// Copyright 2019 yuzu Emulator Project
// Licensed under GPLv2 or any later version
// Refer to the license.txt file included.
#include <algorithm>
#include <vector>
#include <fmt/format.h>
#include "common/assert.h"
#include "common/bit_field.h"
#include "common/common_types.h"
#include "common/logging/log.h"
#include "video_core/engines/shader_bytecode.h"
#include "video_core/shader/node_helper.h"
#include "video_core/shader/shader_ir.h"
namespace VideoCommon::Shader {
using Tegra::Shader::Instruction;
using Tegra::Shader::OpCode;
using Tegra::Shader::Register;
using Tegra::Shader::TextureMiscMode;
using Tegra::Shader::TextureProcessMode;
using Tegra::Shader::TextureType;
static std::size_t GetCoordCount(TextureType texture_type) {
switch (texture_type) {
case TextureType::Texture1D:
return 1;
case TextureType::Texture2D:
return 2;
case TextureType::Texture3D:
case TextureType::TextureCube:
return 3;
default:
UNIMPLEMENTED_MSG("Unhandled texture type: {}", static_cast<u32>(texture_type));
return 0;
}
}
u32 ShaderIR::DecodeTexture(NodeBlock& bb, u32 pc) {
const Instruction instr = {program_code[pc]};
const auto opcode = OpCode::Decode(instr);
bool is_bindless = false;
switch (opcode->get().GetId()) {
case OpCode::Id::TEX: {
if (instr.tex.UsesMiscMode(TextureMiscMode::NODEP)) {
LOG_WARNING(HW_GPU, "TEX.NODEP implementation is incomplete");
}
const TextureType texture_type{instr.tex.texture_type};
const bool is_array = instr.tex.array != 0;
const bool is_aoffi = instr.tex.UsesMiscMode(TextureMiscMode::AOFFI);
const bool depth_compare = instr.tex.UsesMiscMode(TextureMiscMode::DC);
const auto process_mode = instr.tex.GetTextureProcessMode();
WriteTexInstructionFloat(
bb, instr,
GetTexCode(instr, texture_type, process_mode, depth_compare, is_array, is_aoffi, {}));
break;
}
case OpCode::Id::TEX_B: {
UNIMPLEMENTED_IF_MSG(instr.tex.UsesMiscMode(TextureMiscMode::AOFFI),
"AOFFI is not implemented");
if (instr.tex.UsesMiscMode(TextureMiscMode::NODEP)) {
LOG_WARNING(HW_GPU, "TEX.NODEP implementation is incomplete");
}
const TextureType texture_type{instr.tex_b.texture_type};
const bool is_array = instr.tex_b.array != 0;
const bool is_aoffi = instr.tex.UsesMiscMode(TextureMiscMode::AOFFI);
const bool depth_compare = instr.tex_b.UsesMiscMode(TextureMiscMode::DC);
const auto process_mode = instr.tex_b.GetTextureProcessMode();
WriteTexInstructionFloat(bb, instr,
GetTexCode(instr, texture_type, process_mode, depth_compare,
is_array, is_aoffi, {instr.gpr20}));
break;
}
case OpCode::Id::TEXS: {
const TextureType texture_type{instr.texs.GetTextureType()};
const bool is_array{instr.texs.IsArrayTexture()};
const bool depth_compare = instr.texs.UsesMiscMode(TextureMiscMode::DC);
const auto process_mode = instr.texs.GetTextureProcessMode();
