// Copyright 2018 yuzu Emulator Project
// Licensed under GPLv2 or any later version
// Refer to the license.txt file included.
#include <cmath>
#include <cstring>
#include "common/alignment.h"
#include "common/assert.h"
#include "core/memory.h"
#include "video_core/gpu.h"
#include "video_core/textures/decoders.h"
#include "video_core/textures/texture.h"
namespace Tegra::Texture {
/**
* This table represents the internal swizzle of a gob,
* in format 16 bytes x 2 sector packing.
* Calculates the offset of an (x, y) position within a swizzled texture.
* Taken from the Tegra X1 Technical Reference Manual. pages 1187-1188
*/
template <std::size_t N, std::size_t M, u32 Align>
struct alignas(64) SwizzleTable {
static_assert(M * Align == 64, "Swizzle Table does not align to GOB");
constexpr SwizzleTable() {
for (u32 y = 0; y < N; ++y) {
for (u32 x = 0; x < M; ++x) {
const u32 x2 = x * Align;
values[y][x] = static_cast<u16>(((x2 % 64) / 32) * 256 + ((y % 8) / 2) * 64 +
((x2 % 32) / 16) * 32 + (y % 2) * 16 + (x2 % 16));
}
}
}
const std::array<u16, M>& operator[](std::size_t index) const {
return values[index];
}
std::array<std::array<u16, M>, N> values{};
};
constexpr auto legacy_swizzle_table = SwizzleTable<8, 64, 1>();
constexpr auto fast_swizzle_table = SwizzleTable<8, 4, 16>();
/**
* This function manages ALL the GOBs(Group of Bytes) Inside a single block.
* Instead of going gob by gob, we map the coordinates inside a block and manage from
* those. Block_Width is assumed to be 1.
*/
void PreciseProcessBlock(u8* swizzled_data, u8* unswizzled_data, const bool unswizzle,
const u32 x_start, const u32 y_start, const u32 z_start, const u32 x_end,
const u32 y_end, const u32 z_end, const u32 tile_offset,
const u32 xy_block_size, const u32 layer_z, const u32 stride_x,
const u32 bytes_per_pixel, const u32 out_bytes_per_pixel) {
std::array<u8*, 2> data_ptrs;
u32 z_address = tile_offset;
const u32 gob_size_x = 64;
const u32 gob_size_y = 8;
const u32 gob_size_z = 1;
const u32 gob_size = gob_size_x * gob_size_y * gob_size_z;
for (u32 z = z_start; z < z_end; z++) {
u32 y_address = z_address;
u32 pixel_base = layer_z * z + y_start * stride_x;
for (u32 y = y_start; y < y_end; y++) {
const auto& table = legacy_swizzle_table[y % gob_size_y];
for (u32 x = x_start; x < x_end; x++) {
const u32 swizzle_offset{y_address + table[x * bytes_per_pixel % gob_size_x]};
const u32 pixel_index{x * out_bytes_per_pixel + pixel_base};
data_ptrs[unswizzle] = swizzled_data + swizzle_offset;
data_ptrs[!unswizzle] = unswizzled_data + pixel_index;
std::memcpy(data_ptrs[0], data_ptrs[1], bytes_per_pixel);
}
pixel_base += stride_x;
if ((y + 1) % gob_size_y == 0)
y_address += gob_size;
}
z_address += xy_block_size;
}
}
/**
* This function manages ALL the GOBs(Group of Bytes) Inside a single block.
* Instead of going gob by gob, we map the coordinates inside a block and manage from
* those. Block_Width is assumed to be 1.
*/
void FastProcessBlock(u8* swizzled_data, u8* unswizzled_data, const bool unswizzle,
const u32 x_start, const u32 y_start, const u32 z_start, const u32 x_end,
const u32 y_end, const u32 z_end, const u32 tile_offset,
const u32 xy_block_size, const u32 layer_z, const u32 stride_x,
const u32 bytes_per_pixel, const u32 out_bytes_per_pixel) {
std::array<u8*, 2> data_ptrs;
u32 z_address = tile_offset;
const u32 x_startb = x_start * bytes_per_pixel;
const u32 x_endb = x_end * bytes_per_pixel;
const u32 copy_size = 16;
const u32 gob_size_x = 64;
const u32 gob_size_y = 8;
const u32 gob_size_z = 1;
const u32 gob_size = gob_size_x * gob_size_y * gob_size_z;
for (u32 z = z_start; z < z_end; z++) {
u32 y_address = z_address;
u32 pixel_base = layer_z * z + y_start * stride_x;
for (u32 y = y_start; y < y_end; y++) {
const auto& table = fast_swizzle_table[y % gob_size_y];
for (u32 xb = x_startb; xb < x_endb; xb += copy_size) {
const u32 swizzle_offset{y_address + table[(xb / copy_size) % 4]};
const u32 out_x = xb * out_bytes_per_pixel / bytes_per_pixel;
const u32 pixel_index{out_x + pixel_base};
data_ptrs[unswizzle] = swizzled_data + swizzle_offset;
data_ptrs[!unswizzle] = unswizzled_data + pixel_index;
std::memcpy(data_ptrs[0], data_ptrs[1], copy_size);
}
pixel_base += stride_x;
if ((y + 1) % gob_size_y == 0)
y_address += gob_size;
}
z_address += xy_block_size;
}
}
/**
* This function unswizzles or swizzles a texture by mapping Linear to BlockLinear Textue.
