_core_id);
}
}
// Set state to terminated.
this->SetState(ThreadState::Terminated);
// Clear the thread's status as running in parent.
if (m_parent != nullptr) {
m_parent->ClearRunningThread(this);
}
// Signal.
m_signaled = true;
KSynchronizationObject::NotifyAvailable();
// Clear previous thread in KScheduler.
KScheduler::ClearPreviousThread(m_kernel, this);
// Register terminated dpc flag.
this->RegisterDpc(DpcFlag::Terminated);
}
void KThread::FinishTermination() {
// Ensure that the thread is not executing on any core.
if (m_parent != nullptr) {
for (std::size_t i = 0; i < static_cast<std::size_t>(Core::Hardware::NUM_CPU_CORES); ++i) {
KThread* core_thread{};
do {
core_thread = m_kernel.Scheduler(i).GetSchedulerCurrentThread();
} while (core_thread == this);
}
}
// Close the thread.
this->Close();
}
void KThread::DoWorkerTaskImpl() {
// Finish the termination that was begun by Exit().
this->FinishTermination();
}
void KThread::Pin(s32 current_core) {
ASSERT(KScheduler::IsSchedulerLockedByCurrentThread(m_kernel));
// Set ourselves as pinned.
GetStackParameters().is_pinned = true;
// Disable core migration.
ASSERT(m_num_core_migration_disables == 0);
{
++m_num_core_migration_disables;
// Save our ideal state to restore when we're unpinned.
m_original_physical_ideal_core_id = m_physical_ideal_core_id;
m_original_physical_affinity_mask = m_physical_affinity_mask;
// Bind ourselves to this core.
const s32 active_core = this->GetActiveCore();
this->SetActiveCore(current_core);
m_physical_ideal_core_id = current_core;
m_physical_affinity_mask.SetAffinityMask(1ULL << current_core);
if (active_core != current_core ||
m_physical_affinity_mask.GetAffinityMask() !=
m_original_physical_affinity_mask.GetAffinityMask()) {
KScheduler::OnThreadAffinityMaskChanged(m_kernel, this,
m_original_physical_affinity_mask, active_core);
}
}
// Disallow performing thread suspension.
{
// Update our allow flags.
m_suspend_allowed_flags &= ~(1 << (static_cast<u32>(SuspendType::Thread) +
static_cast<u32>(ThreadState::SuspendShift)));
// Update our state.
this->UpdateState();
}
// TODO(bunnei): Update our SVC access permissions.
ASSERT(m_parent != nullptr);
}
void KThread::Unpin() {
ASSERT(KScheduler::IsSchedulerLockedByCurrentThread(m_kernel));
// Set ourselves as unpinned.
this->GetStackParameters().is_pinned = false;
// Enable core migration.
ASSERT(m_num_core_migration_disables == 1);
{
m_num_core_migration_disables--;
// Restore our original state.
const KAffinityMask old_mask = m_physical_affinity_mask;
m_physical_ideal_core_id = m_original_physical_ideal_core_id;
m_physical_affinity_mask = m_original_physical_affinity_mask;
if (m_physical_affinity_mask.GetAffinityMask() != old_mask.GetAffinityMask()) {
const s32 active_core = this->GetActiveCore();
if (!m_physical_affinity_mask.GetAffinity(active_core)) {
if (m_physical_ideal_core_id >= 0) {
this->SetActiveCore(m_physical_ideal_core_id);
} else {
this->SetActiveCore(static_cast<s32>(
Common::BitSize<u64>() - 1 -
std::countl_zero(m_physical_affinity_mask.GetAffinityMask())));
}
}
KScheduler::OnThreadAffinityMaskChanged(m_kernel, this, old_mask, active_core);
}
}
// Allow performing thread suspension (if termination hasn't been requested).
if (!this->IsTerminationRequested()) {
// Update our allow flags.
m_suspend_allowed_flags |= (1 << (static_cast<u32>(SuspendType::Thread) +
static_cast<u32>(ThreadState::SuspendShift)));
// Update our state.
this->UpdateState();
}
// TODO(bunnei): Update our SVC access permissions.