if (instr.texs.UsesMiscMode(TextureMiscMode::NODEP)) {
LOG_WARNING(HW_GPU, "TEXS.NODEP implementation is incomplete");
}
const Node4 components =
GetTexsCode(instr, texture_type, process_mode, depth_compare, is_array);
if (instr.texs.fp32_flag) {
WriteTexsInstructionFloat(bb, instr, components);
} else {
WriteTexsInstructionHalfFloat(bb, instr, components);
}
break;
}
case OpCode::Id::TLD4: {
ASSERT(instr.tld4.array == 0);
UNIMPLEMENTED_IF_MSG(instr.tld4.UsesMiscMode(TextureMiscMode::NDV),
"NDV is not implemented");
UNIMPLEMENTED_IF_MSG(instr.tld4.UsesMiscMode(TextureMiscMode::PTP),
"PTP is not implemented");
if (instr.tld4.UsesMiscMode(TextureMiscMode::NODEP)) {
LOG_WARNING(HW_GPU, "TLD4.NODEP implementation is incomplete");
}
const auto texture_type = instr.tld4.texture_type.Value();
const bool depth_compare = instr.tld4.UsesMiscMode(TextureMiscMode::DC);
const bool is_array = instr.tld4.array != 0;
const bool is_aoffi = instr.tld4.UsesMiscMode(TextureMiscMode::AOFFI);
WriteTexInstructionFloat(
bb, instr, GetTld4Code(instr, texture_type, depth_compare, is_array, is_aoffi));
break;
}
case OpCode::Id::TLD4S: {
UNIMPLEMENTED_IF_MSG(instr.tld4s.UsesMiscMode(TextureMiscMode::AOFFI),
"AOFFI is not implemented");
if (instr.tld4s.UsesMiscMode(TextureMiscMode::NODEP)) {
LOG_WARNING(HW_GPU, "TLD4S.NODEP implementation is incomplete");
}
const bool depth_compare = instr.tld4s.UsesMiscMode(TextureMiscMode::DC);
const Node op_a = GetRegister(instr.gpr8);
const Node op_b = GetRegister(instr.gpr20);
// TODO(Subv): Figure out how the sampler type is encoded in the TLD4S instruction.
std::vector<Node> coords;
if (depth_compare) {
// Note: TLD4S coordinate encoding works just like TEXS's
const Node op_y = GetRegister(instr.gpr8.Value() + 1);
coords.push_back(op_a);
coords.push_back(op_y);
coords.push_back(op_b);
} else {
coords.push_back(op_a);
coords.push_back(op_b);
}
const Node component = Immediate(static_cast<u32>(instr.tld4s.component));
const auto& sampler =
GetSampler(instr.sampler, {{TextureType::Texture2D, false, depth_compare}});
Node4 values;
for (u32 element = 0; element < values.size(); ++element) {
auto coords_copy = coords;
MetaTexture meta{sampler, {}, {}, {}, {}, {}, component, element};
values[element] = Operation(OperationCode::TextureGather, meta, std::move(coords_copy));
}
WriteTexsInstructionFloat(bb, instr, values, true);
break;
}
case OpCode::Id::TXQ_B:
is_bindless = true;
[[fallthrough]];
case OpCode::Id::TXQ: {
if (instr.txq.UsesMiscMode(TextureMiscMode::NODEP)) {
LOG_WARNING(HW_GPU, "TXQ.NODEP implementation is incomplete");
}
// TODO: The new commits on the texture refactor, change the way samplers work.
// Sadly, not all texture instructions specify the type of texture their sampler
// uses. This must be fixed at a later instance.