* The body of this function takes care of splitting the swizzled texture into blocks,
* and managing the extents of it. Once all the parameters of a single block are obtained,
* the function calls 'ProcessBlock' to process that particular Block.
*
* Documentation for the memory layout and decoding can be found at:
* https://envytools.readthedocs.io/en/latest/hw/memory/g80-surface.html#blocklinear-surfaces
*/
template <bool fast>
void SwizzledData(u8* swizzled_data, u8* unswizzled_data, const bool unswizzle, const u32 width,
const u32 height, const u32 depth, const u32 bytes_per_pixel,
const u32 out_bytes_per_pixel, const u32 block_height, const u32 block_depth) {
auto div_ceil = [](const u32 x, const u32 y) { return ((x + y - 1) / y); };
const u32 stride_x = width * out_bytes_per_pixel;
const u32 layer_z = height * stride_x;
const u32 gob_x_bytes = 64;
const u32 gob_elements_x = gob_x_bytes / bytes_per_pixel;
const u32 gob_elements_y = 8;
const u32 gob_elements_z = 1;
const u32 block_x_elements = gob_elements_x;
const u32 block_y_elements = gob_elements_y * block_height;
const u32 block_z_elements = gob_elements_z * block_depth;
const u32 blocks_on_x = div_ceil(width, block_x_elements);
const u32 blocks_on_y = div_ceil(height, block_y_elements);
const u32 blocks_on_z = div_ceil(depth, block_z_elements);
const u32 gob_size = gob_x_bytes * gob_elements_y * gob_elements_z;
const u32 xy_block_size = gob_size * block_height;
const u32 block_size = xy_block_size * block_depth;
u32 tile_offset = 0;
for (u32 zb = 0; zb < blocks_on_z; zb++) {
const u32 z_start = zb * block_z_elements;
const u32 z_end = std::min(depth, z_start + block_z_elements);
for (u32 yb = 0; yb < blocks_on_y; yb++) {
const u32 y_start = yb * block_y_elements;
const u32 y_end = std::min(height, y_start + block_y_elements);
for (u32 xb = 0; xb < blocks_on_x; xb++) {
const u32 x_start = xb * block_x_elements;
const u32 x_end = std::min(width, x_start + block_x_elements);
if (fast) {
FastProcessBlock(swizzled_data, unswizzled_data, unswizzle, x_start, y_start,
z_start, x_end, y_end, z_end, tile_offset, xy_block_size,
layer_z, stride_x, bytes_per_pixel, out_bytes_per_pixel);
} else {
PreciseProcessBlock(swizzled_data, unswizzled_data, unswizzle, x_start, y_start,
z_start, x_end, y_end, z_end, tile_offset, xy_block_size,
layer_z, stride_x, bytes_per_pixel, out_bytes_per_pixel);
}
tile_offset += block_size;
}
}
}
}
void CopySwizzledData(u32 width, u32 height, u32 depth, u32 bytes_per_pixel,
u32 out_bytes_per_pixel, u8* swizzled_data, u8* unswizzled_data,
bool unswizzle, u32 block_height, u32 block_depth) {
if (bytes_per_pixel % 3 != 0 && (width * bytes_per_pixel) % 16 == 0) {
SwizzledData<true>(swizzled_data, unswizzled_data, unswizzle, width, height, depth,
bytes_per_pixel, out_bytes_per_pixel, block_height, block_depth);
} else {
SwizzledData<false>(swizzled_data, unswizzled_data, unswizzle, width, height, depth,
bytes_per_pixel, out_bytes_per_pixel, block_height, block_depth);
}
}
u32 BytesPerPixel(TextureFormat format) {
switch (format) {
case TextureFormat::DXT1:
case TextureFormat::DXN1:
// In this case a 'pixel' actually refers to a 4x4 tile.
return 8;
case TextureFormat::DXT23:
case TextureFormat::DXT45:
case TextureFormat::DXN2:
case TextureFormat::BC7U:
case TextureFormat::BC6H_UF16:
case TextureFormat::BC6H_SF16:
// In this case a 'pixel' actually refers to a 4x4 tile.