ASSERT(m_parent != nullptr);
// Resume any threads that began waiting on us while we were pinned.
for (auto it = m_pinned_waiter_list.begin(); it != m_pinned_waiter_list.end(); ++it) {
it->EndWait(ResultSuccess);
}
}
u16 KThread::GetUserDisableCount() const {
if (!this->IsUserThread()) {
// We only emulate TLS for user threads
return {};
}
auto& memory = m_kernel.System().Memory();
return memory.Read16(m_tls_address + offsetof(ThreadLocalRegion, disable_count));
}
void KThread::SetInterruptFlag() {
if (!this->IsUserThread()) {
// We only emulate TLS for user threads
return;
}
auto& memory = m_kernel.System().Memory();
memory.Write16(m_tls_address + offsetof(ThreadLocalRegion, interrupt_flag), 1);
}
void KThread::ClearInterruptFlag() {
if (!this->IsUserThread()) {
// We only emulate TLS for user threads
return;
}
auto& memory = m_kernel.System().Memory();
memory.Write16(m_tls_address + offsetof(ThreadLocalRegion, interrupt_flag), 0);
}
Result KThread::GetCoreMask(s32* out_ideal_core, u64* out_affinity_mask) {
KScopedSchedulerLock sl{m_kernel};
// Get the virtual mask.
*out_ideal_core = m_virtual_ideal_core_id;
*out_affinity_mask = m_virtual_affinity_mask;
R_SUCCEED();
}
Result KThread::GetPhysicalCoreMask(s32* out_ideal_core, u64* out_affinity_mask) {
KScopedSchedulerLock sl{m_kernel};
ASSERT(m_num_core_migration_disables >= 0);
// Select between core mask and original core mask.
if (m_num_core_migration_disables == 0) {
*out_ideal_core = m_physical_ideal_core_id;
*out_affinity_mask = m_physical_affinity_mask.GetAffinityMask();
} else {
*out_ideal_core = m_original_physical_ideal_core_id;
*out_affinity_mask = m_original_physical_affinity_mask.GetAffinityMask();
}
R_SUCCEED();
}
Result KThread::SetCoreMask(s32 core_id, u64 v_affinity_mask) {
ASSERT(m_parent != nullptr);
ASSERT(v_affinity_mask != 0);
KScopedLightLock lk(m_activity_pause_lock);
// Set the core mask.
u64 p_affinity_mask = 0;
{
KScopedSchedulerLock sl(m_kernel);
ASSERT(m_num_core_migration_disables >= 0);
// If we're updating, set our ideal virtual core.
if (core_id != Svc::IdealCoreNoUpdate) {
m_virtual_ideal_core_id = core_id;
} else {
// Preserve our ideal core id.
core_id = m_virtual_ideal_core_id;
R_UNLESS(((1ULL << core_id) & v_affinity_mask) != 0, ResultInvalidCombination);
}
// Set our affinity mask.
m_virtual_affinity_mask = v_affinity_mask;
// Translate the virtual core to a physical core.
if (core_id >= 0) {
core_id = Core::Hardware::VirtualToPhysicalCoreMap[core_id];
}
// Translate the virtual affinity mask to a physical one.
while (v_affinity_mask != 0) {
const u64 next = std::countr_zero(v_affinity_mask);
v_affinity_mask &= ~(1ULL << next);
p_affinity_mask |= (1ULL << Core::Hardware::VirtualToPhysicalCoreMap[next]);
}
// If we haven't disabled migration, perform an affinity change.
if (m_num_core_migration_disables == 0) {
const KAffinityMask old_mask = m_physical_affinity_mask;
// Set our new ideals.
m_physical_ideal_core_id = core_id;
m_physical_affinity_mask.SetAffinityMask(p_affinity_mask);
if (m_physical_affinity_mask.GetAffinityMask() != old_mask.GetAffinityMask()) {
const s32 active_core = GetActiveCore();
if (active_core >= 0 && !m_physical_affinity_mask.GetAffinity(active_core)) {
const s32 new_core = static_cast<s32>(
m_physical_ideal_core_id >= 0
? m_physical_ideal_core_id
: Common::BitSize<u64>() - 1 -
std::countl_zero(m_physical_affinity_mask.GetAffinityMask()));
SetActiveCore(new_core);
}
KScheduler::OnThreadAffinityMaskChanged(m_kernel, this, old_mask, active_core);
}
} else {
// Otherwise, we edit the original affinity for restoration later.
m_original_physical_ideal_core_id = core_id;
m_original_physical_affinity_mask.SetAffinityMask(p_affinity_mask);
}
}
// Update the pinned waiter list.