const auto& sampler =
is_bindless ? GetBindlessSampler(instr.gpr8, {}) : GetSampler(instr.sampler, {});
u32 indexer = 0;
switch (instr.txq.query_type) {
case Tegra::Shader::TextureQueryType::Dimension: {
for (u32 element = 0; element < 4; ++element) {
if (!instr.txq.IsComponentEnabled(element)) {
continue;
}
MetaTexture meta{sampler, {}, {}, {}, {}, {}, {}, element};
const Node value =
Operation(OperationCode::TextureQueryDimensions, meta,
GetRegister(instr.gpr8.Value() + (is_bindless ? 1 : 0)));
SetTemporary(bb, indexer++, value);
}
for (u32 i = 0; i < indexer; ++i) {
SetRegister(bb, instr.gpr0.Value() + i, GetTemporary(i));
}
break;
}
default:
UNIMPLEMENTED_MSG("Unhandled texture query type: {}",
static_cast<u32>(instr.txq.query_type.Value()));
}
break;
}
case OpCode::Id::TMML_B:
is_bindless = true;
[[fallthrough]];
case OpCode::Id::TMML: {
UNIMPLEMENTED_IF_MSG(instr.tmml.UsesMiscMode(Tegra::Shader::TextureMiscMode::NDV),
"NDV is not implemented");
if (instr.tmml.UsesMiscMode(TextureMiscMode::NODEP)) {
LOG_WARNING(HW_GPU, "TMML.NODEP implementation is incomplete");
}
auto texture_type = instr.tmml.texture_type.Value();
const bool is_array = instr.tmml.array != 0;
const auto& sampler =
is_bindless ? GetBindlessSampler(instr.gpr20, {{texture_type, is_array, false}})
: GetSampler(instr.sampler, {{texture_type, is_array, false}});
std::vector<Node> coords;
// TODO: Add coordinates for different samplers once other texture types are implemented.
switch (texture_type) {
case TextureType::Texture1D:
coords.push_back(GetRegister(instr.gpr8));
break;
case TextureType::Texture2D:
coords.push_back(GetRegister(instr.gpr8.Value() + 0));
coords.push_back(GetRegister(instr.gpr8.Value() + 1));
break;
default:
UNIMPLEMENTED_MSG("Unhandled texture type {}", static_cast<u32>(texture_type));
// Fallback to interpreting as a 2D texture for now
coords.push_back(GetRegister(instr.gpr8.Value() + 0));
coords.push_back(GetRegister(instr.gpr8.Value() + 1));
texture_type = TextureType::Texture2D;
}
u32 indexer = 0;
for (u32 element = 0; element < 2; ++element) {
if (!instr.tmml.IsComponentEnabled(element)) {
continue;
}
auto params = coords;
MetaTexture meta{sampler, {}, {}, {}, {}, {}, {}, element};
const Node value = Operation(OperationCode::TextureQueryLod, meta, std::move(params));
SetTemporary(bb, indexer++, value);
}
for (u32 i = 0; i < indexer; ++i) {
SetRegister(bb, instr.gpr0.Value() + i, GetTemporary(i));
}
break;
}
case OpCode::Id::TLD: {
UNIMPLEMENTED_IF_MSG(instr.tld.aoffi, "AOFFI is not implemented");
UNIMPLEMENTED_IF_MSG(instr.tld.ms, "MS is not implemented");
UNIMPLEMENTED_IF_MSG(instr.tld.cl, "CL is not implemented");
if (instr.tld.nodep_flag) {
LOG_WARNING(HW_GPU, "TLD.NODEP implementation is incomplete");
}
WriteTexInstructionFloat(bb, instr, GetTldCode(instr));
break;
}
case OpCode::Id::TLDS: {
const Tegra::Shader::TextureType texture_type{instr.tlds.GetTextureType()};
const bool is_array{instr.tlds.IsArrayTexture()};
UNIMPLEMENTED_IF_MSG(instr.tlds.UsesMiscMode(TextureMiscMode::AOFFI),
"AOFFI is not implemented");
UNIMPLEMENTED_IF_MSG(instr.tlds.UsesMiscMode(TextureMiscMode::MZ), "MZ is not implemented");
if (instr.tlds.UsesMiscMode(TextureMiscMode::NODEP)) {
LOG_WARNING(HW_GPU, "TLDS.NODEP implementation is incomplete");
}
const Node4 components = GetTldsCode(instr, texture_type, is_array);
if (instr.tlds.fp32_flag) {
WriteTexsInstructionFloat(bb, instr, components);
} else {
WriteTexsInstructionHalfFloat(bb, instr, components);
}
break;
}
default:
UNIMPLEMENTED_MSG("Unhandled memory instruction: {}", opcode->get().GetName());
}
return pc;
}
const Sampler& ShaderIR::GetSampler(const Tegra::Shader::Sampler& sampler,
std::optional<SamplerInfo> sampler_info) {
const auto offset = static_cast<u32>(sampler.index.Value());
Tegra::Shader::TextureType type;
bool is_array;
bool is_shadow;
if (sampler_info) {
type = sampler_info->type;
is_array = sampler_info->is_array;
is_shadow = sampler_info->is_shadow;
} else if (auto sampler = locker.ObtainBoundSampler(offset); sampler) {
type = sampler->texture_type.Value();
is_array = sampler->is_array.Value() != 0;
is_shadow = sampler->is_shadow.Value() != 0;
} else {
type = Tegra::Shader::TextureType::Texture2D;
is_array = false;
is_shadow = false;
}
// If this sampler has already been used, return the existing mapping.
