diff options
author | bunnei <bunneidev@gmail.com> | 2015-07-22 01:09:11 +0200 |
---|---|---|
committer | bunnei <bunneidev@gmail.com> | 2015-08-15 23:33:42 +0200 |
commit | 18527b9e21a95445fbee45fea29f674fbdd2aae1 (patch) | |
tree | bf037c3877e288b561cd7f075c24d3ce8e449a85 /src/video_core/shader/shader_interpreter.cpp | |
parent | GPU: Refactor "VertexShader" namespace to "Shader". (diff) | |
download | yuzu-18527b9e21a95445fbee45fea29f674fbdd2aae1.tar yuzu-18527b9e21a95445fbee45fea29f674fbdd2aae1.tar.gz yuzu-18527b9e21a95445fbee45fea29f674fbdd2aae1.tar.bz2 yuzu-18527b9e21a95445fbee45fea29f674fbdd2aae1.tar.lz yuzu-18527b9e21a95445fbee45fea29f674fbdd2aae1.tar.xz yuzu-18527b9e21a95445fbee45fea29f674fbdd2aae1.tar.zst yuzu-18527b9e21a95445fbee45fea29f674fbdd2aae1.zip |
Diffstat (limited to 'src/video_core/shader/shader_interpreter.cpp')
-rw-r--r-- | src/video_core/shader/shader_interpreter.cpp | 629 |
1 files changed, 629 insertions, 0 deletions
diff --git a/src/video_core/shader/shader_interpreter.cpp b/src/video_core/shader/shader_interpreter.cpp new file mode 100644 index 000000000..369883225 --- /dev/null +++ b/src/video_core/shader/shader_interpreter.cpp @@ -0,0 +1,629 @@ +// Copyright 2014 Citra Emulator Project +// Licensed under GPLv2 or any later version +// Refer to the license.txt file included. + +#include <boost/container/static_vector.hpp> +#include <boost/range/algorithm.hpp> + +#include <common/file_util.h> + +#include <nihstro/shader_bytecode.h> + +#include "common/profiler.h" + +#include "video_core/pica.h" +#include "video_core/shader/shader_interpreter.h" +#include "video_core/debug_utils/debug_utils.h" + +using nihstro::OpCode; +using nihstro::Instruction; +using nihstro::RegisterType; +using nihstro::SourceRegister; +using nihstro::SwizzlePattern; + +namespace Pica { + +namespace Shader { + +struct ShaderState { + u32 program_counter; + + const float24* input_register_table[16]; + Math::Vec4<float24> output_registers[16]; + + Math::Vec4<float24> temporary_registers[16]; + bool conditional_code[2]; + + // Two Address registers and one loop counter + // TODO: How many bits do these actually have? + s32 address_registers[3]; + + enum { + INVALID_ADDRESS = 0xFFFFFFFF + }; + + struct CallStackElement { + u32 final_address; // Address upon which we jump to return_address + u32 return_address; // Where to jump when leaving scope + u8 repeat_counter; // How often to repeat until this call stack element is removed + u8 loop_increment; // Which value to add to the loop counter after an iteration + // TODO: Should this be a signed value? Does it even matter? + u32 loop_address; // The address where we'll return to after each loop iteration + }; + + // TODO: Is there a maximal size for this? + boost::container::static_vector<CallStackElement, 16> call_stack; + + struct { + u32 max_offset; // maximum program counter ever reached + u32 max_opdesc_id; // maximum swizzle pattern index ever used + } debug; +}; + +static void ProcessShaderCode(ShaderState& state) { + const auto& uniforms = g_state.vs.uniforms; + const auto& swizzle_data = g_state.vs.swizzle_data; + const auto& program_code = g_state.vs.program_code; + + // Placeholder for invalid inputs + static float24 dummy_vec4_float24[4]; + + while (true) { + if (!state.call_stack.empty()) { + auto& top = state.call_stack.back(); + if (state.program_counter == top.final_address) { + state.address_registers[2] += top.loop_increment; + + if (top.repeat_counter-- == 