ThreadQueueImplForKThreadSetProperty wait_queue(m_kernel, std::addressof(m_pinned_waiter_list));
{
bool retry_update{};
do {
// Lock the scheduler.
KScopedSchedulerLock sl(m_kernel);
// Don't do any further management if our termination has been requested.
R_SUCCEED_IF(this->IsTerminationRequested());
// By default, we won't need to retry.
retry_update = false;
// Check if the thread is currently running.
bool thread_is_current{};
s32 thread_core;
for (thread_core = 0; thread_core < static_cast<s32>(Core::Hardware::NUM_CPU_CORES);
++thread_core) {
if (m_kernel.Scheduler(thread_core).GetSchedulerCurrentThread() == this) {
thread_is_current = true;
break;
}
}
// If the thread is currently running, check whether it's no longer allowed under the
// new mask.
if (thread_is_current && ((1ULL << thread_core) & p_affinity_mask) == 0) {
// If the thread is pinned, we want to wait until it's not pinned.
if (this->GetStackParameters().is_pinned) {
// Verify that the current thread isn't terminating.
R_UNLESS(!GetCurrentThread(m_kernel).IsTerminationRequested(),
ResultTerminationRequested);
// Wait until the thread isn't pinned any more.
m_pinned_waiter_list.push_back(GetCurrentThread(m_kernel));
GetCurrentThread(m_kernel).BeginWait(std::addressof(wait_queue));
} else {
// If the thread isn't pinned, release the scheduler lock and retry until it's
// not current.
retry_update = true;
}
}
} while (retry_update);
}
R_SUCCEED();
}
void KThread::SetBasePriority(s32 value) {
ASSERT(Svc::HighestThreadPriority <= value && value <= Svc::LowestThreadPriority);
KScopedSchedulerLock sl{m_kernel};
// Change our base priority.
m_base_priority = value;
// Perform a priority restoration.
RestorePriority(m_kernel, this);
}
KThread* KThread::GetLockOwner() const {
return m_waiting_lock_info != nullptr ? m_waiting_lock_info->GetOwner() : nullptr;
}
void KThread::IncreaseBasePriority(s32 priority) {
ASSERT(Svc::HighestThreadPriority <= priority && priority <= Svc::LowestThreadPriority);
ASSERT(KScheduler::IsSchedulerLockedByCurrentThread(m_kernel));
ASSERT(!this->GetStackParameters().is_pinned);
// Set our base priority.
if (m_base_priority > priority) {
m_base_priority = priority;
// Perform a priority restoration.
RestorePriority(m_kernel, this);
}
}
void KThread::RequestSuspend(SuspendType type) {
KScopedSchedulerLock sl{m_kernel};
// Note the request in our flags.
m_suspend_request_flags |=
(1U << (static_cast<u32>(ThreadState::SuspendShift) + static_cast<u32>(type)));
// Try to perform the suspend.
this->TrySuspend();
}
void KThread::Resume(SuspendType type) {
KScopedSchedulerLock sl{m_kernel};
// Clear the request in our flags.
m_suspend_request_flags &=
~(1U << (static_cast<u32>(ThreadState::SuspendShift) + static_cast<u32>(type)));
// Update our state.
this->UpdateState();
}
void KThread::WaitCancel() {
KScopedSchedulerLock sl{m_kernel};
// Check if we're waiting and cancellable.
if (this->GetState() == ThreadState::Waiting && m_cancellable) {
m_wait_cancelled = false;
m_wait_queue->CancelWait(this, ResultCancelled, true);
} else {
// Otherwise, note that we cancelled a wait.
m_wait_cancelled = true;
}
}
void KThread::TrySuspend() {
ASSERT(KScheduler::IsSchedulerLockedByCurrentThread(m_kernel));
ASSERT(IsSuspendRequested());
// Ensure that we have no waiters.
if (GetNumKernelWaiters() > 0) {
return;
}
ASSERT(GetNumKernelWaiters() == 0);
// Perform the suspend.
this->UpdateState();
}
void KThread::UpdateState() {
ASSERT(KScheduler::IsSchedulerLockedByCurrentThread(m_kernel));
// Set our suspend flags in state.
const ThreadState old_state = m_thread_state.load(std::memory_order_relaxed);
const auto new_state =
static_cast<ThreadState>(this->GetSuspendFlags()) | (old_state & ThreadState::Mask);
m_thread_state.store(new_state, std::memory_order_relaxed);
// Note the state change in scheduler.
if (new_state != old_state) {
KScheduler::OnThreadStateChanged(m_kernel, this, old_state);
}
}
void KThread::Continue() {
ASSERT(KScheduler::IsSchedulerLockedByCurrentThread(m_kernel));
// Clear our suspend flags in state.
const ThreadState old_state = m_thread_state.load(std::memory_order_relaxed);
m_thread_state.store(old_state & ThreadState::Mask, std::memory_order_relaxed);
// Note the state change in scheduler.