const auto itr =
std::find_if(used_samplers.begin(), used_samplers.end(),
[&](const Sampler& entry) { return entry.GetOffset() == offset; });
if (itr != used_samplers.end()) {
ASSERT(itr->GetType() == type && itr->IsArray() == is_array &&
itr->IsShadow() == is_shadow);
return *itr;
}
// Otherwise create a new mapping for this sampler
const std::size_t next_index = used_samplers.size();
const Sampler entry{offset, next_index, type, is_array, is_shadow};
return *used_samplers.emplace(entry).first;
} // namespace VideoCommon::Shader
const Sampler& ShaderIR::GetBindlessSampler(const Tegra::Shader::Register& reg,
std::optional<SamplerInfo> sampler_info) {
const Node sampler_register = GetRegister(reg);
const auto [base_sampler, cbuf_index, cbuf_offset] =
TrackCbuf(sampler_register, global_code, static_cast<s64>(global_code.size()));
ASSERT(base_sampler != nullptr);
const auto cbuf_key = (static_cast<u64>(cbuf_index) << 32) | static_cast<u64>(cbuf_offset);
Tegra::Shader::TextureType type;
bool is_array;
bool is_shadow;
if (sampler_info) {
type = sampler_info->type;
is_array = sampler_info->is_array;
is_shadow = sampler_info->is_shadow;
} else if (auto sampler = locker.ObtainBindlessSampler(cbuf_index, cbuf_offset); sampler) {
type = sampler->texture_type.Value();
is_array = sampler->is_array.Value() != 0;
is_shadow = sampler->is_shadow.Value() != 0;
} else {
type = Tegra::Shader::TextureType::Texture2D;
is_array = false;
is_shadow = false;
}
// If this sampler has already been used, return the existing mapping.
const auto itr =
std::find_if(used_samplers.begin(), used_samplers.end(),
[&](const Sampler& entry) { return entry.GetOffset() == cbuf_key; });
if (itr != used_samplers.end()) {
ASSERT(itr->GetType() == type && itr->IsArray() == is_array &&
itr->IsShadow() == is_shadow);
return *itr;
}
// Otherwise create a new mapping for this sampler
const std::size_t next_index = used_samplers.size();
const Sampler entry{cbuf_index, cbuf_offset, next_index, type, is_array, is_shadow};
return *used_samplers.emplace(entry).first;
}
void ShaderIR::WriteTexInstructionFloat(NodeBlock& bb, Instruction instr, const Node4& components) {
u32 dest_elem = 0;
for (u32 elem = 0; elem < 4; ++elem) {
if (!instr.tex.IsComponentEnabled(elem)) {
// Skip disabled components
continue;
}
SetTemporary(bb, dest_elem++, components[elem]);
}
// After writing values in temporals, move them to the real registers
for (u32 i = 0; i < dest_elem; ++i) {
SetRegister(bb, instr.gpr0.Value() + i, GetTemporary(i));
}
}
void ShaderIR::WriteTexsInstructionFloat(NodeBlock& bb, Instruction instr, const Node4& components,
bool ignore_mask) {