0) { + state.program_counter = top.return_address; + state.call_stack.pop_back(); + } else { + state.program_counter = top.loop_address; + } + + // TODO: Is "trying again" accurate to hardware? + continue; + } + } + + bool exit_loop = false; + const Instruction instr = { program_code[state.program_counter] }; + const SwizzlePattern swizzle = { swizzle_data[instr.common.operand_desc_id] }; + + static auto call = [](ShaderState& state, u32 offset, u32 num_instructions, + u32 return_offset, u8 repeat_count, u8 loop_increment) { + state.program_counter = offset - 1; // -1 to make sure when incrementing the PC we end up at the correct offset + ASSERT(state.call_stack.size() < state.call_stack.capacity()); + state.call_stack.push_back({ offset + num_instructions, return_offset, repeat_count, loop_increment, offset }); + }; + state.debug.max_offset = std::max<u32>(state.debug.max_offset, 1 + state.program_counter); + + auto LookupSourceRegister = [&](const SourceRegister& source_reg) -> const float24* { + switch (source_reg.GetRegisterType()) { + case RegisterType::Input: + return state.input_register_table[source_reg.GetIndex()]; + + case RegisterType::Temporary: + return &state.temporary_registers[source_reg.GetIndex()].x; + + case RegisterType::FloatUniform: + return &uniforms.f[source_reg.GetIndex()].x; + + default: + return dummy_vec4_float24; + } + }; + + switch (instr.opcode.Value().GetInfo().type) { + case OpCode::Type::Arithmetic: + { + const bool is_inverted = (0 != (instr.opcode.Value().GetInfo().subtype & OpCode::Info::SrcInversed)); + + const int address_offset = (instr.common.address_register_index == 0) + ? 0 : state.address_registers[instr.common.address_register_index - 1]; + + const float24* src1_ = LookupSourceRegister(instr.common.GetSrc1(is_inverted) + (!is_inverted * address_offset)); + const float24* src2_ = LookupSourceRegister(instr.common.GetSrc2(is_inverted) + ( is_inverted * address_offset)); + + const bool negate_src1 = ((bool)swizzle.negate_src1 != false); + const bool negate_src2 = ((bool)swizzle.negate_src2 != false); + + float24 src1[4] = { + src1_[(int)swizzle.GetSelectorSrc1(0)], + src1_[(int)swizzle.GetSelectorSrc1(1)], + src1_[(int)swizzle.GetSelectorSrc1(2)], + src1_[(int)swizzle.GetSelectorSrc1(3)], + }; + if (negate_src1) { + src1[0] = src1[0] * float24::FromFloat32(-1); + src1[1] = src1[1] * float24::FromFloat32(-1); + src1[2] = src1[2] * float24::FromFloat32(-1); + src1[3] = src1[3] * float24::FromFloat32(-1); + } + float24 src2[4] = { + src2_[(int)swizzle.GetSelectorSrc2(0)], + src2_[(int)swizzle.GetSelectorSrc2(1)], + src2_[(int)swizzle.GetSelectorSrc2(2)], + src2_[(int)swizzle.GetSelectorSrc2(3)], + }; + if (negate_src2) { + src2[0] = src2[0] * float24::FromFloat32(-1); + src2[1] = src2[1] * float24::FromFloat32(-1); + src2[2] = src2[2] * float24::FromFloat32(-1); + src2[3] = src2[3] * float24::FromFloat32(-1); + } + + float24* dest = (instr.common.dest.Value() < 0x10) ? &state.output_registers[instr.common.dest.Value().GetIndex()][0] + : (instr.common.dest.Value() < 0x20) ? &state.temporary_registers[instr.common.dest.Value().GetIndex()][0] + : dummy_vec4_float24; + + state.debug.max_opdesc_id = std::max<u32>(state.debug.max_opdesc_id, 1+instr.common.operand_desc_id); + + switch (instr.opcode.Value().EffectiveOpCode()) { + case OpCode::Id::ADD: + { + for (int i = 0; i < 4; ++i) { + if (!swizzle.DestComponentEnabled(i)) + continue; + + dest[i] = src1[i] + src2[i]; + } + + break; + } + + case