KScheduler::OnThreadStateChanged(m_kernel, this, old_state);
}
void KThread::CloneFpuStatus() {
// We shouldn't reach here when starting kernel threads.
ASSERT(this->GetOwnerProcess() != nullptr);
ASSERT(this->GetOwnerProcess() == GetCurrentProcessPointer(m_kernel));
if (this->GetOwnerProcess()->Is64BitProcess()) {
// Clone FPSR and FPCR.
ThreadContext64 cur_ctx{};
m_kernel.System().CurrentArmInterface().SaveContext(cur_ctx);
this->GetContext64().fpcr = cur_ctx.fpcr;
this->GetContext64().fpsr = cur_ctx.fpsr;
} else {
// Clone FPSCR.
ThreadContext32 cur_ctx{};
m_kernel.System().CurrentArmInterface().SaveContext(cur_ctx);
this->GetContext32().fpscr = cur_ctx.fpscr;
}
}
Result KThread::SetActivity(Svc::ThreadActivity activity) {
// Lock ourselves.
KScopedLightLock lk(m_activity_pause_lock);
// Set the activity.
{
// Lock the scheduler.
KScopedSchedulerLock sl(m_kernel);
// Verify our state.
const auto cur_state = this->GetState();
R_UNLESS((cur_state == ThreadState::Waiting || cur_state == ThreadState::Runnable),
ResultInvalidState);
// Either pause or resume.
if (activity == Svc::ThreadActivity::Paused) {
// Verify that we're not suspended.
R_UNLESS(!this->IsSuspendRequested(SuspendType::Thread), ResultInvalidState);
// Suspend.
this->RequestSuspend(SuspendType::Thread);
} else {
ASSERT(activity == Svc::ThreadActivity::Runnable);
// Verify that we're suspended.
R_UNLESS(this->IsSuspendRequested(SuspendType::Thread), ResultInvalidState);
// Resume.
this->Resume(SuspendType::Thread);
}
}
// If the thread is now paused, update the pinned waiter list.
if (activity == Svc::ThreadActivity::Paused) {
ThreadQueueImplForKThreadSetProperty wait_queue(m_kernel,
std::addressof(m_pinned_waiter_list));
bool thread_is_current{};
do {
// Lock the scheduler.
KScopedSchedulerLock sl(m_kernel);
// Don't do any further management if our termination has been requested.
R_SUCCEED_IF(this->IsTerminationRequested());
// By default, treat the thread as not current.
thread_is_current = false;
// Check whether the thread is pinned.
if (this->GetStackParameters().is_pinned) {
// Verify that the current thread isn't terminating.
R_UNLESS(!GetCurrentThread(m_kernel).IsTerminationRequested(),
ResultTerminationRequested);
// Wait until the thread isn't pinned any more.
m_pinned_waiter_list.push_back(GetCurrentThread(m_kernel));
GetCurrentThread(m_kernel).BeginWait(std::addressof(wait_queue));
} else {
// Check if the thread is currently running.
// If it is, we'll need to retry.
for (auto i = 0; i < static_cast<s32>(Core::Hardware::NUM_CPU_CORES); ++i) {
if (m_kernel.Scheduler(i).GetSchedulerCurrentThread() == this) {
thread_is_current = true;
break;
}
}
}
} while (thread_is_current);
}
R_SUCCEED();
}
Result KThread::GetThreadContext3(std::vector<u8>& out) {
// Lock ourselves.
KScopedLightLock lk{m_activity_pause_lock};
// Get the context.
{
// Lock the scheduler.
KScopedSchedulerLock sl{m_kernel};
// Verify that we're suspended.