// TEXS has two destination registers and a swizzle. The first two elements in the swizzle
// go into gpr0+0 and gpr0+1, and the rest goes into gpr28+0 and gpr28+1
u32 dest_elem = 0;
for (u32 component = 0; component < 4; ++component) {
if (!instr.texs.IsComponentEnabled(component) && !ignore_mask)
continue;
SetTemporary(bb, dest_elem++, components[component]);
}
for (u32 i = 0; i < dest_elem; ++i) {
if (i < 2) {
// Write the first two swizzle components to gpr0 and gpr0+1
SetRegister(bb, instr.gpr0.Value() + i % 2, GetTemporary(i));
} else {
ASSERT(instr.texs.HasTwoDestinations());
// Write the rest of the swizzle components to gpr28 and gpr28+1
SetRegister(bb, instr.gpr28.Value() + i % 2, GetTemporary(i));
}
}
}
void ShaderIR::WriteTexsInstructionHalfFloat(NodeBlock& bb, Instruction instr,
const Node4& components) {
// TEXS.F16 destionation registers are packed in two registers in pairs (just like any half
// float instruction).
Node4 values;
u32 dest_elem = 0;
for (u32 component = 0; component < 4; ++component) {
if (!instr.texs.IsComponentEnabled(component))
continue;
values[dest_elem++] = components[component];
}
if (dest_elem == 0)
return;
std::generate(values.begin() + dest_elem, values.end(), [&]() { return Immediate(0); });
const Node first_value = Operation(OperationCode::HPack2, values[0], values[1]);
if (dest_elem <= 2) {
SetRegister(bb, instr.gpr0, first_value);
return;
}
SetTemporary(bb, 0, first_value);
SetTemporary(bb, 1, Operation(OperationCode::HPack2, values[2], values[3]));
SetRegister(bb, instr.gpr0, GetTemporary(0));
SetRegister(bb, instr.gpr28, GetTemporary(1));
}
Node4 ShaderIR::GetTextureCode(Instruction instr, TextureType texture_type,
TextureProcessMode process_mode, std::vector<Node> coords,
Node array, Node depth_compare, u32 bias_offset,
std::vector<Node> aoffi,
std::optional<Tegra::Shader::Register> bindless_reg) {
const auto is_array = static_cast<bool>(array);
const auto is_shadow = static_cast<bool>(depth_compare);
const bool is_bindless = bindless_reg.has_value();
UNIMPLEMENTED_IF_MSG((texture_type == TextureType::Texture3D && (is_array || is_shadow)) ||
(texture_type == TextureType::TextureCube && is_array && is_shadow),
"This method is not supported.");
const auto& sampler =
is_bindless ? GetBindlessSampler(*bindless_reg, {{texture_type, is_array, is_shadow}})
: GetSampler(instr.sampler, {{texture_type, is_array, is_shadow}});
const bool lod_needed = process_mode == TextureProcessMode::LZ ||
process_mode == TextureProcessMode::LL ||
process_mode == TextureProcessMode::LLA;
// LOD selection (either via bias or explicit textureLod) not
// supported in GL for sampler2DArrayShadow and
// samplerCubeArrayShadow.