OpCode::Id::MUL: + { + for (int i = 0; i < 4; ++i) { + if (!swizzle.DestComponentEnabled(i)) + continue; + + dest[i] = src1[i] * src2[i]; + } + + break; + } + + case OpCode::Id::FLR: + for (int i = 0; i < 4; ++i) { + if (!swizzle.DestComponentEnabled(i)) + continue; + + dest[i] = float24::FromFloat32(std::floor(src1[i].ToFloat32())); + } + break; + + case OpCode::Id::MAX: + for (int i = 0; i < 4; ++i) { + if (!swizzle.DestComponentEnabled(i)) + continue; + + dest[i] = std::max(src1[i], src2[i]); + } + break; + + case OpCode::Id::MIN: + for (int i = 0; i < 4; ++i) { + if (!swizzle.DestComponentEnabled(i)) + continue; + + dest[i] = std::min(src1[i], src2[i]); + } + break; + + case OpCode::Id::DP3: + case OpCode::Id::DP4: + { + float24 dot = float24::FromFloat32(0.f); + int num_components = (instr.opcode.Value() == OpCode::Id::DP3) ? 3 : 4; + for (int i = 0; i < num_components; ++i) + dot = dot + src1[i] * src2[i]; + + for (int i = 0; i < 4; ++i) { + if (!swizzle.DestComponentEnabled(i)) + continue; + + dest[i] = dot; + } + break; + } + + // Reciprocal + case OpCode::Id::RCP: + { + for (int i = 0; i < 4; ++i) { + if (!swizzle.DestComponentEnabled(i)) + continue; + + // TODO: Be stable against division by zero! + // TODO: I think this might be wrong... we should only use one component here + dest[i] = float24::FromFloat32(1.0f / src1[i].ToFloat32()); + } + + break; + } + + // Reciprocal Square Root + case OpCode::Id::RSQ: + { + for (int i = 0; i < 4; ++i) { + if (!swizzle.DestComponentEnabled(i)) + continue; + + // TODO: Be stable against division by zero! + // TODO: I think this might be wrong... we should only use one component here + dest[i] = float24::FromFloat32(1.0f / sqrt(src1[i].ToFloat32())); + } + + break; + } + + case OpCode::Id::MOVA: + { + for (int i = 0; i < 2; ++i) { + if (!swizzle.DestComponentEnabled(i)) + continue; + + // TODO: Figure out how the rounding is done on hardware + state.address_registers[i] = static_cast<s32>(src1[i].ToFloat32()); + } + + break; + } + + case OpCode::Id::MOV: + { + for (int i = 0; i < 4; ++i) { + if (!swizzle.DestComponentEnabled(i)) + continue; + + dest[i] = src1[i]; + } + break; + } + + case OpCode::Id::SLT: + case OpCode::Id::SLTI: + for (int i = 0; i < 4; ++i) { + if (!swizzle.DestComponentEnabled(i)) + continue; + + dest[i] = (src1[i] < src2[i]) ? float24::FromFloat32(1.0f) : float24::FromFloat32(0.0f); + } + break; + + case OpCode::Id::CMP: + for (int i = 0; i < 2; ++i) { + // TODO: Can you restrict to one compare via dest masking? + + auto compare_op = instr.common.compare_op; + auto op = (i == 0) ? compare_op.x.Value() : compare_op.y.Value(); + + switch (op) { + case compare_op.Equal: + state.conditional_code[i] = (src1[i] == src2[i]); + break; + + case compare_op.NotEqual: + state.conditional_code[i] = (src1[i] != src2[i]); + break; + + case compare_op.LessThan: + state.conditional_code[i] = (src1[i] < src2[i]); + break; + + case compare_op.LessEqual: + state.conditional_code[i] = (src1[i] <= src2[i]); + break; + + case compare_op.GreaterThan: + state.conditional_code[i] = (src1[i] > src2[i]); + break; + + case compare_op.GreaterEqual: + state.conditional_code[i] = (src1[i] >= src2[i]); + break; + + default: + LOG_ERROR(HW_GPU, "Unknown compare mode %x", static_cast<int>(op)); + break; + } + } + break; + + default: + LOG_ERROR(HW_GPU, "Unhandled arithmetic instruction: 0x%02x (%s): 