R_UNLESS(IsSuspendRequested(SuspendType::Thread), ResultInvalidState);
// If we're not terminating, get the thread's user context.
if (!this->IsTerminationRequested()) {
if (m_parent->Is64BitProcess()) {
// Mask away mode bits, interrupt bits, IL bit, and other reserved bits.
auto context = GetContext64();
context.pstate &= 0xFF0FFE20;
out.resize(sizeof(context));
std::memcpy(out.data(), std::addressof(context), sizeof(context));
} else {
// Mask away mode bits, interrupt bits, IL bit, and other reserved bits.
auto context = GetContext32();
context.cpsr &= 0xFF0FFE20;
out.resize(sizeof(context));
std::memcpy(out.data(), std::addressof(context), sizeof(context));
}
}
}
R_SUCCEED();
}
void KThread::AddHeldLock(LockWithPriorityInheritanceInfo* lock_info) {
ASSERT(KScheduler::IsSchedulerLockedByCurrentThread(m_kernel));
// Set ourselves as the lock's owner.
lock_info->SetOwner(this);
// Add the lock to our held list.
m_held_lock_info_list.push_front(*lock_info);
}
KThread::LockWithPriorityInheritanceInfo* KThread::FindHeldLock(VAddr address_key_,
bool is_kernel_address_key_) {
ASSERT(KScheduler::IsSchedulerLockedByCurrentThread(m_kernel));
// Try to find an existing held lock.
for (auto& held_lock : m_held_lock_info_list) {
if (held_lock.GetAddressKey() == address_key_ &&
held_lock.GetIsKernelAddressKey() == is_kernel_address_key_) {
return std::addressof(held_lock);
}
}
return nullptr;
}
void KThread::AddWaiterImpl(KThread* thread) {
ASSERT(KScheduler::IsSchedulerLockedByCurrentThread(m_kernel));
ASSERT(thread->GetConditionVariableTree() == nullptr);
// Get the thread's address key.
const auto address_key = thread->GetAddressKey();
const auto is_kernel_address_key = thread->GetIsKernelAddressKey();
// Keep track of how many kernel waiters we have.
if (is_kernel_address_key) {
ASSERT((m_num_kernel_waiters++) >= 0);
KScheduler::SetSchedulerUpdateNeeded(m_kernel);
}
// Get the relevant lock info.
auto* lock_info = this->FindHeldLock(address_key, is_kernel_address_key);
if (lock_info == nullptr) {
// Create a new lock for the address key.
lock_info =
LockWithPriorityInheritanceInfo::Create(m_kernel, address_key, is_kernel_address_key);
// Add the new lock to our list.
this->AddHeldLock(lock_info);
}
// Add the thread as waiter to the lock info.
lock_info->AddWaiter(thread);
}
void KThread::RemoveWaiterImpl(KThread* thread) {
ASSERT(KScheduler::IsSchedulerLockedByCurrentThread(m_kernel));
// Keep track of how many kernel waiters we have.
if (thread->GetIsKernelAddressKey()) {
ASSERT((m_num_kernel_waiters--) > 0);
KScheduler::SetSchedulerUpdateNeeded(m_kernel);
}
// Get the info for the lock the thread is waiting on.
auto* lock_info = thread->GetWaitingLockInfo();
ASSERT(lock_info->GetOwner() == this);
// Remove the waiter.
if (lock_info->RemoveWaiter(thread)) {
m_held_lock_info_list.erase(m_held_lock_info_list.iterator_to(*lock_info));
LockWithPriorityInheritanceInfo::Free(m_kernel, lock_info);
}
}
void KThread::RestorePriority(KernelCore& kernel, KThread* thread) {
ASSERT(KScheduler::IsSchedulerLockedByCurrentThread(kernel));
while (thread != nullptr) {
// We want to inherit priority where possible.
s32 new_priority = thread->GetBasePriority();
for (const auto& held_lock : thread->m_held_lock_info_list) {
new_priority =
std::min(new_priority, held_lock.GetHighestPriorityWaiter()->GetPriority());
}
// If the priority we would inherit is not different from ours, don't do anything.
if (new_priority == thread->GetPriority()) {
return;
}
// Get the owner of whatever lock this thread is waiting on.