const bool gl_lod_supported =
!((texture_type == Tegra::Shader::TextureType::Texture2D && is_array && is_shadow) ||
(texture_type == Tegra::Shader::TextureType::TextureCube && is_array && is_shadow));
const OperationCode read_method =
(lod_needed && gl_lod_supported) ? OperationCode::TextureLod : OperationCode::Texture;
UNIMPLEMENTED_IF(process_mode != TextureProcessMode::None && !gl_lod_supported);
Node bias = {};
Node lod = {};
if (process_mode != TextureProcessMode::None && gl_lod_supported) {
switch (process_mode) {
case TextureProcessMode::LZ:
lod = Immediate(0.0f);
break;
case TextureProcessMode::LB:
// If present, lod or bias are always stored in the register
// indexed by the gpr20 field with an offset depending on the
// usage of the other registers
bias = GetRegister(instr.gpr20.Value() + bias_offset);
break;
case TextureProcessMode::LL:
lod = GetRegister(instr.gpr20.Value() + bias_offset);
break;
default:
UNIMPLEMENTED_MSG("Unimplemented process mode={}", static_cast<u32>(process_mode));
break;
}
}
Node4 values;
for (u32 element = 0; element < values.size(); ++element) {
auto copy_coords = coords;
MetaTexture meta{sampler, array, depth_compare, aoffi, bias, lod, {}, element};
values[element] = Operation(read_method, meta, std::move(copy_coords));
}
return values;
}
Node4 ShaderIR::GetTexCode(Instruction instr, TextureType texture_type,
TextureProcessMode process_mode, bool depth_compare, bool is_array,
bool is_aoffi, std::optional<Tegra::Shader::Register> bindless_reg) {
const bool lod_bias_enabled{
(process_mode != TextureProcessMode::None && process_mode != TextureProcessMode::LZ)};
const bool is_bindless = bindless_reg.has_value();
u64 parameter_register = instr.gpr20.Value();
if (is_bindless) {
++parameter_register;
}
const u32 bias_lod_offset = (is_bindless ? 1 : 0);
if (lod_bias_enabled) {
++parameter_register;
}
const auto [coord_count, total_coord_count] = ValidateAndGetCoordinateElement(
texture_type, depth_compare, is_array, lod_bias_enabled, 4, 5);
// If enabled arrays index is always stored in the gpr8 field
const u64 array_register = instr.gpr8.Value();
// First coordinate index is the gpr8 or gpr8 + 1 when arrays are used
const u64 coord_register = array_register + (is_array ? 1 : 0);
std::vector<Node> coords;
for (std::size_t i = 0; i < coord_count; ++i) {
coords.push_back(GetRegister(coord_register + i));
}
// 1D.DC in OpenGL the 2nd component is ignored.
if (depth_compare && !is_array && texture_type == TextureType::Texture1D) {
coords.push_back(Immediate(0.0f));
}
const Node array = is_array ? GetRegister(array_register) : nullptr;
std::vector<Node> aoffi;
if (is_aoffi) {
aoffi = GetAoffiCoordinates(GetRegister(parameter_register++), coord_count, false);
}
Node dc{};
if (depth_compare) {
// Depth is always stored in the register signaled by gpr20 or in the next register if lod
// or bias are used
dc = GetRegister(parameter_register++);
}
return GetTextureCode(instr, texture_type, process_mode, coords, array, dc, bias_lod_offset,
aoffi, bindless_reg);
}
Node4 ShaderIR::GetTexsCode(Instruction instr, TextureType texture_type,
TextureProcessMode process_mode, bool depth_compare, bool is_array) {
const bool lod_bias_enabled =
(process_mode != TextureProcessMode::None && process_mode != TextureProcessMode::LZ);
const auto [coord_count, total_coord_count] = ValidateAndGetCoordinateElement(
texture_type, depth_compare, is_array, lod_bias_enabled, 4, 4);
// If enabled arrays index is always stored in the gpr8 field
const u64 array_register = instr.gpr8.Value();