return 16;
case TextureFormat::R32_G32_B32:
return 12;
case TextureFormat::ASTC_2D_4X4:
case TextureFormat::ASTC_2D_5X4:
case TextureFormat::ASTC_2D_8X8:
case TextureFormat::ASTC_2D_8X5:
case TextureFormat::A8R8G8B8:
case TextureFormat::A2B10G10R10:
case TextureFormat::BF10GF11RF11:
case TextureFormat::R32:
case TextureFormat::R16_G16:
return 4;
case TextureFormat::A1B5G5R5:
case TextureFormat::B5G6R5:
case TextureFormat::G8R8:
case TextureFormat::R16:
return 2;
case TextureFormat::R8:
return 1;
case TextureFormat::R16_G16_B16_A16:
return 8;
case TextureFormat::R32_G32_B32_A32:
return 16;
case TextureFormat::R32_G32:
return 8;
default:
UNIMPLEMENTED_MSG("Format not implemented");
break;
}
}
std::vector<u8> UnswizzleTexture(VAddr address, u32 tile_size, u32 bytes_per_pixel, u32 width,
u32 height, u32 depth, u32 block_height, u32 block_depth) {
std::vector<u8> unswizzled_data(width * height * depth * bytes_per_pixel);
CopySwizzledData(width / tile_size, height / tile_size, depth, bytes_per_pixel, bytes_per_pixel,
Memory::GetPointer(address), unswizzled_data.data(), true, block_height,
block_depth);
return unswizzled_data;
}
void SwizzleSubrect(u32 subrect_width, u32 subrect_height, u32 source_pitch, u32 swizzled_width,
u32 bytes_per_pixel, VAddr swizzled_data, VAddr unswizzled_data,
u32 block_height) {
const u32 image_width_in_gobs{(swizzled_width * bytes_per_pixel + 63) / 64};
for (u32 line = 0; line < subrect_height; ++line) {
const u32 gob_address_y =
(line / (8 * block_height)) * 512 * block_height * image_width_in_gobs +
(line % (8 * block_height) / 8) * 512;
const auto& table = legacy_swizzle_table[line % 8];
for (u32 x = 0; x < subrect_width; ++x) {
const u32 gob_address = gob_address_y + (x * bytes_per_pixel / 64) * 512 * block_height;
const u32 swizzled_offset = gob_address + table[(x * bytes_per_pixel) % 64];
const VAddr source_line = unswizzled_data + line * source_pitch + x * bytes_per_pixel;
const VAddr dest_addr = swizzled_data + swizzled_offset;
Memory::CopyBlock(dest_addr, source_line, bytes_per_pixel);
}
}
}
void UnswizzleSubrect(u32 subrect_width, u32 subrect_height, u32 dest_pitch, u32 swizzled_width,
u32 bytes_per_pixel, VAddr swizzled_data, VAddr unswizzled_data,
u32 block_height, u32 offset_x, u32 offset_y) {
for (u32 line = 0; line < subrect_height; ++line) {
const u32 y2 = line + offset_y;
const u32 gob_address_y =
(y2 / (8 * block_height)) * 512 * block_height + (y2 % (8 * block_height) / 8) * 512;
const auto& table = legacy_swizzle_table[y2 % 8];
for (u32 x = 0; x < subrect_width; ++x) {
const u32 x2 = (x + offset_x) * bytes_per_pixel;
const u32 gob_address = gob_address_y + (x2 / 64) * 512 * block_height;
const u32 swizzled_offset = gob_address + table[x2 % 64];
const VAddr dest_line = unswizzled_data + line * dest_pitch + x * bytes_per_pixel;
const VAddr source_addr = swizzled_data + swizzled_offset;
Memory::CopyBlock(dest_line, source_addr, bytes_per_pixel);
}
}
}
std::vector<u8> DecodeTexture(const std::vector<u8>& texture_data, TextureFormat format, u32 width,
u32 height) {
std::vector<u8> rgba_data;
// TODO(Subv): Implement.
switch (format) {
case TextureFormat::DXT1:
case TextureFormat::DXT23:
case TextureFormat::DXT45:
case TextureFormat::DXN1:
case TextureFormat::DXN2:
case TextureFormat::BC7U:
case TextureFormat::BC6H_UF16:
case TextureFormat::BC6H_SF16:
case TextureFormat::ASTC_2D_4X4:
case TextureFormat::ASTC_2D_8X8:
case TextureFormat::A8R8G8B8:
case TextureFormat::A2B10G10R10:
case TextureFormat::A1B5G5R5:
case TextureFormat::B5G6R5:
case TextureFormat::R8:
case TextureFormat::G8R8:
case TextureFormat::BF10GF11RF11:
case TextureFormat::R32_G32_B32_A32:
case TextureFormat::R32_G32:
case TextureFormat::R32:
case TextureFormat::R16:
case TextureFormat::R16_G16:
case TextureFormat::R32_G32_B32:
// TODO(Subv): For the time being just forward the same data without any decoding.
rgba_data = texture_data;
break;
default:
UNIMPLEMENTED_MSG("Format not implemented");
break;
}
return rgba_data;
}
std::size_t CalculateSize(bool tiled, u32 bytes_per_pixel, u32 width, u32 height, u32 depth,
u32 block_height, u32 block_depth) {
if (tiled) {
const u32 gobs_in_x = 64;
const u32 gobs_in_y = 8;
const u32 gobs_in_z = 1;
const u32 aligned_width = Common::AlignUp(width * bytes_per_pixel, gobs_in_x);
const u32 aligned_height = Common::AlignUp(height, gobs_in_y * block_height);
const u32 aligned_depth = Common::AlignUp(depth, gobs_in_z * block_depth);
return aligned_width * aligned_height * aligned_depth;
} else {
return width * height * depth * bytes_per_pixel;
}
}
} // namespace Tegra::Texture