KThread* const lock_owner = thread->GetLockOwner();
// If the thread is waiting on some lock, remove it as a waiter to prevent violating red
// black tree invariants.
if (lock_owner != nullptr) {
lock_owner->RemoveWaiterImpl(thread);
}
// Ensure we don't violate condition variable red black tree invariants.
if (auto* cv_tree = thread->GetConditionVariableTree(); cv_tree != nullptr) {
BeforeUpdatePriority(kernel, cv_tree, thread);
}
// Change the priority.
const s32 old_priority = thread->GetPriority();
thread->SetPriority(new_priority);
// Restore the condition variable, if relevant.
if (auto* cv_tree = thread->GetConditionVariableTree(); cv_tree != nullptr) {
AfterUpdatePriority(kernel, cv_tree, thread);
}
// If we removed the thread from some lock's waiting list, add it back.
if (lock_owner != nullptr) {
lock_owner->AddWaiterImpl(thread);
}
// Update the scheduler.
KScheduler::OnThreadPriorityChanged(kernel, thread, old_priority);
// Continue inheriting priority.
thread = lock_owner;
}
}
void KThread::AddWaiter(KThread* thread) {
this->AddWaiterImpl(thread);
// If the thread has a higher priority than us, we should inherit.
if (thread->GetPriority() < this->GetPriority()) {
RestorePriority(m_kernel, this);
}
}
void KThread::RemoveWaiter(KThread* thread) {
this->RemoveWaiterImpl(thread);
// If our priority is the same as the thread's (and we've inherited), we may need to restore to
// lower priority.
if (this->GetPriority() == thread->GetPriority() &&
this->GetPriority() < this->GetBasePriority()) {
RestorePriority(m_kernel, this);
}
}
KThread* KThread::RemoveWaiterByKey(bool* out_has_waiters, VAddr key, bool is_kernel_address_key_) {
ASSERT(KScheduler::IsSchedulerLockedByCurrentThread(m_kernel));
// Get the relevant lock info.
auto* lock_info = this->FindHeldLock(key, is_kernel_address_key_);
if (lock_info == nullptr) {
*out_has_waiters = false;
return nullptr;
}
// Remove the lock info from our held list.
m_held_lock_info_list.erase(m_held_lock_info_list.iterator_to(*lock_info));
// Keep track of how many kernel waiters we have.
if (lock_info->GetIsKernelAddressKey()) {
m_num_kernel_waiters -= lock_info->GetWaiterCount();
ASSERT(m_num_kernel_waiters >= 0);
KScheduler::SetSchedulerUpdateNeeded(m_kernel);
}
ASSERT(lock_info->GetWaiterCount() > 0);
// Remove the highest priority waiter from the lock to be the next owner.
KThread* next_lock_owner = lock_info->GetHighestPriorityWaiter();
if (lock_info->RemoveWaiter(next_lock_owner)) {
// The new owner was the only waiter.
*out_has_waiters = false;
// Free the lock info, since it has no waiters.
LockWithPriorityInheritanceInfo::Free(m_kernel, lock_info);
} else {
// There are additional waiters on the lock.
*out_has_waiters = true;
// Add the lock to the new owner's held list.
next_lock_owner->AddHeldLock(lock_info);
// Keep track of any kernel waiters for the new owner.
if (lock_info->GetIsKernelAddressKey()) {
next_lock_owner->m_num_kernel_waiters += lock_info->GetWaiterCount();
ASSERT(next_lock_owner->m_num_kernel_waiters > 0);
// NOTE: No need to set scheduler update needed, because we will have already done so
// when removing earlier.
}
}
// If our priority is the same as the next owner's (and we've inherited), we may need to restore
// to lower priority.
if (this->GetPriority() == next_lock_owner->GetPriority() &&
this->GetPriority() < this->GetBasePriority()) {
RestorePriority(m_kernel, this);
// NOTE: No need to restore priority on the next lock owner, because it was already the
// highest priority waiter on the lock.
}
// Return the next lock owner.
return next_lock_owner;
}
Result KThread::Run() {
while (true) {
KScopedSchedulerLock lk{m_kernel};
// If either this thread or the current thread are requesting termination, note it.
R_UNLESS(!this->IsTerminationRequested(), ResultTerminationRequested);
R_UNLESS(!GetCurrentThread(m_kernel).IsTerminationRequested(), ResultTerminationRequested);
// Ensure our thread state is correct.