// First coordinate index is stored in gpr8 field or (gpr8 + 1) when arrays are used
const u64 coord_register = array_register + (is_array ? 1 : 0);
const u64 last_coord_register =
(is_array || !(lod_bias_enabled || depth_compare) || (coord_count > 2))
? static_cast<u64>(instr.gpr20.Value())
: coord_register + 1;
const u32 bias_offset = coord_count > 2 ? 1 : 0;
std::vector<Node> coords;
for (std::size_t i = 0; i < coord_count; ++i) {
const bool last = (i == (coord_count - 1)) && (coord_count > 1);
coords.push_back(GetRegister(last ? last_coord_register : coord_register + i));
}
const Node array = is_array ? GetRegister(array_register) : nullptr;
Node dc{};
if (depth_compare) {
// Depth is always stored in the register signaled by gpr20 or in the next register if lod
// or bias are used
const u64 depth_register = instr.gpr20.Value() + (lod_bias_enabled ? 1 : 0);
dc = GetRegister(depth_register);
}
return GetTextureCode(instr, texture_type, process_mode, coords, array, dc, bias_offset, {},
{});
}
Node4 ShaderIR::GetTld4Code(Instruction instr, TextureType texture_type, bool depth_compare,
bool is_array, bool is_aoffi) {
const std::size_t coord_count = GetCoordCount(texture_type);
// If enabled arrays index is always stored in the gpr8 field
const u64 array_register = instr.gpr8.Value();
// First coordinate index is the gpr8 or gpr8 + 1 when arrays are used
const u64 coord_register = array_register + (is_array ? 1 : 0);
std::vector<Node> coords;
for (std::size_t i = 0; i < coord_count; ++i) {
coords.push_back(GetRegister(coord_register + i));
}
u64 parameter_register = instr.gpr20.Value();
std::vector<Node> aoffi;
if (is_aoffi) {
aoffi = GetAoffiCoordinates(GetRegister(parameter_register++), coord_count, true);
}
Node dc{};
if (depth_compare) {
dc = GetRegister(parameter_register++);
}
const auto& sampler = GetSampler(instr.sampler, {{texture_type, is_array, depth_compare}});
Node4 values;
for (u32 element = 0; element < values.size(); ++element) {
auto coords_copy = coords;
MetaTexture meta{sampler, GetRegister(array_register), dc, aoffi, {}, {}, {}, element};
values[element] = Operation(OperationCode::TextureGather, meta, std::move(coords_copy));
}
return values;
}
Node4 ShaderIR::GetTldCode(Tegra::Shader::Instruction instr) {
const auto texture_type{instr.tld.texture_type};
const bool is_array{instr.tld.is_array};
const bool lod_enabled{instr.tld.GetTextureProcessMode() == TextureProcessMode::LL};
const std::size_t coord_count{GetCoordCount(texture_type)};
u64 gpr8_cursor{instr.gpr8.Value()};
const Node array_register{is_array ? GetRegister(gpr8_cursor++) : nullptr};
std::vector<Node> coords;
coords.reserve(coord_count);
for (std::size_t i = 0; i < coord_count; ++i) {
coords.push_back(GetRegister(gpr8_cursor++));
}
u64 gpr20_cursor{instr.gpr20.Value()};
// const Node bindless_register{is_bindless ? GetRegister(gpr20_cursor++) : nullptr};
const Node lod{lod_enabled ? GetRegister(gpr20_cursor++) : Immediate(0u)};
// const Node aoffi_register{is_aoffi ? GetRegister(gpr20_cursor++) : nullptr};
// const Node multisample{is_multisample ? GetRegister(gpr20_cursor++) : nullptr};
const auto& sampler = GetSampler(instr.sampler, {{texture_type, is_array, false}});
Node4 values;
for (u32 element = 0; element < values.size(); ++element) {
auto coords_copy = coords;
MetaTexture meta{sampler, array_register, {}, {}, {}, lod, {}, element};
values[element] = Operation(OperationCode::TexelFetch, meta, std::move(coords_copy));
}
return values;
}
Node4 ShaderIR::GetTldsCode(Instruction instr, TextureType texture_type, bool is_array) {