0x%08x", + (int)instr.opcode.Value().EffectiveOpCode(), instr.opcode.Value().GetInfo().name, instr.hex); + DEBUG_ASSERT(false); + break; + } + + break; + } + + case OpCode::Type::MultiplyAdd: + { + if ((instr.opcode.Value().EffectiveOpCode() == OpCode::Id::MAD) || + (instr.opcode.Value().EffectiveOpCode() == OpCode::Id::MADI)) { + const SwizzlePattern& swizzle = *(SwizzlePattern*)&swizzle_data[instr.mad.operand_desc_id]; + + bool is_inverted = (instr.opcode.Value().EffectiveOpCode() == OpCode::Id::MADI); + + const float24* src1_ = LookupSourceRegister(instr.mad.GetSrc1(is_inverted)); + const float24* src2_ = LookupSourceRegister(instr.mad.GetSrc2(is_inverted)); + const float24* src3_ = LookupSourceRegister(instr.mad.GetSrc3(is_inverted)); + + const bool negate_src1 = ((bool)swizzle.negate_src1 != false); + const bool negate_src2 = ((bool)swizzle.negate_src2 != false); + const bool negate_src3 = ((bool)swizzle.negate_src3 != false); + + float24 src1[4] = { + src1_[(int)swizzle.GetSelectorSrc1(0)], + src1_[(int)swizzle.GetSelectorSrc1(1)], + src1_[(int)swizzle.GetSelectorSrc1(2)], + src1_[(int)swizzle.GetSelectorSrc1(3)], + }; + if (negate_src1) { + src1[0] = src1[0] * float24::FromFloat32(-1); + src1[1] = src1[1] * float24::FromFloat32(-1); + src1[2] = src1[2] * float24::FromFloat32(-1); + src1[3] = src1[3] * float24::FromFloat32(-1); + } + float24 src2[4] = { + src2_[(int)swizzle.GetSelectorSrc2(0)], + src2_[(int)swizzle.GetSelectorSrc2(1)], + src2_[(int)swizzle.GetSelectorSrc2(2)], + src2_[(int)swizzle.GetSelectorSrc2(3)], + }; + if (negate_src2) { + src2[0] = src2[0] * float24::FromFloat32(-1); + src2[1] = src2[1] * float24::FromFloat32(-1); + src2[2] = src2[2] * float24::FromFloat32(-1); + src2[3] = src2[3] * float24::FromFloat32(-1); + } + float24 src3[4] = { + src3_[(int)swizzle.GetSelectorSrc3(0)], + src3_[(int)swizzle.GetSelectorSrc3(1)], + src3_[(int)swizzle.GetSelectorSrc3(2)], + src3_[(int)swizzle.GetSelectorSrc3(3)], + }; + if (negate_src3) { + src3[0] = src3[0] * float24::FromFloat32(-1); + src3[1] = src3[1] * float24::FromFloat32(-1); + src3[2] = src3[2] * float24::FromFloat32(-1); + src3[3] = src3[3] * float24::FromFloat32(-1); + } + + float24* dest = (instr.mad.dest.Value() < 0x10) ? &state.output_registers[instr.mad.dest.Value().GetIndex()][0] + : (instr.mad.dest.Value() < 0x20) ? &state.temporary_registers[instr.mad.dest.Value().GetIndex()][0] + : dummy_vec4_float24; + + for (int i = 0; i < 4; ++i) { + if (!swizzle.DestComponentEnabled(i)) + continue; + + dest[i] = src1[i] * src2[i] + src3[i]; + } + } else { + LOG_ERROR(HW_GPU, "Unhandled multiply-add instruction: 0x%02x (%s): 0x%08x", + (int)instr.opcode.Value().EffectiveOpCode(), instr.opcode.Value().GetInfo().name, instr.hex); + } + break; + } + + default: + { + static auto evaluate_condition = [](const ShaderState& state, bool refx, bool refy, Instruction::FlowControlType flow_control) { + bool results[2] = { refx == state.conditional_code[0], + refy == state.conditional_code[1] }; + + switch (flow_control.op) { + case flow_control.Or: + return results[0] || results[1]; + + case flow_control.And: + return results[0] && results[1]; + + case flow_control.JustX: + return results[0]; + + case flow_control.JustY: + return results[1]; + } + }; + + // Handle each instruction on its own + switch (instr.opcode.Value()) { + case OpCode::Id::END: + exit_loop = true; + break; + + case OpCode::Id::JMPC: + if (evaluate_condition(state, instr.flow_control.refx, instr.flow_control.refy, instr.flow_control)) { + state.program_counter = instr.flow_control.dest_offset - 1; + } + break; + + case OpCode::Id::JMPU: + if (uniforms.b[instr.flow_control.bool_uniform_id]) { + state.program_counter = instr.flow_control.dest_offset - 1; + } + break; + + case OpCode::Id::CALL: + call(state, + instr.flow_control.dest_offset, + instr.flow_control.num_instructions, + state.program_counter + 1, 0, 0); + break; + + case OpCode::Id::CALLU: + if (uniforms.b[instr.flow_control.bool_uniform_id]) { + call(state, + instr.flow_control.dest_offset, + instr.flow_control.num_instructions, + state.program_counter + 1, 0, 0); + } + break; + + case OpCode::Id::CALLC: + if (evaluate_condition(state, instr.flow_control.refx, instr.flow_control.refy, instr.flow_control)) { + call(state, + instr.flow_control.dest_offset, + instr.flow_control.num_instructions, + state.program_counter + 1, 0, 0); + } + break; + + case OpCode::Id::NOP: + break; + + case OpCode::Id::IFU: + if (uniforms.b[instr.flow_control.bool_uniform_id]) { + call(state, + state.program_counter + 1, + instr.flow_control.dest_offset - state.program_counter - 1, + instr.flow_control.dest_offset + instr.flow_control.num_instructions, 0, 0); + } else { + call(state, + instr.flow_control.dest_offset, + instr.flow_control.num_instructions, + instr.flow_control.dest_offset + instr.flow_control.num_instructions, 0, 0); + } + + break; + + case OpCode::Id::IFC: + { + // TODO: Do we need to consider swizzlers here? + + if (evaluate_condition(state, instr.flow_control.refx, instr.flow_control.refy, instr.flow_control)) { + call(state, + state.program_counter + 1, + instr.flow_control.dest_offset - state.program_counter - 1, + instr.flow_control.dest_offset + instr.flow_control.num_instructions, 0, 0); + } else { + call(state, + instr.flow_control.dest_offset, + instr.flow_control.num_instructions, + instr.flow_control.dest_offset + instr.flow_control.num_instructions, 0, 0); + } + + break; + } + + case OpCode::Id::LOOP: + { + state.address_registers[2] = uniforms.i[instr.flow_control.int_uniform_id].y; + + call(state, + state.program_counter + 1, + instr.flow_control.dest_offset - state.program_counter + 1, + instr.flow_control.dest_offset + 1, + uniforms.i[instr.flow_control.int_uniform_id].x, + uniforms.i[instr.flow_control.int_uniform_id].z); + break; + } + + default: + LOG_ERROR(HW_GPU, "Unhandled instruction: 0x%02x (%s): 0x%08x", + (int)instr.opcode.Value().EffectiveOpCode(), instr.opcode.Value().GetInfo().name, instr.hex); + break; + } + + break; + } + } + + ++state.program_counter; + + if (exit_loop) + break; + } +} + +static Common::Profiling::TimingCategory shader_category("Vertex Shader"); + +OutputVertex RunShader(const InputVertex& input, int num_attributes, const Regs::ShaderConfig& config, const State::ShaderSetup& setup) { + Common::Profiling::ScopeTimer timer(shader_category); + + ShaderState state; + + state.program_counter = config.main_offset; + state.debug.max_offset = 0; + state.debug.max_opdesc_id = 0; + + // Setup input register table + const auto& attribute_register_map = config.input_register_map; + float24 dummy_register; + boost::fill(state.input_register_table, &dummy_register); + + if (num_attributes > 0) state.input_register_table[attribute_register_map.attribute0_register] = &input.attr[0].x; + if (num_attributes > 1) state.input_register_table[attribute_register_map.attribute1_register] = &input.attr[1].x; + if (num_attributes > 2) state.input_register_table[attribute_register_map.attribute2_register] = &input.attr[2].x; + if (num_attributes > 3) state.input_register_table[attribute_register_map.attribute3_register] = &input.attr[3].x; + if (num_attributes > 4) state.input_register_table[attribute_register_map.attribute4_register] = &input.attr[4].x; + if (num_attributes > 5) state.input_register_table[attribute_register_map.attribute5_register] = &input.attr[5].x; + if (num_attributes > 6) state.input_register_table[attribute_register_map.attribute6_register] = &input.attr[6].x; + if (num_attributes > 7) state.input_register_table[attribute_register_map.attribute7_register] = &input.attr[7].x; + if (num_attributes > 8) state.input_register_table[attribute_register_map.attribute8_register] = &input.attr[8].x; + if (num_attributes > 9) state.input_register_table[attribute_register_map.attribute9_register] = &input.attr[9].x; + if (num_attributes > 10) state.input_register_table[attribute_register_map.attribute10_register] = &input.attr[10].x; + if (num_attributes > 11) state.input_register_table[attribute_register_map.attribute11_register] = &input.attr[11].x; + if (num_attributes > 12) state.input_register_table[attribute_register_map.attribute12_register] = &input.attr[12].x; + if (num_attributes > 13) state.input_register_table[attribute_register_map.attribute13_register] = &input.attr[13].x; + if (num_attributes > 14) state.input_register_table[attribute_register_map.attribute14_register] = &input.attr[14].x; + if (num_attributes > 15) state.input_register_table[attribute_register_map.attribute15_register] = &input.attr[15].x; + + state.conditional_code[0] = false; + state.conditional_code[1] = false; + + ProcessShaderCode(state); +#if PICA_DUMP_SHADERS + DebugUtils::DumpShader(setup.program_code.data(), state.debug.max_offset, setup.swizzle_data.data(), + state.debug.max_opdesc_id, config.main_offset, + g_state.regs.vs_output_attributes); // TODO: Don't hardcode VS here +#endif + + // Setup output data + OutputVertex ret; + // TODO(neobrain): Under some circumstances, up to 16 attributes may be output. We need to + // figure out what those circumstances are and enable the remaining outputs then. + for (int i = 0; i < 7; ++i) { + const auto& output_register_map = g_state.regs.vs_output_attributes[i]; // TODO: Don't hardcode VS here + + u32 semantics[4] = { + output_register_map.map_x, output_register_map.map_y, + output_register_map.map_z, output_register_map.map_w + }; + + for (int comp = 0; comp < 4; ++comp) { + float24* out = ((float24*)&ret) + semantics[comp]; + if (semantics[comp] != Regs::VSOutputAttributes::INVALID) { + *out = state.output_registers[i][comp]; + } else { + // Zero output so that attributes which aren't output won't have denormals in them, + // which would slow us down later. + memset(out, 0, sizeof(*out)); + } + } + } + + // The hardware takes the absolute and saturates vertex colors like this, *before* doing interpolation + for (int i = 0; i < 4; ++i) { + ret.color[i] = float24::FromFloat32( + std::fmin(std::fabs(ret.color[i].ToFloat32()), 1.0f)); + } + + LOG_TRACE(Render_Software, "Output vertex: pos (%.2f, %.2f, %.2f, %.2f), col(%.2f, %.2f, %.2f, %.2f), tc0(%.2f, %.2f)", + ret.pos.x.ToFloat32(), ret.pos.y.ToFloat32(), ret.pos.z.ToFloat32(), ret.pos.w.ToFloat32(), + ret.color.x.ToFloat32(), ret.color.y.ToFloat32(), ret.color.z.ToFloat32(), ret.color.w.ToFloat32(), + ret.tc0.u().ToFloat32(), ret.tc0.v().ToFloat32()); + + return ret; +} + + +} // namespace + +} // namespace |