R_UNLESS(this->GetState() == ThreadState::Initialized, ResultInvalidState);
// If the current thread has been asked to suspend, suspend it and retry.
if (GetCurrentThread(m_kernel).IsSuspended()) {
GetCurrentThread(m_kernel).UpdateState();
continue;
}
// If we're not a kernel thread and we've been asked to suspend, suspend ourselves.
if (KProcess* owner = this->GetOwnerProcess(); owner != nullptr) {
if (IsUserThread() && IsSuspended()) {
this->UpdateState();
}
owner->IncrementRunningThreadCount();
}
// Set our state and finish.
this->SetState(ThreadState::Runnable);
R_SUCCEED();
}
}
void KThread::Exit() {
ASSERT(this == GetCurrentThreadPointer(m_kernel));
// Release the thread resource hint, running thread count from parent.
if (m_parent != nullptr) {
m_parent->GetResourceLimit()->Release(Kernel::LimitableResource::ThreadCountMax, 0, 1);
m_resource_limit_release_hint = true;
m_parent->DecrementRunningThreadCount();
}
// Perform termination.
{
KScopedSchedulerLock sl{m_kernel};
// Disallow all suspension.
m_suspend_allowed_flags = 0;
this->UpdateState();
// Disallow all suspension.
m_suspend_allowed_flags = 0;
// Start termination.
StartTermination();
// Register the thread as a work task.
KWorkerTaskManager::AddTask(m_kernel, KWorkerTaskManager::WorkerType::Exit, this);
}
UNREACHABLE_MSG("KThread::Exit() would return");
}
Result KThread::Terminate() {
ASSERT(this != GetCurrentThreadPointer(m_kernel));
// Request the thread terminate if it hasn't already.
if (const auto new_state = this->RequestTerminate(); new_state != ThreadState::Terminated) {
// If the thread isn't terminated, wait for it to terminate.
s32 index;
KSynchronizationObject* objects[] = {this};
R_TRY(KSynchronizationObject::Wait(m_kernel, std::addressof(index), objects, 1,
Svc::WaitInfinite));
}
R_SUCCEED();
}
ThreadState KThread::RequestTerminate() {
ASSERT(this != GetCurrentThreadPointer(m_kernel));
KScopedSchedulerLock sl{m_kernel};
// Determine if this is the first termination request.
const bool first_request = [&]() -> bool {
// Perform an atomic compare-and-swap from false to true.
bool expected = false;
return m_termination_requested.compare_exchange_strong(expected, true);
}();
// If this is the first request, start termination procedure.
if (first_request) {
// If the thread is in initialized state, just change state to terminated.
if (this->GetState() == ThreadState::Initialized) {
m_thread_state = ThreadState::Terminated;
return ThreadState::Terminated;
}
// Register the terminating dpc.
this->RegisterDpc(DpcFlag::Terminating);
// If the thread is pinned, unpin it.
if (this->GetStackParameters().is_pinned) {
this->GetOwnerProcess()->UnpinThread(this);
}
// If the thread is suspended, continue it.
if (this->IsSuspended()) {
m_suspend_allowed_flags = 0;
this->UpdateState();
}
// Change the thread's priority to be higher than any system thread's.
this->IncreaseBasePriority(TerminatingThreadPriority);
// If the thread is runnable, send a termination interrupt to other cores.
if (this->GetState() == ThreadState::Runnable) {
if (const u64 core_mask = m_physical_affinity_mask.GetAffinityMask() &
~(1ULL << GetCurrentCoreId(m_kernel));
core_mask != 0) {
Kernel::KInterruptManager::SendInterProcessorInterrupt(m_kernel, core_mask);
}
}
// Wake up the thread.
if (this->GetState() == ThreadState::Waiting) {
m_wait_queue->CancelWait(this, ResultTerminationRequested, true);
}
}
return this->GetState();
}
Result KThread::Sleep(s64 timeout) {
ASSERT(!KScheduler::IsSchedulerLockedByCurrentThread(m_kernel));
ASSERT(this == GetCurrentThreadPointer(m_kernel));
ASSERT(timeout > 0);
ThreadQueueImplForKThreadSleep wait_queue_(m_kernel);
KHardwareTimer* timer{};
{
// Setup the scheduling lock and sleep.