const std::size_t type_coord_count = GetCoordCount(texture_type);
const bool lod_enabled = instr.tlds.GetTextureProcessMode() == TextureProcessMode::LL;
// If enabled arrays index is always stored in the gpr8 field
const u64 array_register = instr.gpr8.Value();
// if is array gpr20 is used
const u64 coord_register = is_array ? instr.gpr20.Value() : instr.gpr8.Value();
const u64 last_coord_register =
((type_coord_count > 2) || (type_coord_count == 2 && !lod_enabled)) && !is_array
? static_cast<u64>(instr.gpr20.Value())
: coord_register + 1;
std::vector<Node> coords;
for (std::size_t i = 0; i < type_coord_count; ++i) {
const bool last = (i == (type_coord_count - 1)) && (type_coord_count > 1);
coords.push_back(GetRegister(last ? last_coord_register : coord_register + i));
}
const Node array = is_array ? GetRegister(array_register) : nullptr;
// When lod is used always is in gpr20
const Node lod = lod_enabled ? GetRegister(instr.gpr20) : Immediate(0);
const auto& sampler = GetSampler(instr.sampler, {{texture_type, is_array, false}});
Node4 values;
for (u32 element = 0; element < values.size(); ++element) {
auto coords_copy = coords;
MetaTexture meta{sampler, array, {}, {}, {}, lod, {}, element};
values[element] = Operation(OperationCode::TexelFetch, meta, std::move(coords_copy));
}
return values;
}
std::tuple<std::size_t, std::size_t> ShaderIR::ValidateAndGetCoordinateElement(
TextureType texture_type, bool depth_compare, bool is_array, bool lod_bias_enabled,
std::size_t max_coords, std::size_t max_inputs) {
const std::size_t coord_count = GetCoordCount(texture_type);
std::size_t total_coord_count = coord_count + (is_array ? 1 : 0) + (depth_compare ? 1 : 0);
const std::size_t total_reg_count = total_coord_count + (lod_bias_enabled ? 1 : 0);
if (total_coord_count > max_coords || total_reg_count > max_inputs) {
UNIMPLEMENTED_MSG("Unsupported Texture operation");
total_coord_count = std::min(total_coord_count, max_coords);
}
// 1D.DC OpenGL is using a vec3 but 2nd component is ignored later.
total_coord_count +=
(depth_compare && !is_array && texture_type == TextureType::Texture1D) ? 1 : 0;
return {coord_count, total_coord_count};
}
std::vector<Node> ShaderIR::GetAoffiCoordinates(Node aoffi_reg, std::size_t coord_count,
bool is_tld4) {
const auto [coord_offsets, size, wrap_value,
diff_value] = [is_tld4]() -> std::tuple<std::array<u32, 3>, u32, s32, s32> {
if (is_tld4) {
return {{0, 8, 16}, 6, 32, 64};
} else {
return {{0, 4, 8}, 4, 8, 16};
}
}();
const u32 mask = (1U << size) - 1;
std::vector<Node> aoffi;
aoffi.reserve(coord_count);
const auto aoffi_immediate{
TrackImmediate(aoffi_reg, global_code, static_cast<s64>(global_code.size()))};
if (!aoffi_immediate) {
// Variable access, not supported on AMD.
LOG_WARNING(HW_GPU,
"AOFFI constant folding failed, some hardware might have graphical issues");
for (std::size_t coord = 0; coord < coord_count; ++coord) {
const Node value = BitfieldExtract(aoffi_reg, coord_offsets.at(coord), size);
const Node condition =
Operation(OperationCode::LogicalIGreaterEqual, value, Immediate(wrap_value));
const Node negative = Operation(OperationCode::IAdd, value, Immediate(-diff_value));
aoffi.push_back(Operation(OperationCode::Select, condition, negative, value));
}
return aoffi;
}
for (std::size_t coord = 0; coord < coord_count; ++coord) {
s32 value = (*aoffi_immediate >> coord_offsets.at(coord)) & mask;
if (value >= wrap_value) {
value -= diff_value;
}
aoffi.push_back(Immediate(value));
}
return aoffi;
}
} // namespace VideoCommon::Shader