KScopedSchedulerLockAndSleep slp(m_kernel, std::addressof(timer), this, timeout);
// Check if the thread should terminate.
if (this->IsTerminationRequested()) {
slp.CancelSleep();
R_THROW(ResultTerminationRequested);
}
// Wait for the sleep to end.
wait_queue_.SetHardwareTimer(timer);
this->BeginWait(std::addressof(wait_queue_));
SetWaitReasonForDebugging(ThreadWaitReasonForDebugging::Sleep);
}
R_SUCCEED();
}
void KThread::RequestDummyThreadWait() {
ASSERT(KScheduler::IsSchedulerLockedByCurrentThread(m_kernel));
ASSERT(this->IsDummyThread());
// We will block when the scheduler lock is released.
m_dummy_thread_runnable.store(false);
}
void KThread::DummyThreadBeginWait() {
if (!this->IsDummyThread() || m_kernel.IsPhantomModeForSingleCore()) {
// Occurs in single core mode.
return;
}
// Block until runnable is no longer false.
m_dummy_thread_runnable.wait(false);
}
void KThread::DummyThreadEndWait() {
ASSERT(KScheduler::IsSchedulerLockedByCurrentThread(m_kernel));
ASSERT(this->IsDummyThread());
// Wake up the waiting thread.
m_dummy_thread_runnable.store(true);
m_dummy_thread_runnable.notify_one();
}
void KThread::BeginWait(KThreadQueue* queue) {
// Set our state as waiting.
SetState(ThreadState::Waiting);
// Set our wait queue.
m_wait_queue = queue;
}
void KThread::NotifyAvailable(KSynchronizationObject* signaled_object, Result wait_result) {
// Lock the scheduler.
KScopedSchedulerLock sl(m_kernel);
// If we're waiting, notify our queue that we're available.
if (this->GetState() == ThreadState::Waiting) {
m_wait_queue->NotifyAvailable(this, signaled_object, wait_result);
}
}
void KThread::EndWait(Result wait_result) {
// Lock the scheduler.
KScopedSchedulerLock sl(m_kernel);
// If we're waiting, notify our queue that we're available.
if (this->GetState() == ThreadState::Waiting) {
if (m_wait_queue == nullptr) {
// This should never happen, but avoid a hard crash below to get this logged.
ASSERT_MSG(false, "wait_queue is nullptr!");
return;
}
m_wait_queue->EndWait(this, wait_result);
}
}
void KThread::CancelWait(Result wait_result, bool cancel_timer_task) {
// Lock the scheduler.
KScopedSchedulerLock sl(m_kernel);
// If we're waiting, notify our queue that we're available.
if (this->GetState() == ThreadState::Waiting) {
m_wait_queue->CancelWait(this, wait_result, cancel_timer_task);
}
}
void KThread::SetState(ThreadState state) {
KScopedSchedulerLock sl{m_kernel};
// Clear debugging state
SetWaitReasonForDebugging({});
const ThreadState old_state = m_thread_state.load(std::memory_order_relaxed);
m_thread_state.store(
static_cast<ThreadState>((old_state & ~ThreadState::Mask) | (state & ThreadState::Mask)),
std::memory_order_relaxed);
if (m_thread_state.load(std::memory_order_relaxed) != old_state) {
KScheduler::OnThreadStateChanged(m_kernel, this, old_state);
}
}
std::shared_ptr<Common::Fiber>& KThread::GetHostContext() {
return m_host_context;
}
void SetCurrentThread(KernelCore& kernel, KThread* thread) {
kernel.SetCurrentEmuThread(thread);
}
KThread* GetCurrentThreadPointer(KernelCore& kernel) {
return kernel.GetCurrentEmuThread();
}
KThread& GetCurrentThread(KernelCore& kernel) {
return *GetCurrentThreadPointer(kernel);
}
KProcess* GetCurrentProcessPointer(KernelCore& kernel) {
return GetCurrentThread(kernel).GetOwnerProcess();
}
KProcess& GetCurrentProcess(KernelCore& kernel) {
return *GetCurrentProcessPointer(kernel);
}
s32 GetCurrentCoreId(KernelCore& kernel) {
return GetCurrentThread(kernel).GetCurrentCore();
}
KScopedDisableDispatch::~KScopedDisableDispatch() {
// If we are shutting down the kernel, none of this is relevant anymore.
if (m_kernel.IsShuttingDown()) {
return;
}
if (GetCurrentThread(m_kernel).GetDisableDispatchCount() <= 1) {
auto* scheduler = m_kernel.CurrentScheduler();
if (scheduler && !m_kernel.IsPhantomModeForSingleCore()) {
scheduler->RescheduleCurrentCore();
} else {
KScheduler::RescheduleCurrentHLEThread(m_kernel);
}
} else {
GetCurrentThread(m_kernel).EnableDispatch();
}
}
} // namespace Kernel